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Transient ice loss in the Patagonia 
Icefields during the 2015–2016 El 
Niño event
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The Patagonia Icefields (PIF) are the largest non-polar ice mass in the southern hemisphere. The 
icefields cover an area of approximately 16,500 km2 and are divided into the northern and southern 
icefields, which are ~ 4000 km2 and ~ 12,500 km2, respectively. While both icefields have been losing 
mass rapidly, their responsiveness to various climate drivers, such as the El Niño-Southern Oscillation, 
is not well understood. Using the elastic response of the earth to loading changes and continuous GPS 
data we separated and estimated ice mass changes observed during the strong El Niño that started in 
2015 from the complex hydrological interactions occurring around the PIF. During this single event, 
our mass balance estimates show that the northern icefield lost ~ 28 Gt of mass while the southern 
icefield lost ~ 12 Gt. This is the largest ice loss event in the PIF observed to date using geodetic data.

The climate in South America is strongly affected by the El Niño-Southern Oscillation (ENSO), with El Niño 
(EN) being ENSO’s negative phase. ENSO events are produced by an unstable interaction between the Pacific 
Ocean and the atmosphere in the equatorial zone1. The ENSO quasi-cycle has positive, neutral, and negative 
phases, with one whole ‘cycle’ typically lasting about 4 years. The positive and negative phases correlate with 
rainfall and temperature anomalies, and changes in windfields, cloud cover and solar insolation that generate 
large deviations from average seasonal weather patterns. The negative phase of ENSO, EN, for instance, correlates 
with negative precipitation and positive temperature anomalies in Southern Patagonia2–5. Inter-annual changes in 
weather patterns can have a significant impact on seasonally-adjusted ice loss, driving both positive and negative 
accelerations in the rate of change of ice mass6. Long-term climate change has slowly but relentlessly increased 
global oceanic and atmospheric temperatures, making it easier for atmospheric and oceanic quasi-cycles, such 
as the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), or the ENSO to push local 
conditions beyond thresholds for major increases in ice loss. Approaching or crossing such thresholds was not 
possible even as little as 3 decades ago7.

There is strong evidence that the ENSO has responded to human activity, specifically greenhouse gas emis-
sions, since the early 1990’s8. ENSO events are tending to strengthen with each new cycle, as manifested by the 
Oceanic Niño Index (see Supplementary Fig. S1). Studies from Li et al.2 and Galván et al.9 in South America 
show the 2015–2016 EN event exhibited large temperature and precipitation anomalies that generated visible 
loading signals in geodetic time series. Studies from Lo Vecchio et al.10 and Willis et al.11 have quantified both the 
long-term trend and variable inter-annual ice loss in the Patagonia Icefields (PIF) as well as ice loss for specific 
outlet glaciers that may be influenced by the intensification of EN events. To date, no studies have reported the 
PIF ice loss during a specific EN event, mostly due to a lack of observations and/or the low temporal resolution 
of the available datasets. Due to the paucity of on-site observations, most previous studies are based on remote 
sensing data from satellite images10–12, and time-variable gravity data from the Gravity Recovery and Climate 
Experiment (GRACE) and GRACE Follow-On (GRACE-FO).

Satellite images and GRACE present some challenges when attempting to develop models with dense temporal 
and spatial resolution. For the case of visible satellite images, cloud coverage in Patagonia is frequent, limiting 
the number of usable images available for analysis. Other observational methods, such as synthetic aperture 
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radar (SAR), penetrate cloud cover (e.g.13). Both SAR and visible images, however, need to be paired with other 
observation techniques, such as GRACE and GPS, to correctly constrain mass changes. For time-variable gravity 
data from GRACE and GRACE-FO, the inherent spatial resolution of ~ 330 km is too coarse to independently 
estimate the ice loss at the scale of the internal drainage basins in the PIF. Also, due to the discontinuity between 
GRACE and GRACE-FO missions, there is a data gap of ~ 12 months, during part of the ENSO cycle between 
2017 and 2018. Although this gap has been successfully filled with other models14, it should be noted that the 
later GRACE time series are noisier due to strategies to extend the mission.

