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Continuous noninvasive blood gas 
estimation in critically ill pediatric 
patients with respiratory failure
Junzi Dong1*, Minnan Xu‑Wilson1, Bryan R. Conroy1, Robinder G. Khemani2,3 & 
Christopher J. L. Newth2,3

Patients supported by mechanical ventilation require frequent invasive blood gas samples to monitor 
and adjust the level of support. We developed a transparent and novel blood gas estimation model to 
provide continuous monitoring of blood pH and arterial  CO2 in between gaps of blood draws, using 
only readily available noninvasive data sources in ventilated patients. The model was trained on a 
derivation dataset (1,883 patients, 12,344 samples) from a tertiary pediatric intensive care center, 
and tested on a validation dataset (286 patients, 4030 samples) from the same center obtained at a 
later time. The model uses pairwise non‑linear interactions between predictors and provides point‑
estimates of blood gas pH and arterial  CO2 along with a range of prediction uncertainty. The model 
predicted within Clinical Laboratory Improvement Amendments of 1988 (CLIA) acceptable blood 
gas machine equivalent in 74% of pH samples and 80% of  PCO2 samples. Prediction uncertainty 
from the model improved estimation accuracy by 15% by identifying and abstaining on a minority of 
high‑uncertainty samples. The proposed model estimates blood gas pH and  CO2 accurately in a large 
percentage of samples. The model’s abstention recommendation coupled with ranked display of top 
predictors for each estimation lends itself to real‑time monitoring of gaps between blood draws, and 
the model may help users determine when a new blood draw is required and delay blood draws when 
not needed.

Abbreviations
ABPd  Diastolic arterial blood pressure
ABPm  Mean arterial blood pressure
ABPs  Systolic arterial blood pressure
AVDSf  Alveolar dead-space fraction
BG  Blood gas
CLIA  Clinical Laboratory Improvement Amendments of  198819

CTICU  Cardiothoracic intensive care unit
PICU  Pediatric (multidisciplinary, medical-surgical) intensive care unit
CV  Cross-validation
FiO2  Fraction of inspired oxygen
HR  Heart rate
IQR  Interquartile range
NBPd  Diastolic noninvasive blood pressure
NBPm  Mean noninvasive blood pressure
NBPs  Systolic noninvasive blood pressure
MnAwP  Mean airway pressure
OSI  Oxygen saturation index = 100× FiO2 ×MAP/SpO2
OI  Oxygen index = 100× FiO2 ×MAP/PaO2

PCO2  Arterial or capillary  CO2 pressure
PaCO2  Arterial  CO2 pressure
PcCO2  Capillary  CO2 pressure
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PARDS  Pediatric acute respiratory distress syndrome
PetCO2  Exhaled end-tidal  CO2
PEEP  Positive end expiratory pressure
PIP  Peak inspiratory pressure
PFratio  PaO2/FiO2
SpO2  Pulse oximetry saturation
SFratio  SpO2/FiO2
TVexp  Expiratory tidal volume
TVin  Inspiratory tidal volume
% leak  % Gas leak around endotracheal tube during respiratory cycle

Patients in severe respiratory distress are often supported by intubation with mechanical ventilation. The correct 
level of ventilation is critical for life support without further lung injury. Blood gas pH and arterial  CO2 pressure 
 (PaCO2) obtained through invasive blood draws are relied upon to help determine ventilator settings. In the 
acute phase of injury, frequent blood draws are needed to determine blood  gases1. This is especially difficult in 
pediatric patients where arterial access, pain, and blood loss are major  concerns2; moreover, arterial catheters are 
an under-recognized source of  infection3. Improvements in pulse oximetry providing continuous monitoring of 
oxygenation has proved helpful in children and shifted practice patterns in pediatric intensive care to reduce use 
of arterial  catheters1, 2. With respect to ventilation, exhaled  CO2 monitored through capnography is correlated 
with blood gas (BG)  CO2 tension but has not been accepted to provide the accuracy continuous monitoring 
oximetry does. However, the frequency of BG sampling is decreased with capnography  usage4–6, demonstrating 
that clinicians informally use capnography to determine the direction of blood pH changes.

