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A generalization of the standard 
map and its statistical 
characterization
Kivanc Cetin1,2,4, Ugur Tirnakli1,4* & Bruce M. Boghosian3,4

From the statistical mechanical point of view, area-preserving maps have great potential and 
importance. These maps exhibit chaotic and regular behavior separately or together in the available 
phase space as the control parameter changes. Several works on these maps, e.g., the standard map 
and the web map, have shown that ergodicity breakdown causes the statistical mechanical framework 
that describes the dynamics of the system to change. In this paper, for a novel generalization of the 
standard map, which we define by generalizing the periodic function used in its definition, we verify 
that a q-Gaussian with q ≃ 1.935 for the probability distribution of sum of the iterates of the system 
with initial conditions chosen from the nonergodic stability islands is robust. We also show that the 
probability distributions become more complicated and unexpected limiting behavior occurs for some 
parameter regimes.

It is well-known that the Boltzmann-Gibbs (BG) statistical mechanical framework is able to describe the dynam-
ics of systems that exhibit ergodicity and mixing. For the strongly chaotic regime that presents the largest positive 
Lyapunov exponent (LLE), the system is ergodic and the probability distribution of the sum of the appropriate 
variables of the system appears to be a Gaussian, indicating the validity of BG statistics1. On contrary, BG statis-
tics is problematic for the description of the dynamics of nonergodic systems. In recent years it has been shown 
that for several dissipative2–4 and conservative5–7 model systems nonextensive statistical mechanics is a good 
candidate to describe systems in the weakly chaotic regime with nearly zero LLE. In that regime, probability 
distributions seem to be q-Gaussians, indicating the validity of the nonextensive statistical mechanical frame-
work. In addition to the weakly chaotic regimes of these model systems, q-Gaussians have also been observed 
in several experimental systems such as the Couette-Taylor flow in a fully developed turbulent regime8,9, LHC 
experiments10, the ozone layer11 and dissipative optical lattices12,13, among many other examples in the literature 
that are discussed in14.

In recent papers, a full statistical mechanical characterization of the paradigmatic area-preserving standard 
map6 and the web map7 has been discussed by means of q-triplets15. It is seen that the results obtained in these 
studies are consistent with the results of Ref.15, and a stationary distribution index qstat obtained for the stabil-
ity islands of these systems is exactly the same as the one obtained in5. In the limit distribution analyses, it has 
been observed that for large control parameter values, where the entire phase space of the map is dominated 
by chaotic trajectories, the probability distribution of the sum of iterates of the map is Gaussian. This observa-
tion is consistent with the BG statistical mechanical framework. On the other hand, when the phase space is 
entirely dominated by the stability islands (nearly zero LLE), as it is for small parameter values, the probability 
distribution appears to approach a q-Gaussian with q ≃ 1.935 . The numerical value proposed in recent works5–7 
agrees with the theoretical prediction made in Ref.16, within only one significant digit. A suitable description 
of the dynamics of the map for this case may therefore be provided by nonextensive statistical mechanics. For 
parameter values between these two extreme cases, where the chaotic regions and the stability islands coexist in 
the phase space, it has been shown that the probability distribution throughout the phase space is well fitted by 
a linear combination of a Gaussian and a q-Gaussian with q ≃ 1.935 . As these observations are valuable from 
statistical mechanical viewpoint, they also have physical importance. Both area-preserving maps are equivalent 
to an iterative form of the Hamiltonian function for the kicked oscillator model, i.e., the Q-folded web map can 
be reduced to the standard map (kicked rotor) in specific limits17. In addition to their role in the development 
of the theory of nonintegrable Hamiltonian systems18, many physical systems of practical importance are fre-
quently considered as a combination of these maps19,20. The standard map in particular has been widely used in 
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diverse fields of physics, e.g., particle dynamics in accelerators21, comet dynamics22, autoionization of molecular 
Rydberg states23, and so on.

