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Modelling the performance 
of an integrated fixed‑film 
activated sludge (IFAS) 
system: a systematic approach 
to automated calibration
D. Pryce1*, Z. Kapelan1,2 & F. A. Memon1

IFAS systems are inherently complex due to the hybrid use of both suspended and attached bacterial 
colonies for the purpose of pollutant degradation as part of wastewater treatment. This poses 
challenges when attempting to represent these systems mathematically due to the vast number 
of parameters involved. Besides becoming convoluted, large effort will be incurred during model 
calibration. This paper demonstrates a systematic approach to calibration of an IFAS process model 
that incorporates two sensitivity analyses to identify influential parameters and detect collinearity 
from a subset of 68 kinetic and stoichiometric parameters, and the use of the Nelder–Mead 
optimization algorithm to estimate the required values of these parameters. The model considers the 
removal of three critical pollutants including biochemical oxygen demand (BOD), total nitrogen (TN) 
and total suspended solids (TSS). Results from the sensitivity analyses identified four parameters 
that were the primary influence on the model. The model was found to be most sensitive to the two 
stoichiometric parameters including aerobic heterotrophic yield on soluble substrate whose total 
effects were responsible for 92.4% of the model’s BOD output sensitivity and 92.8% of the model’s TSS 
output sensitivity. The anoxic heterotrophic yield on soluble substrate was observed to be responsible 
for 54.3% of the model’s TN output sensitivity. To a lesser extent the two kinetic parameters, aerobic 
heterotrophic decay rate and reduction factor for denitrification on nitrite, were responsible for only 
8.0% and 13.1% of the model’s BOD and TN output sensitivities respectively. Parameter estimation 
identified the need for only minor adjustments to default values in order to achieve sufficient accuracy 
of simulation with deviation from observed data to be only ± 3.6 mg/L, ± 1.3 mg/L, and ± 9.5 mg/L for 
BOD, TN and TSS respectively. Validation showed the model was limited in its capacity to predict 
system behaviour under extreme dissolved oxygen stress.

Computational process models of wastewater treatment plants (WWTP) have long been utilized for the benefits 
they  afford1. Such benefits may include the investigation of alternative design and operational scenarios in pursuit 
of improved efficiency or performance, or to gain insight into system behaviour under circumstantial  scenarios2. 
Through modelling, the high demand of such investigations on time and resources that would be accrued with 
physical experimentation can be overcome with relative ease without compromising on confidence in the results. 
For example, a model can allow a process engineer to identify the size of anoxic tank required to enable sufficient 
denitrification in a system without building many different sized anoxic tanks.

While complex models can provide insights to the simulated system that would otherwise be obscured by 
simplified models, this only holds true if the physical system is accurately depicted. The calibration of biologi-
cal WWTP models is typically the most demanding phase of model development in terms of time, effort and 
financial resources required to collect necessary  data2–5. In fact several protocols such as BIOMATH, STOWA, 
WERF and HSG have been developed to guide the calibration of activated sludge (AS)  models6–10. While each 
of these approaches offer distinct differences, they share common demands for large amounts of data that must 
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be yielded by way of site survey, intensive sampling and respirometric/titrimetric batch tests that place high 
demands on resources (see 3 for a critical review).

As environmental models, biological wastewater treatment (WWT) process models are inherently complex. 
By their very nature, they are highly-dimensional and non-linear due to the vast array of kinetics and stoichiom-
etry that are included. For instance, even the popular Activated Sludge Model (ASM) in its earliest form consisted 
of five stoichiometric parameters to describe the biochemical reactions, 14 kinetic parameters and 13 differential 
 equation1. It is no surprise then that WWT models become over-parameterised with regards to given observation 
when these models are further developed to provide a more detailed representation of the underlying processes 
or to model emerging technologies and  contaminants11–14.

Increased complexity is unavoidable when multiple technologies are combined such as the more recent 
integrated fixed-film activated sludge (IFAS) solution. This technology combines the application of suspended 
biomass colonies with attached biofilm colonies to draw on the advantages of each, while increasing functional 
biomass and therefore treatment capacity at a reduced plant footprint compared to conventional AS or biofiltra-
tion  systems15–18. The main limitation of this technology however is the substantial increase in energy demand 
for aeration compared to  AS19, which necessitates continued modelling efforts towards optimizing its efficiency.

While IFAS has been the subject of much modelling work to date 15,20–23, the calibration procedure has received 
little attention in contrast to AS models despite the added intricacy. Brockmann et al. 24 attempted to calibrate 
an IFAS system by following the good biofilm reactor modelling practice (GBRMP) proposed by Boltz et al.25, 
however the authors found this was inadequate for this purpose, proposing the need for further development of 
a specific protocol for this technology. A major challenge the authors highlighted was the over-parameterization 
associated with the hybridization of the two components.

Automatic calibration has received increasing interest over the last few decades 10,26–29. While manual cali-
bration by way of experimentally-determining parameter value estimates is conventional, this process remains 
laborious and resource-heavy and may introduce errors while lacking  objectivity3,30. Furthermore it is ineffective 
in estimating the many unmeasurable parameters found in WWT models 31. Automatic calibration refers to 
the use of an optimization algorithm to estimate the parameter values and there are increasing examples of this 
approach being taken in the modelling of wastewater treatment and waste collection  systems26,30,32–35.

Kim et al. 32 demonstrated the feasibility of using a genetic algorithm (GA) to calibrate the first ASM (ASM1), 
while a study by Zeferino et al. 26 into the model planning of a regional wastewater system utilized a Particle 
Swarm Optimization (PSO) algorithm to calibrate their model. Ye 34 also reported the use of an immune algo-
rithm (IA) and a hybridized form of the IA and PSO (IPSO) to calibrate an ASM. In developing the numerical 
optimal approaching procedure (NOAP) for systematically calibrating the third of the ASM series (ASM3), Zhu 
et al. 10 employed a genetic algorithm (GA) to successfully automate the parameter estimation of two AS system 
types. More recently Du et al. 35 employed an improved cuckoo search (ICS) algorithm to calibrate up to 7 sensi-
tive parameters in ASM1 yielding accurate simulation.