There has long been interest in estimating BG pH and  PCO2 from end-tidal  CO2  (PetCO2)7–9 and over the 
past few years there have been some stimulating new investigations on estimating these in pediatric patients 
 noninvasively10–13. These studies show that  PetCO2 concentrations along with other noninvasive measurements 
can be used to estimate the values of blood pH and  PCO2 without taking an invasive blood sample. Nonetheless, 
challenges to clinical adoption remain. Prediction accuracy outside the normal pH range is  low10, 11, and there 
is a lack of clinical confidence in the predicted values.

The goal of this study is to develop continuous BG estimation that is accurate in all pH ranges for mechanically 
ventilated children with a wide range of severity of lung injury and hemodynamic support. Special consideration 
was given to develop a model suitable for clinical adoption. Estimations are made with a prediction uncertainty 
range, and the model can abstain from making inaccurate estimations when prediction uncertainty is high in 
case of large physiological fluctuations. Investigations on estimation accuracy over time provides guidance on 
the timeframe in which continuous noninvasive monitoring can be used. To further help users interpret and 
understand an estimated BG value, predictors are ranked by those with most significant contributions to the 
estimated value and displayed. We developed the model on a large derivation dataset spanning 5 years of data 
using novel modeling techniques and tested it on unseen validation data.

Methods
Following the guidelines of the Transparent Reporting of a Multivariate Prediction Model for Individual Prog-
nosis or  Diagnosis14, we developed and validated a BG estimation model that either provides an estimate of the 
current pH and  PCO2 or abstains from estimation.

Study population. The retrospective derivation and validation datasets were collected from pediatric criti-
cal care patients admitted to a tertiary pediatric intensive care center with a multidisciplinary pediatic medical–
surgical ICU (PICU) and a pediatric cardiothoracic intensive care unit (CTICU), as shown in Table 1. Figure 1 
illustrates data extraction steps for both cohorts. Derivation and validation cohorts spanned different times, 
and samples from the same patient could not appear in both cohorts. The dataset was approved with waiver of 
informed consent by the Children’s Hospital Los Angeles Institutional Review Board and the study protocol was 
approved by the Philips Internal Committee for Biomedical Experiments. All experiments were performaned in 
accordance with relevant guidelines and regulations.

Derivation cohort extaraction. The derivation dataset was collected from patient measurements made between 
September 2012 and May 2017 and stored prospectively in the hospital’s dedicated critical care SQL Server 
(Microsoft, Redmond, WA, USA). A dataset containing BG, granular physiological and ventilator data collected 
within ± 1 min of BG sample time was extracted from these medical records. pH and  PCO2 measurements were 
obtained from both arterial and capillary blood gases, which made up 90% and 10% of the data samples, respec-
tively. In model development and analyses, arterial and capillary BG were used inter-changeably given close-
ness of capillary BG to arterial  BG15. Samples with missing information in  PetCO2 measurement or medical 
record number (MRN) were removed. Derivation data was resampled to balance pH distribution and improve 
model performance in sparsely represented pH regions (eFig. 1). Patients on extracorporeal membrane oxygena-
tion support were removed. A plausibility check was performed on measurement values as shown in eTable 1. 
Samples for the same patient were linked in time, and samples without a prior BG within 24 h were removed. 
Processing was done to ensure that variables were correctly linked in time, and that outcome variables (pH and 
 PaCO2) were always linked to prediction variables measured prior in time. The final derivation cohort was split 
into 5 outer- and 5 inner-folds for cross-validation (CV) using nested  CV16 stratified by pH. Predictor and model 
selection were performed on inner CV folds, and final training was done on all folds.
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Validation cohort extraction. The validation dataset was collected from measurements made between June to 
December 2017. The pH resampling step was not done for the validation dataset, in order for validation perfor-
mance to reflect a natural BG distribution. Patients in the validation cohort who had already appeared in the 
derivation cohort were removed.