Inspired by its extensive usage in physics and its theoretical importance in chaos theory, we define here a 
new generalization of the standard map which also generalizes the Hamiltonian of the kicked rotor system. This 
generalization enables us to define unique maps with different phase space dynamics. As the standard map can 
be considered as a simple model for many physical systems, this newly defined generalization is thought to be 
explanatory and appropriate for more complex systems that cannot be reduced to the original standard map 
as a first approximation. In this paper, for several scenarios of the generalized standard map, we investigate the 
phase space behavior and limit distribution of initial conditions chosen from the entire phase space. With these 
investigations, we aim to present the robustness of the results obtained for the limiting behavior of initial condi-
tions chosen from the stability islands of area-preserving maps.

Methods
Generalization of the standard map.  In similar fashion to another generalization of the standard map, 
namely the z-generalized standard map24, we define a new generalization of the standard map25 by modifying 
the trigonometric term in the equations that describe the system. In contrast to the z-generalized version, our 
modification is made by replacing the sine function by a summation of sine functions. This basically amounts to 
changing the potential term in the Hamiltonian of the kicked rotor and rewriting this Hamiltonian as

where K is a positive dimensionless map parameter that controls nonintegrability of the system, W is an integer, 
and periodic Dirac δ-function models periodic kicks. The general tendency of the behavior of this potential is 
depicted in Fig. 1 for representative values of W. It is evident that, as W increases, the number of minima and 
maxima also increases, which is directly related to the value of W. Therefore, the proposed generalization can 
be considered as a W-well potential. The intriguing new property seen in this generalization is that, as W is 
increased, interconversion between minima and maxima is observed. With each increment in W, in addition 
to the occurrence of new maxima closer to x = 0 and x = 2π , minima of the previous potential well turn into 
maxima in the new well and vice versa. Moreover, as W → ∞ , the distance between the maxima and minima 
decreases. Since there will be a point for which the numerical resolution cannot locate maxima and minima 
correctly, the kicking potential will then become a harmonic potential. Multiple-well potentials are indeed an 
interesting area also available in the literature (see for example Refs.26–33).

Using this Hamiltonian, the generalized standard map can be given as

where x and p are taken as modulo 2π . At this point, it is worth mentioning that the proposed generalized force 
can also be written in a closed form as
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Figure 1.   The behavior of the new potential of the generalized standard map discussed here for several 
representative values of W. The inset of the graph presents the conversion of minima and maxima with 
increasing W. In each increment step, newly arisen maxima can be clearly seen.
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For different values of the generalization term W, we actually create unique area-preserving systems, each hav-
ing different dynamical properties. It is easy to verify that the area-preserving nature of the map holds for this 
generalization. For a constant K value, due to the conversions and occurrences of stable and unstable points in 
the phase space, as W varies, the phase space dynamics of the trajectories change significantly.

We investigate the phase space dynamics of the trajectories and limiting distributions of generalized systems 
with W = 1 , W = 2 , W = 3 , W = 50 and W = 120 , for K = 0.1 , K = 0.2 , K = 0.4 and K = 0.6 parameter values. 
The W = 1 case corresponds to the original standard map, and the W = 50 and W = 120 parameters are selected 
to provide extreme scenarios in which the phase spaces are fully occupied by the chaotic sea. With this parameter 
set, the changes in the phase space dynamics and limiting distributions can be compared and analyzed. Results 
obtained fromthese analyses are given collectively for each parameter value to provide better visualization of 
the evolution of the system. To display how the trajectory behavior changes in the phase space according to the 
increment of the W term, for each scenario we iterate the system T = 5× 103 times starting from M = 150 initial 
conditions randomly chosen over the whole phase space. The small number of initial conditions are chosen for 
better visualizations of the phase space portraits which are provided in the first columns of Fig. 2 for K = 0.1 , 
Fig. 3 for K = 0.2 , Fig. 4 for K = 0.4 , and Fig. 5 for K = 0.6.

