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Long‑term prediction models 
for vision‑threatening diabetic 
retinopathy using medical features 
from data warehouse
Kwanhoon Jo1,9, Dong Jin Chang2,9, Ji Won Min3, Young‑Sik Yoo4, Byul Lyu5, Jin Woo Kwon6 & 
Jiwon Baek7,8*

We sought to evaluate the performance of machine learning prediction models for identifying vision-
threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical 
data from data warehouse. This is a multicenter electronic medical records review study. Patients with 
type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six 
referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, 
laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for 
VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under 
the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed 
F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The 
trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up 
to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration 
of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular 
filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with 
fair performance. Although there might be limitation due to lack of funduscopic findings, prediction 
models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an 
ophthalmologist from primary care.

Diabetes mellitus (DM) might be the most important and common metabolic syndrome. Moreover, its preva-
lence is increasing alongside continued population growth, aging, and escalating rates of obesity1,2. Diabetic 
retinopathy (DR), a significant complication of DM, is the most common cause of newly diagnosed blindness 
every year, especially in the working-age population3.

Progression of DR can lead to vision-threatening DR (VTDR), which is likely to result in vision loss in the 
absence of treatment4. Vision loss in DR is directly associated with clinically significant diabetic macular edema 
(CSME) and proliferative DR (PDR) and rarely occurs before these complications develop. Therefore, VTDR 
includes PDR and CSME and is expected to affect 56.3 million people by 20305. With progression of DR to VTDR, 
the quality of life of patients decreases and the financial burden on society increases6. Early diagnosis and proper 
management of DR can prevent progression.
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DM is a general condition, and DR is influenced by systemic factors. The risk factors for incidence and 
progression of DR have been reported in numerous previous studies and include duration of DM, mean blood 
glucose level, hemoglobin A1c (HbA1c) level, systolic blood pressure, and presence of nephropathy4,7–9. Based 
on these risk factors, some research has attempted to predict progression of DR using nonlinear methods such 
as logistic regression and sparse learning10–13. Recently, deep learning models for prediction of DR progression 
using color fundus photography were introduced14,15. However, no study to date has predicted the occurrence 
of VTDR—that is, actual vision loss in DM patients—using advanced machine learning and clinical and labora-
tory parameters.

Machine learning, an artificial intelligence-based machine learning technology, has shown promising diag-
nostic performance across specialties including ophthalmology16,17. For DR, it has shown promising diagnostic 
performance using retinal images17. Previous research has revealed that DR detected by DL and human graders 
shares similar risk factors16. Electronic medical record (EMR) system has enabled accumulation of enormous 
data of clinical features including demographics and laboratory tests. In the present study, we assessed the fea-
sibility of a machine learning model trained using medical big data including identified risk factors of DR for 
prediction of VTDR in a with type 2 DM.

Results
Subject characteristics and distribution.  Age, ALT, BUN, creatinine, eGFR, glucose, HbA1c, mean 
VA, low VA, systolic and diastolic BP, and DM treatment duration significantly differed between non-VTDR and 
VTDR groups (all P ≤ 0.005; Table 1). Male proportion, presence of comorbid CKD, hypertension, cerebrovas-
cular disease, and cardiovascular disease, smoking status, and use of insulin and aspirin also showed difference 
between non-VTDR and VTDR (all P < 0.001; Table 2).

Performance of the prediction models for VTDR.  For 10-year VTDR prediction, F1 score, accuracy, 
specificity, and AUC values for training were up to 0.661, 0.719, 0.698, and 0.77 by decision tree (fine); 0.666, 
0.701, 0.705, and 0.76 by logistic regression; 0.892, 0.892, 0.958, and 0.96 by SVM (fine Gaussian); 0.703, 0.754, 
0.725, and 0.74 by naïve Bayes (kernel); 0.806, 0.828, 0.810, and 0.91 by Ensemble decision tree (bagged); and 
0.770, 0.795, 0.785, and 0.84 by neural network (wide), respectively (Table 3). The receiver operating character-
istic curves for validation is presented in Supplementary Fig. 1. In addition, hyperparameters for optimizable 
models are presented in Supplementary Table 1.