In the current work a classical optimization technique is employed, the Nelder–Mead (NM) simplex 
 method36. While the last few decades have seen an accelerating growth of novel optimization algorithms (see 37 
for review), the NM simplex approach remains relevant because it is robust, easy to implement and understand 
and is a favoured algorithm for dealing with multi-dimensional, unconstrained optimization problems without 
 derivatives38. Despite being a vintage approach to optimization it has recently been shown to remain competitive 
in performance with more “intelligent” algorithms such as the PSO  algorithm39.

As a proceeding step to the parameter estimation, global sensitivity analyses (GSAs) were employed to deal 
with the issue of over-parameterisation in the IFAS model and reduce the optimization problem to a manage-
able number of parameters. Regardless of whether a manual or automatic calibration approach is being taken, 
GSAs can mitigate over-parameterisation by identifying the parameters most influential to the model output that 
warrant the most focus and resource allocation while leaving less influential parameters at default  values9,10,40–45. 
This was a primary concern of Gernaey et al.2 who argued that the automated calibration approach may be stifled 
by a lack of identifiability in parameters which may lead to only minor adjustments in considerable number of 
secondary parameters.

The use of GSA during calibration afford additional benefits to the process. While they can identify the most 
critical parameters for estimation, they are also able to check for collinearity of parameters by investigating 
higher order  interactions43,45,46. These are both important because non-influence and collinearity with other 
parameters are the two main sources of practical parameter non-identifiability13. Furthermore, because GSA 
allows the modeller to apportion the uncertainty that is propagated through the model due to each parameter 
and their  interactions45, this may be coupled with a Monte-Carlo based uncertainty analysis to then quantify the 
uncertainty for each factor installing confidence in the  model47–49.

The objectives of this study are therefore to identify the kinetic and stoichiometric parameters most influential 
to the model, to estimate the values of any identified parameters by way of an optimization algorithm and to vali-
date the NM simplex algorithm as remaining an appropriate and effective tool for this role. Finally, uncertainty of 
the model outputs relating to the identified influential parameters are also assessed by way of uncertainty analysis.

Methodology
Data collection. Due to travel limitations relating to the COVID-19 pandemic, access to the modelled sys-
tem was prevented. Under these circumstances historic data was instead required for the purpose of calibration 
and validation. Fortunately a pilot-scale version of the modelled WWT system had been operated in Rishikesh, 
Uttar Pradesh, India over the course of 2015 as a research platform for this new technology. During this time it 
was subject to intense investigation that resulted in a series of  publications50–55. Most notably was a study into the 
effects of DO stress on the  system51. In this study a detailed account of influent and effluent data was provided 
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alongside the operational strategy of three DO concentrations (0.5, 2.5, 4.5 mg/L). For the purpose of the present 
work, data from the 2.5 mg/L DO regime was used as observed data for the calibration, while the remaining two 
regimes were utilized in the validation phase as independent data. Investigation from the calibration regime was 
reported in greater detail in an earlier  publication50.

Subject system to be modelled. The system itself consisted of an aerated reactor (20  m3) with a 6  m2 
footprint and a separate circular settling tank with sloping bottom totalling a volume of 4.2  m3 and a surface 
loading area of 1.25  m2. The aeration tank contained 64 rectangular panels of loop knitted polypropylene fabric 
(Biotextile  Cleartec®, Jager, Germany) that occupied ~ 0.5% of the reactor volume in order to facilitate the prolif-
eration of attached biomass. Further details regarding dimensions are provided in other  works51,55.

Site conditions for the model reflected the conditions of DO regime 2 (i.e. 2.5 mg/L) as reported by Singh 
et al. 51 for model calibration. These include a flow rate (Q) of 1.8  m3/h to give a hydraulic retention time (HRT) 
of 11.1 h, bulk liquid temperature of 26 °C, DO concentration within the bulk liquid of the HySAF reactor of 
2.5 mg/L for model calibration. The activated sludge waste (WAS) rate was set to 2.2  m3/day with a maintained 
recycle activated sludge (RAS) rate of 3.7  m3/h (2.5 Q) to ensure a mixed liqour suspended solids (MLSS) con-
centration of 2000 mg/L in the reactor and a sludge retention time (SRT) of 11 days as reported by Singh et al.51. 
Operational characteristics of DO regimes 1 and 3 as shown in Singh et al. 51 were used for validation purposes 
following the calibration.

Model development. The commercial modelling software GPS-X™ Version 8.0 (Hydromantis Environ-
mental Software Solutions, Inc.) was used to model the system. This software, while robust and feature-rich, 
was chosen particularly for its recent integration of the Python coding language in the latest installment that 
facilitated the use of external Python libraries to perform subsequent analyses in this study.

As shown in Fig. 1, the developed model comprised of the following objects:

• wastewater (WW) influent from the sewer,
• aerobic IFAS reactor,
• settlement tank (secondary).

Figure 1 also displays several key parameters that needed to be defined within the model objects including 
the mixed liquor suspended solids (MLSS) concentration, the recycle activated sludge (RAS) stream, the waste 
activated sludge (WAS) stream and media content within the IFAS reactor.

Wastewater influent from the sewer. The influent model is commonly regarded as the most important 
element during model  calibration3. For the purpose of this study the “CODSTATES” model was chosen from the 
Comprehensive Model Library (MANTIS2LIB) in GPS-X. This model is normally recommended following a full 
influent characterization including manual calculation of the state  variables56, yet this was not the case in this 
study due to available influent data taken from  publication51. However this influent model was found to produce 
good agreement with the composite variables following an iterative process with only few changes to the default 
values, including adjusted inputs of 626 mg/L, 44.2 mg/L, 33.7 mg/L and 0.63 mgVSS/mgTSS for total COD, 
total TKN, ammonia nitrogen  (NH3) and the VSS/TSS ratio respectively as shown in Table S1 (see Supplemen-
tary Material). These changes returned 367.9 mg/L for TSS (4.3% deviation) and 322.9 mg/L (5.4% deviation) for 
total carbonaceous BOD which remained well within the reported range shown in Table 1.