Predictors and target. Suppose the current time is t  and the previous BG was measured at time t − 1 . The 
target and predictor variables are shown in Table 2. ‘Delta’ predictors are the difference between current (taken 
at time t  ) and previous ( t − 1 ) measurements, e.g., �SpO2 = SpO2[t] − SpO2[t − 1] . Final predictors included 
in the model were selected from 23 candidate predictors (eTable 2). Predictors were selected on inner CV folds 

Table 1.  Cohort summary of final PICU and CTICU cohorts. IQR: interquartile range. AVDSf: alveolar dead-
space fraction.

PICU CTICU

Subjects, n 902 1292

No. of observations 6681 9610

No. of observations per subject, median (IQR) 3 (1–9) 4 (2–9)

Time between BG (h) 5.1 (3.2–7.7) 4.3 (2.5–6.5)

Age, mo, median (IQR) 60.6 (16.4–151.1) 1.0 (0.0–7.2)

Weight, kg, median (IQR) 18.0 (9.6–39.4) 3.6 (2.9–6.4)

Female (%) 42.8% 42.2%

Arterial blood gas, median (IQR)

pH 7.35 (7.30–7.43) 7.39 (7.34–7.46)

PaO2 (mmHg) 89 (69–116) 75 (45–121)

PaCO2 (mmHg) 45 (38–54) 44 (39–49)

Noninvasive support

SpO2 (%) 98 (96–100) 97 (85–100)

PetCO2 (mmHg) 40 (34–47) 38 (33–43)

Ventilator settings

Peak inspiratory pressure  (cmH2O) 24 (19–30) 20 (17–24)

PEEP  (cmH2O) 8.0 (5.3–10.0) 5.5 (5.0–7.0)

Mean airway pressure  (cmH2O) 13.5 (10.0–17.2) 9.7 (8.0–11.5)

FiO2 (%) 40 (33–60) 40 (35–60)

Tidal volume (exp) (mL/kg) 7.2 (5.5–8.9) 7.5 (5.7–8.8)

Minute ventilation (L/min/kg) 153.8 (110.2–211.9) 203.7 (165.7–244.4)

Lung disease severity

OSI 8.7 (5.3–13.2) 4.6 (3.0–6.9)

OI 5.7 (2.9–12.2) 4.8 (3.1–9.4)

SpO2/FiO2 238 (163–286) 228 (161–278)

PaO2/FiO2 211 (128–323) 186 (115–282)

AVDSf 0.11 (0.01–0.21) 0.13 (0.04–0.22)

Figure 1.  Block diagrams of derivation and validation cohort sizes and extraction steps.

Table 2.  Targets for prediction, and predictors included in the final model.

Target variables
pH[t], PaCO2[t]

Predictor variables
pH[t − 1] , PaCO2[t − 1] , HCO3

−[t − 1] , etCO2[t] , etCO2[t − 1] , �FiO2 , �PEEP , �PIP , �MnAwP , �SpO2 , �TVin,�TVexp
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using ridge regression to remove co-linearity between predictors and spurious correlations between predictors 
and targets.

Statistical analysis. Model building. A novel pairwise regression model was developed to model interac-
tions between one key predictor (previous pH) and non-key predictors. This model allows differences in physiol-
ogy between patients in different pH ranges to be modeled independently while representing monotonic rela-
tionships between non-key predictors and BG. The model is mathematically expressed as

where ŷ  denotes the predicted target, xi , i = 1, . . . ,K denotes K non-key predictors, z denotes the key predictor, 
and fj(z), j = 1, . . . ,M denotes sigmoid functions centered at M different values of the key predictor.

The model is interpretable: pairwise interactions can be  visualized17 as show in Fig. 2 and the contribution of 
each predictor can be separated to generate predictor importance rankings for each estimation. Data processing, 
modeling, and analyses were performed in Python.