On the test set, model trained using SVM (fine Gaussian) yielded F1 score, accuracy, and specificity of 
0.811, 0.700, and 0.664, respectively (Table 4). When follow-up loss cases were included as no VTDR for sen-
sitivity analysis, sensitivity (recall) and specificity of the models was up to 0.912 and 0.917, respectively (SVM, 

Table 1.   Summary of clinical features (continuous variables) of type 2 diabetic patients with and without 
vision-threatening diabetic retinopathy in datasets of 10-year VTDR prediction. VTDR vision-threatening 
diabetic retinopathy, SD standard deviation, ALT alanine transaminase, AST aspartate transaminase, BUN 
blood urea nitrogen, eGFR estimated glomerular filtration rate, HbA1c glycated hemoglobin, VA visual acuity, 
BP blood pressure, MAP mean arterial pressure, BMI body mass index. P-value: Independent t-test between 
non-VTDR and VTDR.

Clinical features

Non-VTDR 
(n = 2,924) VTDR (n = 6,187)

P-value Missing data (%)Mean SD Mean SD

Age (years) 54.77 11.32 56.69 12.13  < 0.001 0

ALT (IU/L) 25.81 17.62 24.48 18.64 0.002 5.8

AST (IU/L) 23.79 12.10 23.65 14.72 0.659 5.8

BUN (mg/dL) 17.41 9.11 20.10 11.82  < 0.001 9.7

Serum creatinine (mg/dL) 1.09 1.18 1.35 1.52  < 0.001 8.5

eGFR (mL/min/1.73 m2) 75.15 21.54 71.50 28.94  < 0.001 13.2

Serum glucose (mg/dL) 147.98 66.85 170.89 84.72  < 0.001 1.2

HbA1c (%) 7.29 1.48 8.01 1.98  < 0.001 1.3

Height (cm) 158.91 7.71 160.79 8.46  < 0.001 5.5

Weight (kg) 60.56 9.27 61.00 10.04  < 0.001 5.3

BP, diatolic (mmHg) 72.72 9.10 73.36 10.62 0.005 4.1

BP, systolic (mmHg) 131.36 16.09 133.84 19.19  < 0.001 4.1

Low VA (logMAR) 0.80 0.24 0.67 0.29  < 0.001 0.7

Mean VA (logMAR) 0.72 0.26 0.54 0.28  < 0.001 0.7

MAP (mmHg) 111.79 11.96 113.61 14.28  < 0.001 4.1

BMI (kg/m2) 23.98 3.09 23.59 3.20  < 0.001 5.5

Diabetes treatment duration (days) 1334.70 1192.81 1268.80 1395.27  < 0.001 0
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Table 2.   Summary of clinical features (categorical variables) of type 2 diabetic patients with and without 
vision-threatening diabetic retinopathy in datasets of 10-year. VTDR vision-threatening diabetic retinopathy. 
P-value: Chi-square test between non-VTDR and VTDR.

Clinical features Non-VTDR (n = 2,924) VTDR (n = 6,187) P-value

Sex, male proportion 46.40 58.10  < 0.001

Chronic kidney disease (%) 22.23 27.58  < 0.001

Hypertension (%) 82.39 73.16  < 0.001

Cerebrovascular disease (%) 30.47 26.04  < 0.001

Cardiovascular disease (%) 33.65 26.87  < 0.001

Smoking (%) 12.10 16.80  < 0.001

Aspirin use (%) 54.86 46.36  < 0.001

Insulin use (%) 60.50 72.47  < 0.001

Clopidogrel use (%) 24.56 24.46 0.919

Table 3.   Performance parameters of trained model on validation for prediction of VTDR at 10-year. VTDR 
vision-threatening diabetic retinopathy, AUC​ area under curve of receiver operating characteristics, SVM 
support vector machine.