Aerobic IFAS reactor. The comprehensive model (MANTIS2) was used for this study. This model is a state-
of-the-art model that was developed by Hydromantis in order to progress the ASM2d and the anaerobic digester 
model no. 1 with greater  versatility56. It was chosen for this study primarily due to its comprehensive approach to 

Figure 1.  Modelled system diagram.
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total nitrogen (TN) removal which is a key priority in global water  management57. The hybrid system object was 
selected which combines the suspended growth model discussed and the GPS-X biofilm  model56. Kinetic and 
stoichiometric parameters are not differentiated between colony types (suspended or attached) in this object. 
User-defined inputs can be found in Table S1 and correspond to the values given by Singh et al.51.

Secondary clarifier. To represent the clarifier a one-dimensional, non-reactive model was used (SIM-
PLE1D). This model is preferred when biological reactions in the clarifier can be  ignored56. It divides the sludge 
blanket into 10 equal layers and assumes the consideration of only vertical flow and that all incoming solids 
are distributed instantaneously and uniformly across the surface of the feed  layer56. User defined-inputs can be 
found in Table S1 and correspond to the values given by Singh et al.51.

Model calibration. Following adjustments of the user-defined values, the steady-state model was run to 
determine the accuracy of its representation to the published data. The model outputs assessed were BOD, TN 
and TSS. At this stage the model results, were not in good agreement with the observed results as shown in 
Fig. S1 (Supplementary Material), so the calibration phase commenced.

Sensitivity and uncertainty analysis. Sensitivity analyses (SA) are often used by modellers to identify 
the relative influence that different factors such as parameters and their interactions have on the output of a 
 model45. This can aid the modeller in several ways, for instance to simplify models, prioritise parameters for 
calibration, identify errors in the model and apportion uncertainty between model  factors58. Parameters that are 
found to have a small or no influence can be considered negligible and can either be left at default value, given 
an arbitrary value within the parameter range, or even removed from the model as a form of model reduction, 
thus simplifying and aiding interpretation without compromising accuracy. The parameters of the greatest influ-
ence, or that the model output is most sensitive to, are therefore identified as the parameters that require the 
most experimental focus during calibration in determining their true values. As the influence of a parameter 
increases, so does the potential for error which indicates these as the parameters that will require further analysis 
to quantify the level of uncertainty that they invoke and thus minimize where possible.

A key source of uncertainty in bio-models is derived from the multiple kinetic and stoichiometric parameters 
that compose the model. These are often difficult, if not impossible to measure due to experimental limita-
tions, and kinetic parameters especially can demonstrate large variability between treatment  plants59. Despite 
this, often only a small number of input parameters account for the majority of the uncertainty or variability 
in model  outputs43. Once these influential factors have been identified and their share of the uncertainty has 
been apportioned by the SA, an uncertainty analysis (UA) can be performed to quantify this uncertainty held 
by each input by observing its propagation through the model. Together SA and UA provide a way to achieve 
some transparency into the reliability of the model adding (or removing) credibility to conclusions  drawn58.

For this study, the Python coding platform (Ver 3.7) was used for both the UA and SA, with both SA utilizing 
the SALib  library60. The developed code can be found in the supplementary material (Python Scripts S1-S3).

Method of Morris. The Method of Morris (MOM) is similar to the more commonly used local sensitivity 
analysis (LSA) in that it only deviates one parameter at a time, however it conforms to GSA definition because 
the parameter value is started from different points in the possible input space multiple ( r) times and averaged. 
While other GSA approaches such as the Sobol method are able to provide a more detailed analysis, these are 
more computationally-expensive. For example, an analysis with 14 parameters and a sample size of 6,000 would 
require 6.5 ×  105  evaluations61. In contrast to the Sobol method, the MOM is able to detect first-order effects at 
only 100th the computational expense and a 10th of the cost when investigating second order  effects62–65.

A more efficient approach that is commonly employed is to first use the MOM to screen for non-influential 
parameters that can be exempt from the Sobol analysis in order to reduce the number of model evaluations 
needed to obtain adequate  decomposition61,66,67. Brockmann and Morgenroth 68 demonstrated MoM to be just 
as effective as variance-based methods in distinguishing between influential and non-influential parameters, 
which was similarly observed by Herman et al.61. However in both cases, it was recommended to proceed the 

Table 1.  Influent, effluent and operational characteristics of HySAF pilot plant in Rishikesh, India used for 
calibration. Value range provided where present in literature 51. These input adjustments held true for the 
validation influents maintaining a < 5.1% deviation across parameters.

Parameter Unit Influent Effluent

pH – 7.0 ± 0.6

Temp °C 26 ± 4

COD mg/L 627 ± 188 62 ± 5

BOD mg/L 306 ± 84 31

TSS mg/L 384 ± 80 37

NH3 mg/L 33.7 ± 8.2 4.9 ± 1.6

TKN mg/L 44.2 ± 7.1 6.2

TN mg/L 46.7 ± 8.5 14.0
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more computationally-demanding methods to gain sufficient variance information or better rank the more 
sensitive parameters. For the purpose of this study the MOM was used as an initial screening of 68 kinetic and 
stoichiometric parameters that constitute the model to identify the 10 most influential parameters with regards 
to each model output (BOD, TN, TSS). These parameters were then subjected to further examination under the 
Sobol analysis. The screened parameters of the investigated model can be found in Table S2.

The MoM uses approximations of the first order partial derivatives of a model called elementary effects (EE) 
to characterise model  sensitivity69. In order to determine the EE for each input factor, the differentiation of the 
model output y is calculated in relation to each input factor xi as according to the following  equation69:

where xi is the i th factor of the model, � is the set perturbation factor by which the base value of  xi is deviated, 
y(x) is the model output evaluated at certain nominal values of model factors, y(x1, x2, xi +�, . . . xk)− y(x) 
describes the model output corresponding to the predetermined deviation � in xi.

The finite distribution of the EE, Fi , for each factor is obtained by performing r calculations of the EE at 
independent, randomly sampled points in the input space. This method as described by Morris 62 provides r 
observations of Fi for k factors at a cost of r ( k + 1) model evaluations.