Lyapunov exponent analysis.  To quantify the trajectory behavior in the phase space, the Benettin 
algorithm34 is used to calculate the LLE ( � ) which is defined as

where T is the iteration time and d(i) =
[

(�
(i)
x )2 + (�

(i)
p )2

]1/2
 is the Euclidean distance at time i in the phase 

space between initially neighboring trajectories. For the scenarios mentioned above, the LLE is calculated by 
using T = 5× 105 iteration steps for each of M = 2.5× 106 initial conditions, that are randomly chosen from 
the entire phase space, separately. Here the initial distance between a randomly chosen initial condition and its 
neighbor is set as �(0)

x = �
(0)
p = 10−8 . Computed magnitudes of the LLE are illustrated by a color map to quan-

tify the trajectory behavior in the phase space portrait correspondingly. This method is similar but not exactly 
the same as the method used so far in the literature known as finite time Lyapunov exponent35–38. As can be seen 
from the second columns of Figs. 2, 3, 4, and 5, the calculated LLE magnitudes are nearly zero ( � ≈ 0 ) for initial 
conditions located inside the stability islands, whereas they are largely positive for the chaotic trajectories. Com-
patibly with their LLE magnitudes, the stability islands are said to be in a weakly chaotic regime5. With this visu-
alization, regions of different behavior can be distinguished in the phase space. It is important to note that in 
LLE color maps, some tiny stability islands placed in the chaotic sea are difficult to distinguish since they are 
shrouded by chaotic initial conditions. This problem arises only from the point size used for initial conditions 
in plots and has nothing to do with the calculation process.

As seen in Figs. 2, 3, 4, and 5, for a constant K value, chaotic behavior dominates larger phase space areas with 
increasing W values. The underlying reason for this behavior is that the increment of the generalization term 
brings about the dissolving of the stability islands, which are constant energy tori, into elliptic and hyperbolic 
points series depending on their winding numbers forward for that K value. The dissolution of the tori into the 
elliptic-hyperbolic points series is described by the Poincaré-Birkhoff Theorem39. With this inference, one can 
say that increasing W increases the nonintegrability of the system for a fixed K value. Due to the added sine 
terms in the map function, resonances causing tori to dissolve according to the KAM Theorem40 become stronger 
and chaotic behavior arises from the homoclinic and heteroclinic tangles that develop by complex organization 
of the in-sets and out-sets of the hyperbolic points41. Therefore chaotic behavior can occur in the phase space 
at smaller K values for W > 1 systems than for the original standard map. Phase space locations of the elliptic 
and hyperbolic points change as W is changed and this fact makes each generalized system and its phase space 
dynamics unique42. For the extreme cases of W = 50 , and W = 120 , the entire phase space is occupied by a single 
chaotic sea as a result of the large amount of a nonintegrability of the system.

Statistical analysis.  As the phase space dynamics provides rich observations for different W values, we can 
analyze the limiting distributions of these systems. Within the framework of the Central Limit Theorem (CLT) 
and in conformance with previous analyses of the standard map5,6,24 we define the variable

where T is number of iterations. In Eq. (5), 〈. . . 〉 denotes both time average over T iterations and ensemble aver-
age over M chosen initial conditions, i.e.,
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Figure 2.   Analyses of the W = 1 , W = 2 , W = 3 , and W = 120 systems for K = 0.1 . Left column: (a,d,g,j) 
Phase space portraits, Middle column: (b,e,h,k) LLE color map descriptions of the phase portraits, Right 
column: (c,f,i,l) Probability distributions obtained from the initial conditions chosen from the entire phase 
space.
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Figure 3.   Analyses of the W = 1 , W = 2 , W = 3 , and W = 50 systems for K = 0.2 . Left column: (a,d,g,j) 
Phase space portraits, Middle column: (b,e,h,k) LLE color map descriptions of the phase portraits, Right 
column: (c,f,i,l) Probability distributions obtained from the initial conditions chosen from the entire phase 
space.
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By defining the variable y in accordance with the CLT, the probability distributions are obtained as independent 
of the number of iterations used in the numerical calculations. It was recently shown for weakly chaotic regimes 
of several dissipative2,3 and area-preserving maps5–7 that limit distributions of the sum of iterates of the map 
(Eq. (5)) seem to approach a q-Gaussian form which can be defined as

where Aq is a normalization factor, Bq is the parameter which characterizes the width of the distribution, µq is 
the q-mean value and σq is the q-variance43:

In Eq. (7), the q → 1 limit recovers the Gaussian distribution P1(y;µ1, σ1) = 1

σ1
√
2π

exp[− 1
2 (

y−µ1

σ1
)2] which is 

the basis of BG statistical mechanics. For the strongly chaotic regime where the system is ergodic and mixing 
with a largely positive LLE value, the Gaussian distributions are the appropriate form for the limiting probability 
distributions1. In the probability distribution analysis of the generalized standard map, for each (W, K) scenario 
we use T = 222 iteration steps for M = 2× 107 initial conditions that are randomly chosen from the entire phase 
space. The distributions thereby obtained are given in the third column of Figs. 2, 3, 4, and 5 together with the 
corresponding phase portraits and the LLE color maps. Below, we classify the limiting probability behaviors into 
groups depending on the observations made on the probability distributions and we discuss each group 
individually.

Results
For the W = 120 system with K = 0.1 , and the W = 50 systems with the rest of the K parameter set, due to the 
large amount of nonintegrability of the system, the entire phase space is fully occupied by a single chaotic sea. As 
the chaotic trajectories can wander through the phase space with largely positive LLE, the whole system is ergodic 
and mixing. For this phase space behavior, the probability distribution P(y) exhibits a clear Gaussian form, i.e., 
q = 1 as expected. The phase spaces of the ( W = 1 , K = 0.1 ) and ( W = 1 , K = 0.2 ) systems, on the other hand, 
corresponding to the original standard map, arecdominated by stability islands making the whole system non-
ergodic. For initial conditions placed in these islands, the calculated LLE is nearly zero. Due to the ergodicity 
breakdown, the probability distribution P(y) converges to a q-Gaussian with q ≃ 1.935 as shown in Figs. 2 and 
3 with parameters given in Tables 1 and 2. For the other W = 1 systems, where the phase space contains both 
strongly and weakly chaotic regimes, all of the limiting probability distributions describing the whole system 
are obtained as a linear combination of a q-Gaussian with q ≃ 1.935 and a Gaussian function as expected from 
the observations made in the previous studies on the original standard map5. Phase space occupation ratios of 
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Table 1.   The obtained parameter values of the probability distributions for K = 0.1 systems given in Fig. 2.

Aq=1.935 = 0.3364 . . . , Aq=1 = 0.5642 . . .

W = 1 W = 2 W = 3 W = 120

q1 1.935 1.935 1.935 1.935

q2 1 1 1 1

q3 1 1 1 1

q4 1 1 1 1

αq1 1 0.992 0.36 0

αq2 0 0.006 0.35 1

αq3 0 0.002 0.26 0

αq4 0 0 0.03 0

Bq1 5.9× 10
4

7.9× 10
4

2.5× 10
4 0

Bq2 0 11 8.2 1.5× 10
−1

Bq3 0 6.6 4.3 0

Bq4 0 0 4.9× 10
−1 0
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these systems are determined from the Lyapunov color maps given in Figs. 4 and 5, and given in Tables 3 and 4. 
It should be noted that for ( W = 1 , K = 0.4 ) and ( W = 1 , K = 0.6 ) systems, the phase space occupation ratios 
of the stability islands were determined by detecting the constant number of initial conditions having LLE values 
in the � ≤ 4.4× 10−3 and � ≤ 2.85× 10−2 ranges, respectively.

For all map parameter values of the W = 2 system and ( W = 3 , K = 0.2 ) system, a common probability 
distribution behavior is observed. From the Lyapunov color map of the ( W = 2 , K = 0.2 ) system in Fig. 3, two 
different strongly chaotic regions, coexisting with the stability islands, can be clearly seen with different LLE 
values in the phase space. By exhibiting different LLE values it can be said that the region with the larger LLE 
value is more chaotic than the other. To discriminate the phase space regions we utilize the Lyapunov color map 
by searching the range of LLE values where the phase space occupation ratios of the various initial conditions 
stay constant. In the analyses, we obtain � < 8× 10−3 for the initial conditions of the stability islands, and 
7.2× 10−2 > � > 8× 10−3 and 7.2× 10−2 < � for the two chaotic regions. It is important to note here that 

Table 2.   The obtained parameter values of the probability distributions for K = 0.2 systems given in Fig. 3.