Methods Precision Recall (sensitivity) F1 Accuracy Specificity AUC​

Validation

Decision tree Fine 0.755 0.587 0.661 0.719 0.698 0.77

Logistic regression 0.696 0.639 0.666 0.701 0.705 0.76

SVM Fine Gaussian 0.834 0.958 0.892 0.892 0.958 0.96

Naïve Bayes
Gaussian 0.705 0.541 0.612 0.680 0.666 0.74

Kernel 0.713 0.333 0.454 0.626 0.602 0.83

Ensemble decision tree

Boosted tree 0.805 0.625 0.703 0.754 0.725 0.91

Bagged 0.854 0.762 0.806 0.828 0.810 0.78

RUSBoosted Tree 0.712 0.651 0.680 0.714 0.716 0.82

Neural network

Narrow 0.798 0.733 0.764 0.789 0.782 0.83

Wide 0.809 0.735 0.770 0.795 0.785 0.84

Bilayered 0.758 0.654 0.702 0.741 0.730 0.82

Trilayered 0.748 0.649 0.695 0.734 0.725 0.80

Table 4.   Performance parameters of trainined model on test set for prediction of VTDR at 10-year. VTDR 
vision-threatening diabetic retinopathy, SVM support vector machine.

Methods Precision Recall (sensitivity) F1 Accuracy Specificity

On test set

Decision tree Fine 0.826 0.556 0.665 0.623 0.455

Logistic regression 0.826 0.627 0.712 0.660 0.487

SVM Fine Gaussian 0.703 0.958 0.811 0.700 0.664

Naïve Bayes
Gaussian 0.823 0.551 0.660 0.619 0.451

Kernel 0.914 0.096 0.173 0.386 0.346

Ensemble decision tree

Boosted tree 0.840 0.613 0.709 0.661 0.489

Bagged 0.797 0.758 0.777 0.707 0.548

RUSBoosted Tree 0.809 0.636 0.712 0.654 0.480

Neural network

Narrow 0.825 0.672 0.741 0.684 0.513

Wide 0.762 0.747 0.754 0.673 0.500

Bilayered 0.815 0.680 0.741 0.681 0.509

Trilayered 0.810 0.618 0.702 0.646 0.473
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Table 5). The receiver operating characteristic curves for test set and data set including loss to follow-up is 
presented in Supplementary Figs. 2 and 3.

Important predictors.  When neighborhood component analysis using default setting of ‘fscnca’ function 
of MATLAB in model independent manner, DM treatment duration, BUN, eGFR, glucose, MAP, AST, height, 
blood pressure, HbA1c, and CVD as features of high weights were revealed as important features (Fig. 1Left). 
The predictor importance analysis was also performed for bagged ensemble decision tree model. DM treatment 
duration, baseline VA, HbA1c, sex, eGFR, comorbid hypertension, glucose, creatinine, and height were revealed 
as predictors of high importance (Fig. 1Right).

Discussion
The association between clinical features and DR has been studied for many decades4,18,19. Based on these results, 
substantial efforts have been made to predict the incidence and progression of DR in patients with DM. However, 
there is not much information on prediction of VTDR, a specific state of DR that requires intensive care from 
ophthalmologists. In the present study, we analyzed the performance of machine learning models in prediction 
of VTDR using clinical features in patients with type 2 DM.

Previously reported common risk factors for DR in DM patients include duration of DM, age at diagnosis 
of DM, male gender, smoking, blood glucose, HbA1c, BP, and insulin treatment4,7–9,19. Renal function is known 
to have a close association with DR20,21. These known risk factors for DR significantly differed between patient 
who did and did not develop VTDR in this study. Age was older, male ratio, smoking rate, and BPs was higher, 
serum levels of glucose, HbA1c, BUN, and eGFR were greater, and insulin use were more frequent in VTDR 

Table 5.   Performance parameters of trained model on data set including loss to follow-up cases. VTDR vision-
threatening diabetic retinopathy, SVM support vector machine.