In order to determine the mean average of the EE, µi , the following equation is  used69:

While calculation of the standard deviation,σi , is achieved as  follows69:

If the model is non-monotonic, where the variables have a tendency to move in the same direction yet without 
guarantee of constancy, it is possible for the Fi distribution to return negative values that may cancel positive 
values and be misrepresented as non-influential. Campolongo et al. 63 provided a revision to the method that 
replaced the mean of the elementary effects, µ , with the absolute mean of the EE, µ∗ . This prevented the effects 
of opposite signs and provides an index of the magnitude of influence of a parameter by which the overall influ-
ence on the output can be ranked accordingly. While it is widely used for screening influential parameters, it is 
primarily a measure of non-influence63. In contrast, the standard deviation of the elementary effects, σi considers 
the variance and detects influence of factor interaction or non-linearity.

In order to calculate the absolute mean of the EE, µi
∗, the following equation was  used69:

Parameters are then able to be ranked using the following  equation69:

By deriving both the absolute mean and standard deviation of the EE, the effects of investigated parameters 
can be categorized as  follows69:

1. Negligible (low average, low standard deviation).
2. Linear and additive (high average, low standard deviation).
3. Non-linear and/or interactions with other parameters (high standard deviation).

In presenting graphical representation of the results from the Morris method, bar charts and Morris plots 
are both commonly  used66,70. The Morris plot takes both the µ∗ and σ of the elementary effects (EE) and plots 
them against each other in a two-dimensional graph. By doing so, parameters with a low mean and low standard 
deviation will be plotted in the bottom left hand corner and can be considered non-influential69,70. Conversely 
the parameters of influence will be plotted towards the top right hand corner.

Drawbacks of MoM include its tendency to provide only qualitative information by ranking input factors, 
without quantifying the influence of each factor on the  output66, as well as its inability to correctly rank the most 
influential parameters despite being highly effective at separating influential from non-influential  parameters43,61. 
Where this method is only to be used as a screening method to reduce computational expense of a further 
variance-based method such as the Sobol analysis, these limitations become less important.

For this study a sample size (n) of 100 was used with the MoM analysis. While previous work has shown a 
smaller sample size (20 n) to be just as effective as higher sample sizes (100 n) in differentiating between influ-
ential and non-influential parameters even in highly-parameterized  models61, other work has demonstrated the 
MoM to neither predict the correct number or designation of influential/non-influential factors in a wastewater 
biofilm model at lower sample sizes (10–20 n) when compared to variance-based  methods71.

Compared to more comprehensive GSA, Cosenza et al. 71 showed this method was unable to converge at lower 
sample sizes (10–20 n) and failed to differentiate between influential and non-influential parameters as effectively. 
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However this is in contrast to work by Herman et al. 61 who compared the efficacy of the MoM to differentiate 
between influential and non-influential parameters across a range of sample sizes. In their study, Herman et al. 
61 found the MoM to be just as effective in differentiation at 20n as 100n with little need for higher sample sizes.

Sobol method. The Sobol method derives the sensitivity indices by attributing variance to single model 
inputs as first-order Sobol indices ( Si ), and variance due to interactions between multiple parameters as higher-
order Sobol  indices45. A second-order effect ( Sij ) is characterised by an interaction between two parameters, 
while a third-order effect relates to an interaction between three parameters and so on. When 

∑

iSi  = 1, the 
presence of interactions are indicated as well as their influence relative to Si45. Total-order Sobol indices ( STi ) 
are determined as the sum of apportioned variance for any parameter and its interactions. In linear models the 
sum of STi should equal 1 while in non-linear models the sum should exceed  145. When STi is observed to be 
substantially higher than Si for any given factor, it is indicative of a higher order interaction occurring with other 
parameters. Over-parameterised models can therefore be reduced by discounting parameters that demonstrate 
a low STi as these can be assumed to hold negligible influence due to the inclusiveness of this  index66.

In this study the Sobol indices (SI) were calculated through random sampling (n = 10,000) by way of Monte 
Carlo simulation (MCS). Four steps were taken to apply the Sobol procedure as described by Ref.72: 1—The 
uncertainty ranges for each input parameter were defined as ± 50% of the default value in GPS-X, 2—Sobol 
sampling was used to sample the range of each parameter, 3—uncertainty was propagated through the model 
by repeated simulations for each combination of the input parameters within their ranges, 4—acquired data was 
post-processed to calculate first-order SI, second-order SI, and total-order SI as  follows73:

where the partial variance, Vi = V [E(Y |Xi)] which is the variance of the conditional expectation, held over 
the unconditional variance V  with Xi representing the input parameters and Y  the model output or objective 
 function73. The total contribution of variance of each input parameter ( p ) and interactions can thus be deter-
mined by the following decomposition:

The role of the Sobol method in automatic calibration is to test for possible collinearity and reduce the cali-
bration effort of a potentially over-parameterized model by differentiating between parameters of influence and 
non-influence. While this may be apparent, it is appropriate to define the level of influence required to warrant 
calibration and signify collinearity. In this study a threshold of 0.05 was defined as used in previous  work42.

Distinguishing between influential/non‑influential parameters. Following each of the GSAs, it was 
necessary to distinguish between influential and non-influential in order to reduce the model for a more focused 
calibration. Following the MoM analysis, the output values for each parameter were first normalised within the 
0–1 range. By normalizing the data, the capacity of the MoM to identify influential parameters could then be 
compared against that of the more-detailed Sobol analysis once thresholds of influence have been defined 74,75. 
With regards to the MoM, both Ramin et al. 74 and Valverde-Pérez et al. 76 applied a threshold of 0.1 µ∗ , while 
Hsieh et al. 75 used thresholds of 0.1 µ∗ for the MoM and 0.05 for the Sobol analysis to good effect. Previous work 
by Zhang et al. 42 also proposed an influence threshold of 0.05 for the Sobol analysis, with this value requiring an 
influential parameter to account for at least 5% of the variance. In line with these past definitions, a threshold of 
0.1 µ∗ was used for the MoM and 0.05 for the Sobol analysis.

Data was normalised using the following equation:

where zi is the ith normalized data set and xi = (x1, .., xn).

Parameter estimation for calibration. A computational optimization exercise was performed for the 
purpose of estimating the kinetic and stoichiometric parameters of greatest influence by means of the maximum 
likelihood function. Further details of the maximum likelihood function utilized can be found in  Hydromantis56.