Prediction uncertainty around point‑estimates and abstention. Prediction uncertainty was modeled to abstain 
from making predictions on high uncertainty samples and only accept predictions likely to be more accurate. 
Abstention rate was empirically set to 25%, meaning that 75% of samples were estimated.

Prediction uncertainty was modeled using bootstrap estimation of  uncertainty18, by building separate models 
for each derivation CV fold and quantifying the agreement between them. For a given sample, the prediction 
uncertainty is the variance in predicted target values by all separate models. Only samples with uncertainty lower 
than a threshold generated an estimation, and this threshold was determined with the pre-defined criteria of 
improving the 95% percentile of pH predictions to ± 0.1 pH unit or lower while not abstaining on more than half 
of patients. Estimations were abstained on samples with high uncertainty.

The point-estimate of BG is generated from a final model trained on all derivation data. Separate models from 
derivation CV folds provide a prediction uncertainty range around the point-estimate.

Predictor importance ranking. When an estimate is made, predictor contribution to the estimation is ranked. 
The model can be rewritten as ŷ =

∑K
i=0g(xi) , which denotes the sum of contributions from individual predic-

tors g(xi) = wi,j · fj(z)·xi.
Given a sample ⇀x = [x0, x1, . . . , xi , . . . , xK ] , the importance of the i th predictor is

where xi denotes the population mean of the predictor. When xi is close to xi , Ii will be equal or close to 0, which 
means predictor xi contributes little to the overall estimate. When xi deviates from the population mean, Ii shifts 
away from 0 to highlight the increased contribution of xi.

ŷ =
∑M

j=1

∑K

i=1
wi,j · fj(z) · xi ,

Ii = fi(xi)− fi(xi),

Figure 2.  Examples of learned non-linear pairwise relationships between non-key predictors and the key 
predictor. The key predictor on the x-axes, previous pH (pH[t-1]), is shown with non-key predictors  etCO2 
and ΔSpO2 (left Y-axes). The predicted pH (pH[t]) is the sum of contribution from all predictors. Contribution 
of each non-key and key predictor pair to the total estimated pH is color-coded, with white indicating higher 
contributions and black indicating lower contributions (right Y-axes). A prediction example is shown for a 
hypothetical patient with previously measured pH of 7.25, current  etCO2 of 20,and ΔSpO2 of 10 (denoted by 
the crossing points of the horizontal and vertical yellow bars). The predicted contribution for pH is read from 
the colormap, denoted by the yellow tick mark. The  etCO2, ΔSpO2, and previous pH contributions are 0.91 
(12% of predicted pH) and 1.02 (13% of predicted pH) from the learned relationships, respectively, and the total 
predicted pH is the sum of all contributions. The symbol ‘…’ denotes other predictor contributions not shown.
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Baseline models. The alveolar dead-space fraction (AVDSf) model was used to establish a baseline for com-
parison. It uses the alveolar dead-space fraction ( AVDSf = (PaCO2 − PetCO2)/PaCO2 ) calculated from the 
previous BG to estimate the current  PCO2. This estimate for  PCO2 is used along with the previous  HCO3

− to esti-
mate the current pH using the Henderson-Hasselbalch equation. A capnography-free linear regression model by 
Baudin et al.10 using  PetCO2,  FiO2, and mean airway pressure (MnAwP) was also tested on the validation dataset 
for comparison.

Performance comparison. Performance was evaluated by the 95% percentile of absolute error, or the worst 5% 
of samples. Performance of samples in separate pH ranges was reported. The percentage of samples with absolute 
error under 0.04 pH unit or 5 mmHg  PCO2 was calculated, following the CLIA gold standard for blood  gas19.

Results
Cohort characteristics. Characteristics of the final derivation and validation cohorts are described in 
Table 3. The cohorts are representative of a general pediatric intensive care population. Sub-cohort criteria such 
as pediatric acute respiratory distress syndrome (PARDS) and respiratory acidosis are defined in Supplementary 
material.