Methods Precision Recall (sensitivity) F1 Accuracy Specificity

On data set including loss to follow-up cases as no VTDR

Decision tree Fine 0.715 0.813 0.761 0.743 0.780

Logistic regression 0.683 0.679 0.681 0.680 0.676

SVM Fine Gaussian 0.975 0.912 0.943 0.944 0.917

Naïve Bayes
Gaussian 0.673 0.561 0.612 0.642 0.619

Kernel 0.784 0.612 0.688 0.720 0.678

Ensemble decision tree

Boosted tree 0.738 0.848 0.789 0.772 0.819

Bagged 0.910 0.896 0.903 0.903 0.896

RUSBoosted Tree 0.673 0.738 0.704 0.688 0.706

Neural network

Narrow 0.712 0.731 0.722 0.716 0.720

Wide 0.762 0.747 0.754 0.673 0.500

Bilayered 0.708 0.746 0.726 0.717 0.727

Trilayered 0.703 0.753 0.727 0.716 0.730

Figure 1.   Feature importance analysis. (Left) High-weighted features for VTDR prediction using neighborhood 
component. (Right) Important predictors revealed by the predictor importance analysis for the bagged ensemble 
decision tree model.
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compared to non-VTDR. BMI was lower in VTDR compared to non-VTDR and similar result had been reported 
before22,23. However, the effect of BMI on DR remain controversial despite various studies and a meta-analysis 
study revealed negligible effect of BMI on DR24.

The proportion of patients with comorbid CKD was higher in the VTDR group. The association between CKD 
and VTDR has been reported in many previous studies, and retinal microvasculature can provide essential data 
about concurrent kidney disease status25. Progression of retinopathy is reported to be associated with a higher 
incidence of cardiovascular and cerebrovascular events26,27. However, these two conditions were less prevalent 
in the VTDR group compared to the non-VTDR group in this study. This may be due to characteristics of the 
study population of the current study which included patients who adhered well to followed-up in referral 
hospitals for complications of DM. Also, the comorbid cerebrovascular and cardiovascular disease might have 
been underestimated or underdiagnosed in the VTDR group, and undertreatment of these conditions might 
have been associated with increased risk of VTDR. More frequent use of aspirin in non-VTDR patients may 
support this hypothesis.

The prediction model of VTDR was designed to include these known relative features in this study. The best 
performance was achieved by SVM model. SVM prediction model for VTDR at 10-year using clinical features 
demonstrated fairly high accuracy, specificity, and AUC. This good result may be explained with a large number 
of datasets included for training and validation. Since data imbalance during model training was adjusted using 
ADASYN, sensitivity (recall) was also good despite data imbalance between the VTDR and non-VTDR group 
during both validation and test. These values were comparable to previous studies cross-sectionally predicted 
the presence of DR using clinical factors10,28. This study has its originality and importance as the models are 
developed to predict future occurrence of VTDR. Additionally, sensitivity analysis using follow-up loss cases as 
no-VTDR was performed to overcome selection bias caused by follow-up loss cases. The result revealed high 
sensitivity and specificity.

Analyses for important predictors revealed eGFR, glucose, blood pressure, HbA1c, and height as features of 
high importance. These findings are in accordance with those of previous studies by Lui et al.,28 who analyzed 
risk factors of DR and VTDR using logistic regression, and by Oh et al.,10 who assessed predicted DR risk 
using sparse learning. Meanwhile, shorter DM treatment duration was also important in predicting VTDR in 
this study. This reflect a reasonable fact that compliance of patient in DM control is important factor in future 
occurrence of VTDR.