Other studies analyzed long-term trends using campaign GPS data, measured every 1–2 years, to understand 
glacial isostatic adjustment (GIA) and short-term elastic response signals15,16. These studies, however, are limited 
by temporal aliasing due to undersampling of the annual and semi-annual signals observed in GPS time series. 
For 2-year campaign intervals the Nyquist period is 4 years, roughly the same as the mean ENSO period. Con-
tinuous GPS (CGPS) data are therefore required to fully capture the crustal displacements due to short-term 
oscillations and trends in ice mass.

CGPS data provide higher spatiotemporal resolution (relative to campaign data) to constrain the PIF ice 
loss during the 2015–2016 EN event. Although the density of the CGPS data in the region is low, the addition 
of the CGPS ground-based data with satellite data facilitates estimating the episodic or transient ice loss during 
the 2015–2016 EN. Using an 8-year time series of daily positions from seven CGPS stations, an elastic response 
model17, stage data from all major lakes in southern Patagonia, SRTM data, ice velocity from satellite images18, 
glacier surface height change grids19, and the Global Land Data Assimilation System20 (GLDAS) terrestrial water 
storage (TWS) model, we produced a least-squares ice loss estimate for the North and South PIF. Our results 
show a significant acceleration in ice loss during the first months of 2016 in agreement with previous studies2. 
Our study, however, provides better spatial resolution that allows separating the northern and southern PIF ice 
loss signals. Thus, our results show an increased ice loss in the northern PIF compared to previous estimates of 
ice loss rates. Our analysis supports the hypothesis that this increased ice loss rate may have been driven by the 
2015–2016 EN event, and the mass loss is likely permanent as the ice mass had not recovered by late 2018, the 
end of our study period.

GPS observations in the Patagonia Icefields
The elastic response of earth’s crust due to loading by large hydrological cycles, which are rarely steady or strictly 
periodic, is well established (e.g.21). A major driver of crustal loading are changes in TWS. Galván et al.9 has 
shown the effects of the 2015–2016 EN in the Amazon basin and Li et al.2 used GRACE to constrain the fluctua-
tions in PIF inter-annual ice loss during the 2015–2016 EN event. GRACE studies of the PIF2, however, reported 
accelerating ice loss at the beginning of 2016 without isolating the ice loss during the 2015–2016 EN. Addition-
ally, the coarse resolution of GRACE does not permit direct observation of the separate Northern (NPIF) and 
Southern PIF (SPIF) ice mass losses.

To obtain the spatiotemporal resolution necessary to quantify the ice loss during the 2015–2016 EN, one 
requires continuous in-situ observations such as CGPS data. Figure 1a shows the seven PIF CGPS stations used 
in this study from the Chilean and Argentinian continuous GNSS networks22,23. Figure 1b–d show the vertical 
components from three of the seven CGPS stations processed using GAMIT-GLOBK24. The GPS data processing 
scheme used the latest orbits and antenna calibration parameters available from the International GNSS Service, 
the Vienna Mapping Functions25 to estimate the atmospheric delays, atmospheric tidal and non-tidal corrections, 
and the ocean tide loading model FES2014b26. Our time series show the evolution of the CGPS trajectories in 
the IGS14 reference frame realized using a regional densification with over 400 stations in Central and South 
America, the Caribbean, and Antarctica27.

We fit parametric trajectory models to each CGPS station composed of a linear trend, annual and semi-annual 
seasonal components, and, whenever possible (i.e. when more than 4 years of data are available), a quadratic 
term28. The linear and quadratic components remove reference frame, long-term ice loss, GIA, and any slow but 
steady effects of acceleration on ice loss. The periodic components remove seasonal variations including refer-
ence frame-related, local geodynamic effects, and any processing artifacts. To avoid any influence from possible 
EN effects in the trajectory parameters we only fit data before 2016. The residuals on Fig. 1e–g, therefore, show 
departures from the nominal station behavior recorded over the previous 6 years. To separate the EN effect 
from noise in the GPS time series, we applied a non-parametric least-squares collocation smoothing filter29,30.