Aq=1.935 = 0.3364 . . . , Aq=1 = 0.5642 . . .

W = 1 W = 2 W = 3 W = 50

q1 1.935 1.935 1.935 1.935

q2 1 1 1 1

q3 1 1 1 1

αq1 1 0.8 0.119 0

αq2 0 0.13 0.878 1

αq3 0 0.07 0.003 0

Bq1 5.9× 10
4 7× 10

5
6× 10

5 0

Bq2 0 4.8 0.75 0.152

Bq3 0 18 1× 10
−4 0

Table 3.   The obtained parameter values of the probability distributions for K = 0.4 systems given in Fig. 4.

Aq=1.935 = 0.3364 . . . , Aq=1.45 = 0.4623 . . . , 
Aq=1 = 0.5642 . . .

W = 1 W = 2 W = 3 W = 50

q1 1.935 1.935 1.935 1.935

q2 1 1 1 1

q3 1 1 1.45 1

αq1 0.9956 0.232 0.037 0

αq2 0.0044 0.767 0.883 1

αq3 0 0.001 0.08 0

Bq1 6.9× 10
4

9.0× 10
3 1.9× 10

5 0

Bq2 6.2 9.0× 10
−1

2.7× 10
−1

1.5× 10
−1

Bq3 0 3 6.9× 10
−1 0

Table 4.   The obtained parameter values of the probability distributions for K = 0.6 systems given in Fig. 5.

Aq=1.935 = 0.3364 . . . , Aq=1.5 = 0.4501 . . . , 
Aq=1 = 0.5642 . . .

W = 1 W = 2 W = 3 W = 50

q1 1.935 1.935 1.935 1.935

q2 1 1 1 1

q3 1 1 1.5 1

αq1 0.963 0.19 0.033 0

αq2 0.037 0.806 0.706 1

αq3 0 0.004 0.261 0

Bq1 6.9× 10
4 8.0× 10

5
1.0× 10

5 0

Bq2 4.5 4.8× 10
−1

1.9× 10
−1

1.5× 10
−1

Bq3 0 9.0× 10
−5

3.7× 10
−2 0
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the chaotic chains which can be seen in the color map belong to the strongly chaotic behavior whose chaotic-
ity is weaker than the other chaotic sea, by lying in the same range of LLE. In our analyses, we observe that the 
probability distribution of the whole system is obtained as a linear combination of two Gaussians with different 
widths and a q-Gaussian, compatibly with previous observations on the portions of the phase space. This three-
component probability distribution can be modeled as

where q1 ≃ 1.935 and q2 = q3 = 1 . In Eq. (10), the contribution ratios αq1 , αq2 , and αq3 are the same as the phase 
space occupation ratios of the initial conditions located in the stability islands, strong and less strong chaotic 
regions detected from the Lyapunov color map, respectively. It is clear that, by definition, αq1 + αq2 + αq3 = 1 . 
Strictly speaking, the contribution of the q-Gaussian distribution with q ≃ 1.935 to Eq. (10) originated from the 
initial conditions of the stability islands, and the initial conditions of the two different strongly chaotic regimes 
make contributions with two Gaussian distributions of different widths.