With process models typically being of a non-linear nature, analytical determination of the their optimized 
values are often not possible. To combat this, a derivative-free optimization method, namely the Nelder and Mead 
(NM) simplex method 77 was employed. This method was first proposed by Spendley et al. 78 before being better 
refined by Nelder and Mead 36 to the core form that has now been used for over half a century due to its many 
advantages. It can be considered a direct line-search method of steepest descent exploration, due to its system of 
searching the factor space. The method makes use of a polyhedron of N + 1 sides (N = number of input variables) 
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that systematically reflects, expands, contracts and shrinks to explore the factor space for a  minimum36,79. On 
every iteration the function values are taken from the vertices and the highest value will be discarded and a new 
point would be sought in the general direction of a negative gradient.

The NM method offers multiple advantages over derivative-based alternatives due to its robust approach to 
optimization. Its simplicity to implement and understand without the need for any derivative information make 
it an attractive option for engineers. While derivative-based methods tend to be faster in returning a  result79, they 
can also be vulnerable to noise in the function values while the NM method here demonstrates a high tolerance. 
Additionally the NM method thrives in more complex terrain of the objective function due to its capacity to 
rapidly adjust its shape, size and orientation based on local  contours79. While it has faced some criticism from 
mathematicians due to its inability for convergence to be  proven80, it has stood the test of time with engineers 
for its many examples of successful optimization, particularly in parameter  estimation81,82.

In estimating the values of the kinetic and stoichiometric parameters as part of the calibration, the current 
task was defined as a multi-objective, constrained optimization problem with the purpose of minimizing the 
(negative) error between the target values of objectives (effluents: BOD, TN and TSS) and the model output for 
these parameters. In this way the maximum likelihood function can be maximized as required to determine the 
optimal parameter estimates by using a  minimizer56. The error distribution was considered normal and termina-
tion criteria was set as no further significant change in parameters.

Model validation. Model validation is a necessary part of model development. As defined by Schlesinger 
et al. 83, “model validation is the substantiation that a computerized model within its domain of applicability pos-
sesses a satisfactory range of accuracy consistent with the intended application of the model”. Put more simply, it 
seeks to assess whether a model is of an acceptable accuracy for its intended  purpose84.

In the present work, data derived from alternative DO regimes were used (0.5 mg/L, 4.5 mg/L) from a previous 
experiment as shown in Table 251. This was considered sufficient in terms of technical rigour because separate 
influent and effluent data was provided conforming to the need for independent data to be used in  validation85. 
A similar approach to calibration and validation has been used in previous  work86. This also provided a means for 
validity to be assessed at two separate points as opposed to the single-point validation that is more  traditional85.

Uncertainty analysis. Following model calibration, an uncertainty analysis was carried out to quantify the 
uncertainty surrounding the determined values of parameters deemed to be  influential48. For this a Monte Carlo 
simulation (MCS) was used. MCS is commonly used for this purpose due to its robustness as it accounts for 
non-linearity in the model and correlation where specified while being more accessible in terms of mathemati-
cal intensity compared to alternative  techniques87. Furthermore, it naturally provides a graphical representation 
of the output distribution which can aid identification of skewed or non-normal distribution in the  measured87. 
Farrance and Frenkel 87 provide a detailed comparison between this approach and older standards such the guide 
to the expression of uncertainty in measurement (GUM) method.

In applying the MCS, a probability distribution is first prescribed for the input parameters being investigated. 
A key source of uncertainty in the model output can come from a lack of information regarding the precise value 
that the input should hold. Where there is variability in this value, for example between WWTP, the value can 
be represented by a probability distribution. When this distribution is known, the uncertainty can be reduced 
as a more accurate estimate of the true value can be assigned in lieu of precise knowledge while the uncertainty 
held in this estimation can be better evaluated.

Unfortunately it is often the case that the probability distribution is unknown and in place of such information 
expert judgement needs to be  assigned88. For example, where estimates can be made regarding the likely range 

Table 2.  Influent, effluent and operational characteristics of HySAF pilot plant in Rishikesh, India used for 
validation. Value range provided where present in  literature51.

Parameter Unit

0.5 mg/L DO regime 4.5 mg/L DO regime

Influent Effluent Influent Effluent

pH – 7.2 ± 0.2 7.2 ± 0.2

Temperature °C 26.5 ± 1.5 23 ± 2.0

Chemical oxygen demand (COD) mg/L 455.6 ± 37.1 85.0 440.4 ± 25.7 25.5

Biochemical oxygen demand (BOD) mg/L 232.8 ± 29.8 46.0 221.6 ± 18.4 9.0

Total suspended solids (TSS) mg/L 316.6 ± 34.7 58.0 262.9 ± 27.6 15.0

Ammonia  (NH3) mg/L 40.8 ± 7.9 32.8 ± 14.3 34.5 ± 9.6 0.2 ± 0.2

Total Kjeldahl nitrogen (TKN) mg/L 48.6 ± 7.6 35.6 42.5 ± 9.6 1.3

Total nitrogen (TN) mg/L 50.7 ± 8.6 43.6 45.9 ± 11.6 14.2

Hydraulic retention time (HRT) h 11.1 11.1

Solids retention time (SRT) days 8 22

Bulk dissolved oxygen (DO) mg/L  ~ 0.5  ~ 4.5

Mixed liquor suspended solids (MLSS) mg/L 2000 ± 200 2000 ± 200

(RAS) x Q 2.5 3.0
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of the parameter, but no information regarding the distribution, a uniform distribution can be assigned. When 
information is available regarding occurrence of values around the mean and experimental bias is known to not 
be influencing results, a normal distribution can be  used88. The use of a uniform PDF reflects the probability 
of obtaining a value anywhere between the defined upper and lower limits. This PDF is usually chosen when 
knowledge on the distribution is little and only the limits are  known87. This is the most conservative estimate of 
uncertainty since it leads to the largest value.