Figure 1e–g show a clear offset of ~ 10 to 12 mm after 2016 with respect to the trajectory model. This shows 
that during 2016 there was a significant change in the vertical component behavior. While loading also produces 
smaller horizontal signals, we do not consider them due to the low signal-to-noise ratio of these observations. 
We will explain the observed time series behavior in terms of an ice loss unloading event that created the vertical 
displacement transient observed in the CGPS time series.

Methods
We model the observed vertical displacement change (obtained after removing any reference frame components, 
long-term ice loss, GIA, etc.) at each CGPS site as

where dU is the observed vertical displacement change at the CGPS station, dGLDAS is the TWS loading verti-
cal displacement, dLakes is the lake stage-induced loading vertical displacement, and dIce is the loading vertical 
displacement due to non-steady and non-seasonal ice changes. Therefore, the dGLDAS and dLakes components are 
also detrended using the same parametric trajectory model used to detrend dU (linear, seasonal, etc.). Using the 
0.25 × 0.25 degree GLDAS Catchment Land Surface Model (version 2.0) TWS, PREM31, and the elastic response 

(1)dU = dGLDAS + dLakes + dIce
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to a disk load (using 5 km diameter disks), we computed the vertical displacement of the crust produced by the 
regional changes in TWS at the seven CGPS stations between 2010 and 2019. Because GLDAS does not correctly 
account for ice fields and water bodies, we removed the model cells within these areas. Using the same elastic 
disk load and elastic models, we computed the water storage change signal for the lakes in Patagonia using lake 
stage observations (obtained from the Argentine National System of Hydrological Information, see http://​bdhi.​
hidri​cosar​genti​na.​gob.​ar/). Thus, the ice load signal can be found from Eq. (1) as

The dGLDAS+dLakes  time series residuals (hereafter, GLDAS + L) in Fig. 2 also show departures from the nomi-
nal GLDAS + L behavior estimated between 2010 and 2016. Figure 2 shows the same time series as in Fig. 1e–g 
together with the detrended GLDAS + L time series. Before 2016, both time series show the same approximate 
behavior with no clear offset between them. Nevertheless, a clear offset of ~ 5–8 mm is visible between the 
GLDAS + L and the CGPS residual time series after 2016. In some cases, offsets of ~ 10 mm can be observed, 
especially after 2018. These offsets are above the observed standard deviation between the smoothed CGPS signals 
and the GLDAS + L signal, which is ~  ± 2 mm (Fig. 2, shaded area shows the 2.5 sigma region).

As previously discussed, the GLDAS + L time series do not include any loading effects due to changes in ice 
mass. Thus, the ice loss can be estimated from Eq. (2), hereafter CGPS-GLDAS-L. We discretized the NPIF and 
SPIF using 1 km diameter disks to find the ice loading signal using the CGPS data. To account for the spatial vari-
ation of ice loss, the elastic response of the disks (at each CGPS station) was calculated using the rate of change 
of the ice surface height (dh/dt) grids for NPIF and SPIF from Braun et al.19. Although the spatial distribution 
of dh/dt rates in the PIF during the 2015–2016 EN are likely to show differences relative to the average dh/dt 
rates reported by Braun et al., we will use this pattern as a more reasonable estimate of the spatial variation for 
ice loss during the 2015–2016 El Niño than a uniform one, and scale it to match the CGPS data. In either case, 
the total ice mass loss is controlled by the CGPS data, not the ice mass loss distribution. The elastic response of 
each disk-station pair can be converted from rate, dh/dt, to a height change by multiplying the rate by a time 
interval, Δt. It should be noted that if one knows the ice height change, the disk loading least-squares problem 
can be interpreted as a solution for the density of the disks, rather than the equivalent water height, that gener-
ates the observed CGPS displacements. The dh/dt grids, however, represent the average ice height change in the 
data used by Braun et al., and these values are not representative of the ice loss during the 2015–2016 EN. We 
can assume, however, that scaling the dh/dt rates by a factor (one for NPIF and another for SPIF) will bring them 