Validation performance. Figure 3 plots estimates of pH and  PCO2 against laboratory values for the valida-
tion dataset, and estimation performance before and after abstention are shown in Table 4. Overall, estimations 
were within CLIA acceptable blood gas machine  equivalents19 in 74% of pH samples (± 0.04 pH unit) and 80% 
of  PCO2 samples (± 5 mmHg). Estimation accuracy was balanced across pH, especially after abstention. Using 
the Mann–Whitney U-test, the validation results outperformed AVDSf and  Baudin10 models (eTable 4) with 
statistical significance P value < 0.001.

Prediction uncertainty and predictor importance. Estimations were not made when prediction 
uncertainty was above an acceptable threshold, as shown in the example in Fig.  3f. Also shown are the top 
three predictors ranked by importance and their measured values. The uncertainty threshold for abstention was 
obtained by examining the trade-off between performance and abstention rate on derivation samples, as shown 
in Fig. 4a. Abstaining using prediction uncertainty outperforms randomly abstaining the same percentage of 
samples, as shown in Fig. 4a, indicating that prediction uncertainty is a useful measure of estimation confidence.

Prediction accuracy over time. Figure 4b examines the relationship between estimation accuracy and 
the time elapsed since the last BG. Samples were split into bins based on time lags. The 95% percentile remained 
under ± 0.080 until up to an 8-h time lag between the time of estimation and the previous BG.

Table 3.  Summary of derivation and validation datasets. Numbers for post-processed data are shown, 
except for pH range data. STD standard deviation. *PICU pediatric (multidisciplinary, medical-surgical) 
ICU. †Patients may have stayed in both ICUs. ‡Definition of PARDS, respiratory and metabolic acidosis and 
alkalosis are discussed in Supplementary material. §Validation dataset was not resampled.

Derivation dataset Validation dataset

Final # of patients 1883 286

Final # of BG samples 12,344 4030

Age, mo, mean ± STD 50 ± 73 40 ± 62

CTICU 60% of patients 57% of patients

PICU* 41% of  patients† 43% of patients

Metabolic  acidosis‡ 14% 10%

Respiratory  acidosis‡ 28% 22%

Metabolic  alkalosis‡ 7% 17%

Respiratory  alkalosis‡ 6% 10%

Mixed‡ 44% 41%

PARDS‡ 12% 9%

Before resampling

11% pH < 7.3 7% pH ≤ 7.3

71% 7.3 ≤ pH < 7.45 71% 7.3 ≤ pH < 7.45

18% pH ≥ 7.45 22% pH ≥ 7.45

Post resampling and processing

17% pH < 7.3
NA§

54% 7.3 ≤ pH < 7.45

29% pH ≥ 7.45

Blood gas type
90% arterial

10% capillary



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9853  | https://doi.org/10.1038/s41598-022-13583-6

www.nature.com/scientificreports/

While the most recent BG was used for modeling, an additional analysis examined using the first available 
BG for each patient for all subsequent estimations. The 95% percentile using the first available BG was ± 0.124 
pH unit, compared to ± 0.078 pH unit when using the previous BG.

Safe classification of pH. As the predicted values are used to guide ventilator settings, erroneous predic-
tions between pH ranges could be potentially dangerous for patients. Figure 4c examines whether the estimated 
pH range, spanned by the point estimate plus uncertainty range, cover the correct pH range. Overall, 85% of all 
estimations cover the correct pH range, while those in individual pH-ranges are above 70%.

Arterial and capillary blood gas. Estimations based on arterial BG were slightly more accurate than 
estimations based on capillary BG but not statistically different. The null hypothesis of no statistically significant 
difference in absolute estimation errors was not rejected by a Mann–Whitney U-test with P value 0.07.