There are several limitations to this study. First, there are limitations in prediction performance caused by 
excluding clinical features with missing data. Also, ophthalmologic history such as previous treatment, surgery, 
and presence of other conditions that might trigger changes in VA were not investigated, and other known 
systemic risk factors for DR such as actual duration of DM, alcohol consumption, hematological markers of 
anemia, hypothyroidism, lipid profile, or genetic profile were not included4,29. Most importantly, initial DR state 
was not available due to the limitation of data warehouse system. Performance of the study models is expected 
to be improved by including additional clinical features not available in the current study. In addition, the study 
dataset did not involve patients who were not followed for both DM and DR at the institutions included in this 
study. DR patients who were followed for DM at outside hospitals or vice versa might have been missed. However, 
considering that most of DM patients who visit internal medicine department are routinely referred to the oph-
thalmology departments of all six hospitals, such loss should not be significant. Finally, medical treatment regi-
men and patient compliance with therapy during follow-up were not considered and can alter the risk of VTDR.

Nonetheless, as the features used for VTDR prediction in this study are easily obtainable from medical records 
of internists or primary care physicians, the prediction model is expected to be applicable in many clinical set-
tings. The rate of referrals to ophthalmologists by primary care physicians is far below the recommended guide-
lines, and patients tend to neglect ophthalmologic examinations due to asymptomatic eye status in the earlier 
stages of DR30. We believe these models can be useful in facilitating earlier proper referral of DM patients at high 
risk for VTDR to ophthalmologists, decreasing rates of vision loss in these patients.

In conclusion, machine learning models using real-world data of demographic and clinical characteristics 
which did not include funduscopic findings could predict the long-term occurrence of VTDR in patients with 
type 2 DM. The models can reduce severe vision loss in the DM population by aiding in proper referral of patients 
at high risk for VTDR to an ophthalmologist.

Methods
This study was approved by the Institutional Review Board of The Catholic University Medical Center and of 
each of the involved hospitals (IRB no. XC20WIDI0127): Bucheon St. Mary’s Hospital (Gyeonggi-do, Korea), 
Incheon St. Mary’s Hospital (Incheon, Korea), Yeoeuido St. Mary’s Hospital (Seoul, Korea), Euijeongbu St. 
Mary’s Hospital (Gyeonggi-do, Korea), Eunpyeong St. Mary’s Hospital (Seoul, Korea), and St. Vincent’s Hospital 
(Gyeonggi-do, Korea). The need for written informed consent was waived because of the retrospective design 
by the Institutional Review Board of The Catholic University Medical Center, and the study was conducted in 
accordance with the tenets of the Declaration of Helsinki.

Data preparation.  Electronic medical records (EMRs) of subjects diagnosed with type 2 DM and who 
underwent screening for DR from January 2009 to July 2020 in the ophthalmology department at six university 
hospitals that share the same EMR system were obtained. In total, a total of 52,927 patients eligible for study 
inclusion were identified, including 8,180 from Yeoeuido St. Mary’s, 10,185 from Euijeongbu St. Mary’s, 12,356 
from Bucheon St. Mary’s, 4,007 from Eunpyeong St. Mary’s, 5,347 from Incheon St. Mary’s, and 12,852 from St. 
Vincent’s. Of these, 25,878 were male and 27,049 were female.
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Diagnosis of type 2 DM was made by internists based on fasting plasma glucose level ≥ 126 mg/dL or two-hour 
post glucose level ≥ 200 mg/dL after a 75-g oral glucose tolerance test1. As VTDR requires treatment, patients with 
VTDR were identified using diagnosis and treatment code on CDW. Patients with VTDR were defined as those 
with DR who required intravitreal injection and/or vitrectomy for DR related diagnosis (i.e., CSME, vitreous 
hemorrhage, proliferative membrane, and/or tractional retinal detachment). Definition for CSME was based on 
ETDRS criteria and confirmation of hemorrhage, membrane, and retinal detachment was based on pre-operative 
ophthalmic examination including funduscopic examination, color fundus photography, and optical coherence 
tomographic images and intraoperative findings observed by surgeons. A subject was classified as VTDR if he 
returns a VTDR in any period during the follow-up and in any one of both eyes.