Once the distribution has been assigned to each of the investigated model inputs based on limits and shape 
with the capture of the real value assured, pseudo-random samples are taken from within each of these distribu-
tions and the model is evaluated based on these de facto input parameters. The corresponding functional output 
is then reported and can be graphically represented to present the probability distribution function (PDF) of the 
investigated outputs. The larger the number of samples taken, the more accurately the standard uncertainty in 
the inputs can be represented and propagated through the system. However as shown by Farrance and  Frenkel87, 
the difference in variability between sample sizes will reduce considerably at higher orders of magnitude. While 
a sample size of 1 ×  103 was observed to return a similar estimation of the standard uncertainty in the parameter, 
a sample size of 1 ×  105 offered improved numerical precision and consistency.

Following determination of the PDF the required information can be calculated by way of simple mathemati-
cal procedures from the output data. The mean average of the returned values, x , gives the calculated estimate 
of the parameter’s true output value, while the standard deviation, S , indicates its standard  uncertainty87. Accu-
rate calculation of S will depend on the assigned shape of the parameter’s PDF with each shape having its own 
equation:

where a is the ± limit from x or the half-width of the distribution. The appropriate PDF assignment for each inves-
tigated parameter will depend on the nature of the data in terms of its limits and where the values are likely to fall.

A coverage value, k, of 1.96 is used in order to derive the expanded uncertainty, Ue , of within a 95% coverage 
interval as  follows87:

Results
Model calibration and validation. Sensitivity screening phase. Results from the screening phase of the 
calibration process attempted to distinguish between influential and non-influential parameters. As shown in 
Fig. 2a, three parameters are suggested as influential on the BOD model including X52 (aerobic heterotrophic 
yield on soluble substrate), X16 (aerobic heterotrophic decay rate), and X53 (anoxic heterotrophic yield on solu-
ble substrate) being ranked by μ* scores in this order. Figure 2b displayed the presence of a monotonic relation-
ship between X52 and the model output, implying a strong correlation and a focal parameter for calibration. The 
dominant influence of this parameter is unsurprising as it reflects the critical role that ordinary heterotrophic 
organisms (OHOs) take in the degradation of waste organic matter by way of receiving the organic compound’s 
electrons and utilizing the carbon for cell  synthesis89. The importance of accurately portraying the actual pro-
liferation of OHOs in both aerobic and anoxic environments of any given wastewater system has long been 
 recognised90.

The TN removal model was found to be sensitive to a greater number of parameters than the BOD removal 
with 6 parameters breaching the threshold influence (0.1) following normalization as shown in Fig. 3a. Amongst 
the influential parameters, X53 and X52 incurred the greatest sensitivity respectively, with the former demon-
strating the greatest linearity as shown in 3b. These two parameters have previously been identified as strongly 
influential on AS models 90 but their value as key parameters in IFAS models also are here supported. TN removal 
models of other bioreactors such as the membrane bioreactor (MBR) have also been found as most sensitive 
to the anoxic heterotrophic yield parameter which further emphasizes its critical role in effective  simulation91. 
Other parameters suggested to be influential on TN removal included X12 (reduction factor for denitrification 
on nitrite-N), X15 (oxygen inhibition coefficient for denitrification), X61 (unbiodegradable fraction from cell 
decay) and X27 (maximum growth rate for nitrite oxidizer) in this order.

In terms of TSS removal, Fig. 4a shows four parameters were suggested as influential including X52, X61, X16 
and X53 in this order. Figure 4b displays a strong asymmetry between the parameters identified as influential 
with X52 as a clear outlier. This is not surprising as heterotrophic bacteria are the dominant type in AS systems 
92 and have been shown to positively influence settling velocities of AS flocs more than  nitrifiers93.

The MoM identified multiple parameters to be influential across more than one model which warranted 
greater insight into their relative effect on each model. Table 3 showed that X52 and X53 were influential on each 
of the three models, while X61 and X16 were influential to two. Besides identifying the parameters with a broader 
influence, Table 3 also identified parameters with conflicting polarity. For example, this was apparent for X52. 

(11)Standard deviation for a uniform distribution, Suni =
a
√
3
,

(12)Standard deviation for a normal distribution, Snorm =

√

∑

(x1 − x)2

n− 1
,

(13)Standard deviation for a triangular distribution, Stri =
a
√
6
,

(14)Ue = 1.96(Uc) for a 95% coverage interval.
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In this instance, any adjustment of this parameter to reduce error between actual and simulated output during 
calibration of the BOD and TSS models would increase error for the TN model and vice versa. As such X52 was 
shown to have an inverse monotonic relationship with the TN model output in contrast to the direct monotonic 
relationship of the other models. The polarity of other influential parameters was not seen to differ across models.

Variance‑based sensitivity analysis
In comparison to the MoM, the Sobol analysis was seen to be more selective of influential parameters at the 
given threshold (SI < 0.05). Table 4 identifies only four parameters to meet the influence criteria designated by 
Zhang et al.42. Of these parameters only X52 was observed to significantly influence all three models, while the 
remaining parameters only influenced one model each. In terms of variance, X52 accounted for 92.4% of the 
variance in the BOD model, 27.3% in the TN model and 92.8% in the TSS model. In each case this was mainly 
attributed to the first order effects as shown in Fig. 5. X53 and X12 were only influential to the TN model and 
accounted for 54.3% and 13.1% of the variance respectively, again due mainly to the first order effects. Finally, 
X16 only had significant influence on the BOD model and accounted for 8.0% of the total variance, while the 
first order effects only accounted for 5.0%.

The Sobol analysis also identified minimal presence of higher order effects for each of the parameters. Despite 
the presence of multiple interactions between parameters as shown by their communication in Fig. 6, these 
remained below the given threshold (SI < 0.05). This was supported by the absence of substantial white rings 
around each parameter that would indicate a greater influence of higher-order effects relative to the first order. 
This suggest that non-linearity is not a significant factor in the present model. This may be attributed to its steady-
state nature, as well as lacking wide factor variability ranges and additional recycle streams that have otherwise 
been proposed as causal reasons for increased detectability of parameter  interactions94.