Figure 3.  Predicted blood gas (BG) pH and  PCO2 results on validation samples. Subplots (a,b) show the scatter 
plots of the model generated point-estimate and laboratory-derived pH and  PCO2, while (c,d) show Bland–
Altman plots for these estimations. Subplot (e) shows a patient example where the estimate at time t = 0 is made 
accurately with low uncertainty, and (f) shows a patient example where the estimate at time t = 0 is abstained on 
the basis of high prediction uncertainty. In the scatter plots (a,b), the blue shaded regions are the 95% percentile 
for all samples. The three pH or  PCO2 regions are separated by vertical and horizontal dashed lines. In the 
Bland–Altman plots, the middle solid line shows mean predicted error, and the top and bottom dashed lines 
show ± 1.96 standard deviation.

Table 4.  Blood gas estimation performance on derivation and validation datasets before and after abstention.

Derivation Validation

Before abstention After abstention Before abstention After abstention

pH 95% percentile (± pH units)

All 0.103 0.092 0.086 0.078

< 7.3 0.114 0.096 0.102 0.083

7.3–7.45 0.103 0.094 0.081 0.075

≥ 7.45 0.089 0.076 0.096 0.083

PCO2 95% percentile (± mmHg)

All 10.33 8.78 9.67 8.72

20–35 9.65 7.82 9.33 7.82

35–60 9.45 8.43 9.08 8.52

60–120 17.43 13.78 17.95 13.48
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Model visualization. Figure 2 depicts two example non-linear relationships learned between non-key pre-
dictors and the key predictor, previous pH. Contribution to estimated pH is color-coded onto the two-dimen-
sional predictor value space, with black indicating higher estimated pH contributions and white indicating lower 
estimated pH. The left plot shows that a lower  etCO2 measurement contributes to a higher estimate of pH contri-
bution, as seen in the dark color at the crosspoint where a low  etCO2 measurement of 20 falls. If the same patient 
had a higher  etCO2 measurement, the predicted pH contribution would be lower due to the crosspoint falling 
higher on the vertical line and into the lighter lower pH contribution zone. The right plot shows that the non-
linear relationship between ΔSpO2 and pH also varies depending on the key-predictor, previous pH.

Discussion
This study demonstrates that noninvasive parameters routinely available on most clinical monitors and ventilators 
can be used to provide useful estimates of BG in all intubated patients without necessitating a new blood draw, 
for up to 8 h. The model outperformed previous models while providing prediction uncertainty and predictor 
importance ranking, both of which can help users assess whether the model is likely to be accurate in a specific 
patient scenario. Built-in transparency of the model enables interpretation of estimation results, encouraging 
trust in adopting novel data-driven solutions for clinical practice.

The model estimated within CLIA acceptable blood gas machine  equivalents19 in 74% of pH samples (± 0.04 
pH unit) and 80% of  PCO2 samples (± 5 mmHg). The model achieved better performance than previously 
reported  models10, 11, especially in low-pH samples. Prediction accuracy on validation data was comparable to 
that on derivation data, demonstrating that the model is generalizable to new data.

The pH ranges in this study were used by the ARDSNet  studies20. While accuracy in the absolute value of a 
pH estimation is important, users may be more concerned with whether pH is estimated in the correct range. 
For example, it would be very detrimental for a pH of 7.15 (low) to be estimated as 7.45 (high) since the likely 
change in ventilator management would be rather different under the two clinical situations, whereas an inac-
curate estimation of 7.25 (compared to 7.15) would result in a less impactful modification to treatment and the 
change suggested would be in the same direction as that for the lower pH of 7.15. We showed that the majority 
of estimated samples cover the correct pH range in Fig. 4c. Low-pH samples remain the most challenging sam-
ples to estimate but using prediction uncertainty results in 74% of low-pH samples falling in the correct range.

Using older BGs for prediction was less accurate than using more recent BGs. This is likely due in part to vari-
able changes in patient condition with time. Estimation accuracy decreased with longer time intervals between 
time of estimation and prior blood sample, but estimations remained accurate until up to 8 h, suggesting that 
typically one may abstain from blood draws up to 8 h from the previous BG.