(2)dIce = dU − (dGLDAS + dLakes)

Figure 1.   (a) Region of the Northern and Southern Patagonia Icefields (map created using the Generic 
Mapping Tools37 version 6, https://​docs.​gener​ic-​mappi​ng-​tools.​org/6.​0/) showing the location of the CGPS 
stations used in this study. Stations, north to south: PUMA, COCR, TRTL, CHLT, ECGV, ECGU, ECGM. 
(b–d) North to south, vertical component of GPS stations PUMA, ECGV, ECGM; blue dots are daily solutions 
obtained with GAMIT-GLOBK; red curves represent the trajectory model fit for data before 2016; trajectory fit 
goes from start of each time series to the vertical red dashed lines; (e–g) residuals after removal of the trajectory 
model fits; red curves represent a least-squares collocation smoothed signal of the residuals to reduce noise in 
the GPS solutions.

http://bdhi.hidricosargentina.gob.ar/
http://bdhi.hidricosargentina.gob.ar/
https://docs.generic-mapping-tools.org/6.0/
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into agreement with the ice loss during this EN event. In other words, we wish to transform the average dh/dt 
values into an ‘instantaneous’ ice loss that fits the CGPS data during the 2015–2016 EN. Therefore, the loading 
problem presented here consists of estimating the appropriate Δt scaling factor for each field such that the densi-
ties estimated from the elastic response (at the CGPS stations) are within the known range of ice density. This Δt 
scaling factor gives the ratio of ice loss rate during 2015–2016 EN with respect to that obtained by Braun et al.

The mass balance problem was solved using three distinct approaches to characterizing ice density variation 
in the PIF. This diversity of approach helps us to assess the robustness of our conclusions. In the first approach, 
hereafter model A, we assume that density is a linear function of height, assuming an ice density of 918 and 
500 kg/m3 at the lowest and highest elevations of the PIF, respectively. The second and third approach, models B 
and C, categorized the disks into two and three groups, respectively, based on elevation, ice velocity, and dh/dt 
values. The elevation of each disk was obtained using 30 m SRTM data, and the ice velocities were obtained from 
the NASA Regional Glacier and Ice Sheet Surface Velocities retrieved from the ITS_LIVE project18.

The classification into groups was determined using a height threshold (HT, varying from ~ 1000 to 1300 m) 
following Bravo et al.32 and Schaefer et al.33, a velocity threshold (VT, set at 30 cm/day), and the dh/dt value for 
each disk (negative/positive for height loss/gain). Disks were classified as group 1 (G1, lowest density) when dh/
dt > 0 (except when velocity > VT, e.g. on Glaciar Pío XI, see13), as group 2 (G2, mid density) when dh/dt < 0, and 
velocity < VT or height > HT, and group 3 (G3, highest density) when height < HT and dh/dt < 0. We combined 
G1 and G2 to simplify the problem (model B) and we used the three groups for model C. For all three models, we 
solved for disk densities using the average CGPS-GLDAS-L difference after 2016.5. Observations were weighed 
in the least-squares adjustment using the squared inverse of each CGPS-GLDAS-L standard deviation calculated 
using data before 2016.

To obtain the three pairs of Δt for the NPIF and SPIF dh/dt grids (one for each model), we performed a grid 
search over Δt and selected those that minimized the root mean square (rms) misfit between estimated and a 
priori density parameters (Supplementary Fig. S2). No constraints were applied to the least squares problems, 
except for model C where we applied a soft constraint requiring the density of G2 to be the average of G1 and G3.