What is also apparent from the Sobol analysis is the greater interactivity of factors in the TN model com-
pared to the BOD model as shown in Fig. 6. While no interactions were found to be significant in terms of the 
threshold, relatively speaking X12 was observed to have a greater symmetry of influence across interacting 
parameters than alternatives including the more influential parameters. This may be due to its role in govern-
ing the prominent pathway for TN removal that would be expected to offer broad  influence95. In contrast, the 

Figure 2.  The 15 parameters of greatest influence on the BOD output as demonstrated by the MoM displayed 
by (a) A horizontal bar chart with influence threshold 0.1 and (b) a Morris plot (σ/μ*).
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BOD model demonstrates only one interaction of relative importance, relating the yield and decay of aerobic 
heterotrophs that are central to BOD  removal96.

Parameter estimation for calibration. The Nelder–Mead algorithm was used to estimate appropri-
ate values for identified parameters of influence. Estimated values are reported in Table 5. The stoichiometric 
parameters, X52 and X53, required only minor adjustments from default within ± 0.07 mgCOD/mgCOD for 
each. This was to be expected given the greater observed sensitivity of the model to these parameters, while still 
conforming to previously advised values determined  experimentally97. While the kinetic parameters, X16 and 
X12, observed greater deviation from default with ± 0.11 1/day and ± 0.09 (–) respectively, the disparity remained 
marginal. Previous work by Li et al. 98 found the physical properties of the biofilm to be of greater influence than 
kinetic parameters when modelling IFAS systems, which may explain the need for a minimal adjustment.

In contrast, Shaw et al. 99 were required to adjust two non-physical parameters beyond reasonable limits in 
their study (± 3.2 units) to sufficiently simulate simultaneous nitrification denitrification (SND) behaviour in an 
IFAS system. In their study, the anoxic oxygen half-saturation coefficient for heterotrophs and the maximum spe-
cific hydrolysis rate parameters required considerable deviation in order to capture  NO3 dynamics which was still 
unable to be fully achieved. This highlights the difficulty of simulating nitrification dynamics effectively. Previous 
work has highlighted the importance of correctly characterising the nitrifiers when modelling IFAS  systems98.

Other work has suggested that only minor adjustments to default parameters are  necessary6,40,100. Huls-
beek et al. 6 suggested that any substantial deviation from default parameter values tends to be indicative of a 
misrepresentation of the actual operational parameters that deserve particular attention. Work by Meijer et al. 
40demonstrated the greater importance of operational parameters compared to kinetic parameters in terms of 
influencing ASM outputs, while Schraa et al. 100 found successful calibration of an IFAS model in GPS-X to only 
require minor adjustments.

The use of the estimated values derived by the algorithm brought model outputs into good agreement with the 
pilot plant as shown in Fig. 7. The model yielded effluent concentrations of 24.8 mg/L, 12.9 mg/L and 29.5 mg/L 
for BOD, TN and TSS respectively. This was in contrast to the observed average effluent concentrations of the 
HySAF which were reported as 28.4 mg/L, 14.2 mg/L and 38.7 mg/L for BOD, TN and TSS  respectively51. While 

Figure 3.  (a) The 15 parameters of greatest influence on the TN output as demonstrated by the MoM displayed 
by (a) A horizontal bar chart with influence threshold 0.1 and (b) a Morris plot (σ/μ*).
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Figure 4.  (a) The 15 parameters of greatest influence on the TSS output as demonstrated by the MoM displayed 
by (a). A horizontal bar chart with influence threshold 0.1 and (b) a Morris plot (σ/μ*).

Table 3.  Models sensitive to parameters identified as influential by MoM with polarity.

Code Parameters

Sensitive models

BOD TN TSS

X52 Aerobic heterotrophic yield on soluble substrate  +  −  + 

X53 Anoxic heterotrophic yield on soluble substrate  +  +  + 

X61 Unbiodegradable fraction from cell decay  +  + 

X16 Aerobic heterotrophic decay rate  −  − 

X12 Reduction factor for denitrification on nitrite-N  − 

X15 Oxygen inhibition coefficient for denitrification  − 

X27 Maximum growth rate for nitrite oxidizer  + 

Table 4.  Parameters identified as influential by the Sobol analysis (> 0.05) with observed Sobol indices for first 
and total order effects. All results displayed demonstrate a 95% confidence level.

Code Parameters

BOD model TN model TSS model

S1 ST S1 ST S1 ST

X52 Aerobic heterotrophic yield on soluble substrate 0.885 0.924 0.230 0.273 0.904 0.928

X53 Anoxic heterotrophic yield on soluble substrate – – 0.505 0.543 – –

X16 Aerobic heterotrophic decay rate 0.050 0.080 – – – –

X12 Reduction factor for denitrification on nitrite-N – – 0.109 0.131 – –
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the model had a tendency to underpredict the HySAF system, this was considered to be within an acceptable 
limit of deviation with ± 3.6 mg/L, ± 1.3 mg/L, and ± 9.5 mg/L for BOD, TN and TSS respectively.

Model validation. The accuracy of the calibration was validated at alternative DO concentrations. As shown 
in Fig. 8, the validation showed the calibrated model to be in good agreement with reported results. In terms of 
TN removal, the model was found to offer adequate representation of pilot results at both the calibration and 
higher DO level. Singh et al. 51 had found both these DO concentrations to maintain a similar removal efficiency, 
ensuring effluent TN concentrations within 10–20 mg/L. However, at the 0.5 mg/L DO concentration the model 
overpredicted the performance of the pilot plant, achieving an effluent concentration of 32.4 mg/L compared to 
the 40.4 mg/L. One reason for this may be the wider range of influent TN reported for the lower regime in the 
pilot study fluctuating between 32 and 62 mg/L compared to 33–55 mg/L at the calibration  level51.

With regards to the model’s capacity to predict BOD removal of the pilot system, a similar trend was observed 
whereby the model was found to be in good agreement at the calibration and higher DO regime within 3.6 mg/L 
difference. However, at the lower DO regime the model was again seen to overpredict the systems performance 
by 6.8 mg/L. This was also observed to be true for TSS, with a more accurate representation of plant performance 
at the higher DO setting. Across DO regimes, TSS saw the greatest relative disparity when compared to the other 
two effluent parameters.