The model utilizes readily available data sources in ventilated patients to provide continuous monitoring of 
BG through estimation. Estimations are made with prediction uncertainty, which highlight inherent uncertainty 
in the model and prevent the display of potentially inaccurate predictions. Furthermore, the model displays top 
predictors and their values, which gives the user more context around the estimation.

One could argue that in current practice, clinicians are already able to ‘guesstimate’ the BG pH based on the 
same data, and that any estimation that does not achieve laboratory-level performance is not useful. We propose 
there are merits of the model even at the current performance level. First, the model provides automatic and 
continuous monitoring of BG pH without any human effort, saving time and mental calculation even if the 
estimation is not perceived as better than a ‘guesstimation’. Second, ranked top predictors can illuminate patient 
measurements and changes that may not have occurred to bedside caregivers. Third, it can be a good reassurance 
model for clinicians who want to check that their ‘guesstimate’ matches trends from thousands of prior blood 

Figure 4.  (a) Demonstrates that using prediction uncertainty to abstain on high-uncertainty samples 
improves estimation accuracy, while randomly abstaining the same percentage of samples provides no accuracy 
improvement. (b) Compares the estimation performance between samples with different time lags, defined as 
the time passed since the last BG. (c) The percentage of estimations that fall in the correct range of pH after 
abstention.
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gases from which the model was developed. Finally, estimation uncertainty is displayed, and clinicians can always 
make sure that the model does no harm by opting to obtain a BG.

There are several potential applications of the model. First, noninvasive estimates of pH can decrease the 
number of blood draws further, and recommend that users obtain blood draws when they are most necessary. 
Second, continuously available estimates may facilitate standardized assessment of ventilator support and adher-
ence to ventilator protocols, particularly those promoting lung protective recommendations. This has been 
implemented in the management of PARDS at Children’s Hospital Los  Angeles21,24. Clinicians can accept or 
reject the protocol’s recommendation or obtain a blood draw if not confident about the prediction. In addition, 
the majority of BG for ventilated children in respiratory failure with PARDS lie in a normal to high range where 
the model performs well. Finally, the model has potential applications for closed loop ventilation, and will likely 
improve existing algorithms which use the  PetCO2 directly.

The model uses a recent BG under the assumption that the patient’s respiratory and metabolic conditions have 
not drastically changed. Many external and contextual, and patient conditions are not available or captured at the 
time of estimation, so the final decision at the bedside must be left to the expertise of clinicians. One potential 
direction for improvement is obtaining a large dataset of BG, physiological measurements, and ventilation param-
eters along with full volumetric capnography for all patients. Volumetric capnography may provide additional 
information about patients’ respiratory states and  prognoses22, 23 not present in  PetCO2. which could enable more 
accurate estimation of BG. Lastly, although the model was generalized to unseen patients from the same center, it 
is unknown whether the model will generalize to other centers. This also requires validation on additional data.

The main application of the model is likely to be when ventilated patients have been stabilized and are in a 
relatively steady clinical state. Hopefully, it will be a viable tool for avoiding blood draws and facilitating con-
tinuous BG monitoring leading to more lung protective practices as we currently understand ventilation and 
oxygenation  management24. Ventilator decision support protocols based on measurements of arterial BG have 
proven useful in the management of adult respiratory  failure20. Accurate noninvasive measurements of arterial 
or capillary  PCO2 with subsequent prediction of pH could allow more frequent ventilator changes to optimize 
lung and diaphragm protective ventilation without BG analysis, which would be particularly useful in pediatric 
practice where fewer arterial lines are  used25.

The current model and results have some limitations. Specifically, model estimation only works on patients 
who have at least one recent blood gas invasively sampled. Abstention when model uncertainty is high defaults 
to invasive sampling and limits cases when noninvasive estimation can be used. Currently, there is no pre-
determinant of which patients are likely to generate high uncertainty samples. All of these questions may be 
better answered in a randomized control trial, which would also provide information on the usefulness and 
safety of such a model at the bedside.

Data availability
The datasets analysed during the current study are not publicly available due to restrictions in IRB approved 
usage.
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