Results
Table 1 shows the results for each model, A, B, and C, including the density parameters. As in model A, models 
B and C required an a priori density to compute the rms misfit during the grid search. While model B used the 
same density range as A, 918 and 500 kg/m3 for G3 and G1 + G2, respectively, model C used 500, 740, and 918 kg/
m3 for G1, G2, and G3 respectively. Results for model C are shown in Fig. 3a, b, where we note that the lowest 
density estimation (G1) was ~ 400 kg/m3.

Figure 2.   Vertical residuals for CGPS PUMA, ECGV, and ECGM including ground elastic response from the 
GLDAS + L model. A clear offset is visible after March 2016 when the CGPS time series show an additional uplift 
relative to the GLDAS + L model.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9553  | https://doi.org/10.1038/s41598-022-13252-8

www.nature.com/scientificreports/

The range of Δt for the three models does not show significant changes, and it is readily visible that the NPIF 
Δt is between 7 and 8 times the SPIF Δt value. This shows that the NPIF and SPIF dh/dt relationship for the 
2015–2016 EN event is different from that obtained by Braun et al., which used SAR interferometry data over the 
years 2000 to 2011/2015. This deviation from the mean dh/dt behavior has been identified in previous studies 
(e.g.2) and is likely the result of specific climate dynamics related to the strong EN event. Other sources that can 
explain part of the deviation from the mean dh/dt also include contributions below lake or sea level which are 
not captured by the dh/dt models19. Figure 3c, d show the resulting height change for NPIF and SPIF, respectively. 
Some of the disks in NPIF show large height changes, reaching − 70 m, which are a direct result from the scaling 
of the dh/dt grid. Although these values may be considered outliers (due to the mismatch between the dh/dt 
values from Braun et al. and those from the time period of our study), we have not removed these disks from 
our results. The resulting mass change for each disk for NPIF and SPIF, obtained from the disk density inversion 
using the CGPS-GLDAS-L difference, is shown in Fig. 3e, f.

The rms misfit between the observed and modeled CGPS-GLDAS-L displacements of model B shows an 
improvement, from 2.61 mm for A, to 2.10 mm. These results show that for the same number of model param-
eters, the disk classification in model B performs better than a linear height-dependent disk density, which is 
not surprising. As expected, the rms misfit is further improved in model C when three families of disks are used. 
Although our models explain most of the CGPS-GLDAS-L displacements, the model appears to underestimate 
part of the vertical signal at the Perito Moreno glacier CGPS station (ECGM, see Supplementary Fig. S3).

We evaluated the uncertainty in the models by perturbing its input parameters. We tested the model sensitivity 
to the uncertainties of disk classification threshold values (i.e., some disks can change between groups based on 
the thresholds) and we found that the overall effect is negligible. We also perturbed the a priori ice densities by 
7% to test the uncertainty in the mass balance solution and found that the changes in ice loss were always below 
1% (0.1–0.2 Gt). This is in part because any misfit in the a priori ice densities will be corrected by the scale fac-
tor applied to the dh/dt grids. Thus, the most significant effect in the mass balance estimates is from the relative 
uncertainty between the GLDAS + L model and the CGPS data. We therefore perturbed the CGPS-GLDAS-L 
values using their standard deviations and found that for model C, the NPIF ice loss uncertainty is ± 8 Gt while 
the SPIF uncertainty is ± 2 Gt.

Discussion
A strong link between ENSO and surface mass balance has not been demonstrated in Patagonia, although 
Weidemann et al.4 showed that strong modes of climate variability produce large temperature, wind, and pre-
cipitation anomalies in Southern Patagonia. It should also be noted that the 2015–2016 EN correlated with the 
largest temperature and precipitation anomaly in the region since 20032, which may have pushed local conditions 
beyond thresholds for major increases in ice loss.

After removing modeled reference frame, GIA, and periodic effects from the time series, we found the total 
mass loss for the PIF to be ~ 40 Gt ± 8.2 Gt. Our results are in agreement with previous studies, showing a dra-
matic ice loss in the first few months of 2016. Yet, our total ice loss estimate is approximately half of the mass 
loss reported by Li et al.2 during the same period (after correcting for the linear trend between 2013 and 2016 
reported by the authors), which used GRACE data and the GLDAS model. We speculate that GRACE data noise 
may have introduced a bias in the results from Li et al. Results from Ciraci et al.14 (Supporting Information, Figure 
S3) also show a clear offset in the PIF mass loss trends, although the authors did not discuss it.