Data cleaning process.  Data standardization and quality control were implemented to ensure data integ-
rity, and exclusion criteria were applied to refine the data used for analysis. Patients screened for DR but who did 
not follow up at the ophthalmology department were removed (n = 10,092). Then, patients without baseline lab-
oratory data collected within three months from the initial ophthalmologic evaluation (n = 4,735) were removed. 
In total, data of 38,100 patients were available for the analysis. Models were trained for prediction of VTDR at 
10 years from initial DR screening. Study participants followed for at least 10 years totaled 9,102. Remaining 
28,998 loss to follow-up data was used for sensitivity analysis (Fig. 2).

Baseline was set as the date of the first ophthalmological screening, while the endpoint was the date of VTDR 
diagnosis or final follow-up in cases that did not develop VTDR. Medical data at the baseline were obtained from 
the EMR system. Variables with 20% or more of their values missing were not included in the datasets. Features 
included in prediction models were as follows. Demographics including age at the first visit, treatment dura-
tion of DM, sex, height, weight, systolic and diastolic blood pressure (BP), and smoking status were obtained. 
Presence of hypertension, chronic kidney disease (CKD), cardiovascular disease, or cerebrovascular disease was 
collected using diagnostic codes. Use of insulin, aspirin, and clopidogrel was assessed using prescription codes. 
From laboratory tests, serum levels of alanine aminotransferase (AST), aspartate aminotransferase (ALT), blood 
urea nitrogen (BUN), creatinine, estimated glomerular filtration rate (eGFR), random glucose, and HbA1c were 
collected. Only baseline visual acuities (VAs) were available from the ophthalmology chart. Missing data for the 
remaining variables were handled using regression fitted with supervised machine learning.

Training and evaluation of the prediction models.  All demographic, clinical, and laboratory test fea-
tures mentioned above were included in model training. The data was divided into training and validation set 
(80%) and test sets (20%).

Since the 10-year data were imbalanced with higher proportion of VTDR, oversampling of training dataset 
using adaptive synthetic (ADASYN) sampling algorithm was performed before training31 Prediction models 

Figure 2.   Dataset used in development, validation, and test of diabetic retinopathy risk prediction. This 
flowchart shows the process of obtaining and cleaning the dataset.
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were trained for VTDR using decision trees, logistic regression, support vector machine (SVM), naïve Bayes 
(Gaussian and kernel), and ensemble decision trees (bagged, boosted and RUSboosted). Fifteen-fold cross-
validation was used during training and validation of models. Hyperparameters were optimized automatically 
using optimizable training options for each model of ‘Classification Learner’ app on MATLAB (MathWorks, Inc., 
Natick, MA, USA). For neural network, one fully connected layer sized of 10 (wide), 100 (narrow) and two- and 
three-fully connected layer size of 10 were used for training. Then, trained models were validated on original 
data set and tested on test set. The performance of models was evaluated using accuracy, specificity, F1 score, 
receiver operating characteristics, and area under the curve (AUC). F1 Score was calculated as 2 x ((precision x 
recall) / (precision + recall)). All experiments were performed using MATLAB 2021a.

Statistics.  Statistical analysis was performed using MATLAB 2021a. T-tests were used to compare demo-
graphics between groups. Chi-square test was used to compare categorical variables. Accuracy, precision, recall, 
specificity, and F1 scores were calculated for each model. The F1 score was calculated as 2 × (precision) × (recall) 
/ [(precision) + (recall)]. Continuous variables are presented as mean ± standard deviation.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon request.

Received: 28 August 2021; Accepted: 27 April 2022
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