The overprediction of the model at the lowest settings, may reflect the difficulty of understanding IFAS behav-
iour at such low DO concentrations. Low DO availability coupled with high carbon loading is known to be a 
favourable environment for filamentous bacteria proliferation that will be detrimental to sludge  settleability101,102. 
Organics removal would also be affected adversely under such conditions, with this process being primarily 
achieved through sludge wastage as well as through metabolism by aerobic  heterotrophs103. In terms of TN 
removal, this low of an oxygen level is substantially below concentrations required to achieve nitrification in 
 IFAS98,104. However, recent work has suggested that ammonia may still be reduced through unconventional 
pathways when under such DO-limited  conditions105,106. While this may be true, the rate of ammonia reduction 
in the present system remains overpredicted at this DO setting.

Overall, this validation has demonstrated that the model provides a capable simulation at DO levels suit-
able for IFAS system operation, but may not be appropriate for predicting behaviour under extreme DO stress.

Uncertainty analysis. Parameters of interest were the four parameters whose total order effect reached the 
influence threshold of 0.05 during the Sobol  analyses42. These parameters were the two stoichiometric param-
eters, aerobic and anoxic heterotrophic yield on soluble substrate, as well as the two kinetic parameters, hetero-
trophic decay rate and reduction factor for denitrification on  NO2.

In order to determine the standard uncertainty of each of the influential parameters, including the appropri-
ate PDF that will form the basis of the uncertainty analysis the literature was consulted according to Table 6. 
Based on these literature values, the ranges of uncertainty for each parameter were taken as 0.63–0.69 mgCOD/
mgCOD for X52, 0.52–0.57 mgCOD/mgCOD for X53, 0.23–0.7  d−1 for X16 and 0.375–0.48 for X12 assuming 
equal reduction for  NO2 and  NO3.

Figure 5.  Top 10 parameters ranked according to influence for (a) BOD model, (b) TN model, (c) TSS model 
with influence threshold displayed (0.05).
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Based on these derived ranges, the combined standard uncertainty could be calculated for each of the three 
models as shown in Fig. 9. A uniform distribution was assumed for each parameter as there was no reason to 
believe a greater probability of the values localizing within the defined  limits87.

Following this, the model delivered an effluent BOD concentration of 24.8 ± 1.31 mg/L (95% coverage inter-
val) based on a combined standard uncertainty of 0.67 mg/L. The effluent TN concentration was reported as 
12.9 ± 4.23 mg/L (95% coverage interval) based on a combined standard uncertainty of 2.16 mg/L. Finally, the 
effluent TSS concentration could be reported as 29.5 ± 0.64 mg/L (95% coverage interval).

The TN model was shown to carry the greatest uncertainty (± 4.23 mg/L) representing the sensitivity of the 
model to a broader range of both influential and non-influential parameters as shown in Fig. 5b that will each 
propagate a degree of uncertainty through the model. This uncertainty may be reduced further through deeper 
investigation of the relative contribution of biochemical processes from the attached and suspended colonies that 
has been suggested as critical in IFAS  models125. This will vary largely from system to system with the relative 
contribution of each likely to be governed by many factors including biofilm thickness, aerobic mixing, sheer 
rate, MLSS concentration, temperature to name a  few126–128.

Figure 6.  Second-order interactions and relative influence of the first and total order effects of investigated 
parameters on (a) BOD, (b) TN, and (c) TSS models.

Table 5.  Default and estimated values for identified influential parameters.

Code Parameter Unit Default value Estimated value

X52 Aerobic heterotrophic yield on soluble substrate mgCOD/mgCOD 0.666 0.65

X53 Anoxic heterotrophic yield on soluble substrate mgCOD/mgCOD 0.533 0.52

X16 Aerobic heterotrophic decay rate 1/day 0.62 0.51

X12 Reduction factor for denitrification on nitrite-N – 0.48 0.39
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Figure 7.  Achieved accuracy of the parameter estimation phase for (a) BOD model, (b) TN model, and (c) TSS 
model.

Figure 8.  Accuracy of model calibration and validation with regards to effluent BOD, TN and TSS.
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Table 6.  Literature values for kinetic and stoichiometric parameters deemed influential (> 0.05). *Total 
reduction factor for denitrification  (NO2 and  NO3).

Symbol Characterization Unit Literature value References

X52 Aerobic heterotrophic yield on soluble substrate mgCOD/mgCOD

0.67 1,3,90,97,107–109

0.68–0.69 110,111

0.63 112,113

X53 Anoxic heterotrophic yield on soluble substrate mgCOD/mgCOD
0.52–0.57 90,97,107–109,114

0.53 115

X16 Aerobic heterotrophic decay rate d-1

0.28–0.76 116

0.38 96

0.35 117

0.23 111

0.2 109,118–120

0.24 112,121

0.21 122

0.4 123

X12 Reduction factor for denitrification on  NO2 –

0.48 GPS-X default value

0.8* GPS-X default value

0.8* 112

0.75* 124

Figure 9.  PDFs of combined standard uncertainty analysis and central value (solid line) with regards to (a) 
BOD model, (b) TN model and (c) TSS model.
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Conclusion
This work has demonstrated the plausibility of combining GSAs with the NM simplex algorithm as a means of 
calibrating a steady-state biological wastewater treatment model. Simulation of the investigated system while 
operated at different DO set points provided suitable validation, while also identifying limitations of the model 
to predict system behaviour under conditions of extreme DO stress.

Of the investigated parameters, only four were found to significantly influence the model including aerobic 
heterotrophic yield on soluble substrate, anoxic heterotrophic yield on soluble substrate, aerobic heterotrophic 
decay rate and reduction factor for denitrification on  NO2. Of these, the stoichiometric parameters were shown 
to be most influential but in all cases influence was attributed mainly to the first order effects with no consider-
able collinearity detected.

Parameter estimation by the NM algorithm identified only minor adjustments were required to influential 
parameters for the model to predict actual system outputs with sufficient accuracy.

Finally, parameter uncertainty was observed to be minimal for the BOD and TSS models, however the TN 
model demonstrated greater uncertainty that may warrant further work to support the drawn conclusions.

It is hoped that the results of this calibration will inform the future development of steady-state IFAS models. 
The efficacy of this approach in calibrating dynamic WWT models should also be investigated.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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