While previous studies attribute the largest ice loss signal to SPIF (e.g.13,19), our mass balance results attribute 
75% of the ice loss to NPIF, which lost an equivalent of ~ 7 years of ice, while SPIF only lost ~ 1 year, at the average 
rate in the previous decade reported by Braun et al. We hypothesize that the location of NPIF relative to SPIF 
(further north) may have favored the NPIF ice loss compared to SPIF, which is supported by previous studies 
showing that accumulation in NPIF has decreased more significantly than at SPIF7.

This work shows, for the first time, the PIF ice loss during the 2015–2016 El Niño event using ground-based 
CGPS data. Our method combined direct observations of crustal deformation and remote sensing datasets to 
produce a robust mass balance estimate that has low sensitivity to variations in the a priori ice densities. Although 
the continuous geodetic data in Patagonia is sparse, the available dataset of seven stations allowed us to obtain 
ice loss estimates for both ice fields for this specific EN event. Our results suggest that the 2015–2016 EN had a 
large impact on the PIF, and highlights the necessity to further study the effects from strong modes of climate 
variability using ground-based GNSS/GPS data. Additionally, surface mass balance estimates from models such 
as MAR34, RACMO235, and MERRA-236 could provide means to extrapolate the ice loss time series to before the 
deployment of the CGPS network to investigate the sensitivity of the PIF to prior EN events.

Table 1.   Δt values, model results for density as a function of height (h) (A), a two-disk type classification (B), 
and a three-disk classification (C), NPIF and SPIF mass change and model RMS misfit.

Models NPIF Δt (year) SPIF Δt (year)
Ice densities (kg/
m3)

NPIF mass change 
(Gt)

SPIF mass change 
(Gt)

RMS misfit 
(mm)

(A) δ = b + m × h 8.03 0.74 b: 925; m: − 0.1152 − 30.5 − 8.2 2.61

(B) G1 + G2, G3 7.60 0.97 G1 + G2: 497; G3: 
923 − 29.1 − 10.9 2.10

(C) G1, G2, G3 6.90 0.95 G1: 397; G2: 767; 
G3: 915 − 28.2 − 11.7 2.03



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9553  | https://doi.org/10.1038/s41598-022-13252-8

www.nature.com/scientificreports/

Figure 3.   Results for model C (maps created using the Generic Mapping Tools37 version 6, https://​docs.​gener​
ic-​mappi​ng-​tools.​org/6.​0/). Disk densities for NPIF (a) and SPIF (b). Height changes after multiplying the dh/dt 
grids by Δt for NPIF (c) and SPIF (d). Mass balance grid for NPIF (e) and SPIF (f) using the estimated densities 
from (a) and (b) and the height change from (c) and (d).

https://docs.generic-mapping-tools.org/6.0/
https://docs.generic-mapping-tools.org/6.0/
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Data availability
The continuous GNSS/GPS data is public and available through Instituto Geográfico Nacional de Argentina web-
site https://​www.​ign.​gob.​ar/​Nuest​rasAc​tivid​ades/​Geode​sia/​Ramsac/​Desca​rgaRi​nex and the Centro Sismológico 
Nacional, Universidad de Chile website http://​gps.​csn.​uchile.​cl/. The lake stage data is available from the Argen-
tine National System of Hydrological Information http://​bdhi.​hidri​cosar​genti​na.​gob.​ar/. The GLDAS grids are 
available from https://​disc.​gsfc.​nasa.​gov/​datas​ets?​keywo​rds=​GLDAS. The Regional Glacier and Ice Sheet Surface 
Velocities are available from https://​its-​live.​jpl.​nasa.​gov/#​data.
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