For the ( W = 2 , K = 0.1 ), ( W = 2 , K = 0.4 ), ( W = 2 , K = 0.6 ) and ( W = 3 , K = 0.2 ) cases, the phase spaces 
consist of both a chaotic sea and stability islands. As the system is ergodic and mixing for the strongly chaotic 
sea and nonergodic for the stability islands (weakly chaotic), one can predict that the probability distribution 
should be obtained as a linear combination of a Gaussian and a q-Gaussian in line with the results of recent 
papers5,6. From the obtained probability distributions, we see that this is not the case for our generalized system. 
Analysis of the limiting distribution of Eq. (5) by choosing a large number of initial conditions randomly from 
the entire phase space shows that the probability distribution can be modeled as Eq. (10), where q1 ≃ 1.935 and 
q2 = q3 = 1 , as in the previous case. To explain why the second unexpected Gaussian contribution appears in the 
probability distribution, the Lyapunov color map must be analyzed in more detail. After determining the range of 
LLE values for the stability islands and extracting their initial conditions from the color map, we readjust the color 
scale of the map to distinguish the remaining behaviors in the phase space. In addition to this visual discrimi-
nation of the phase space regions, their occupation ratios can be determined. In the ( W = 2 , K = 0.1 ) system, 
initial conditions of the stability islands having � < 5.0× 10−3 LLE values are extracted from the phase space, 
as shown in Fig. 6, and phase space occupation ratios of the two chaotic seas with 3.0× 10−2 ≥ � ≥ 5.0× 10−3 
and � > 3.0× 10−2 LLE are determined as αq2 and αq3 , respectively. In Fig. 7, two strongly chaotic regimes can 
be clearly seen after extracting the stability islands (having LLE values in the range of � < 10−3 ) from the phase 
space of the ( W = 3 , K = 0.2 ) system. In this figure, there are “chaotic necklaces”located inside the archipelagos 
bounded by the surviving KAM tori which prevent the necklaces from connecting to the strongly chaotic sea. 
Even though there are a few initial conditions located inside these necklaces, and the calculated LLE values are 
much smaller compared to the LLE values of the chaotic sea, these chaotic necklaces are statistically significant 
as can be understood from the probability distribution obtained. For this scenario, the phase space occupation 
ratios of the stability islands αq1 , strongly chaotic sea αq2 and chaotic necklaces αq3 are determined from the 
Lyapunov color map by detecting the constant number of initial condition ratios that present LLE values lying 
in the ranges � < 10−3 , 6.5× 10−3 ≥ � ≥ 10−3 and � > 6.5× 10−3 , respectively. For the ( W = 2 , K = 0.4 ) 
system, a similar chaotic necklace structure can be observed in the LLE color map given in Fig. 8, where the 
stability islands with � < 2.0× 10−3 LLE magnitudes are extracted, but with a smaller occupation ratio com-
pared to the ( W = 3 , K = 0.2 ) system. In this system, chaotic necklaces have LLE values lying in the range of 
1.1× 10−1 ≥ � ≥ 2.0× 10−3 , and the strongly chaotic sea trajectories exhibit the divergence of the nearby 
trajectories with LLE values � > 1.1× 10−1 . Again, αq2 and αq3 are the phase space occupation ratios of the 
strongly chaotic sea and chaotic necklaces, respectively. A similar chaotic necklace structure embedded inside 
archipelagos can be observed in Fig. 9, shown for the ( W = 2 , K = 0.6 ) scenario. The Gaussian with larger width 

(10)P(y) = αq1Pq1(y;µq1 , σq1)+ αq2Pq2(y;µq2 , σq2)+ αq3Pq3(y;µq3 , σq3)
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Figure 6.   Discrimination of chaotic regions with different chaoticities that contribute two Gaussians to the 
probability distribution in the ( W = 2 , K = 0.1 ) system.
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Figure 7.   Discrimination of chaotic regions with different chaoticities that contribute two Gaussians to the 
probability distribution in the ( W = 3 , K = 0.2 ) system.

Figure 8.   Discrimination of chaotic regions with different chaoticities that contribute two Gaussians to the 
probability distribution in the ( W = 2 , K = 0.4 ) system.

Figure 9.   Discrimination of chaotic regions with different chaoticities that contribute two Gaussians to the 
probability distribution in the ( W = 2 , K = 0.6 ) system.
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arises from the initial conditions located inside the chaotic sea and the αq2 contribution ratio of this distribution 
to Eq. (10) is equal to the phase space occupation ratio of the chaotic sea determined via � > 1.5× 10−2 LLE 
value range, as expected. LLE values of the initial conditions belonging to the chaotic necklaces that lie between 
1.5× 10−2 ≥ � ≥ 1.5× 10−3 , and the phase space occupation ratio of these initial conditions is equal to the 
contribution ratio αq3 of one of the two Gaussians in Eq. (10) for the limiting probability distribution. Observation 
of the three-component probability distribution was also made on the other generalized version of the standard 
map, namely the z-generalized standard map24, where the sine function is modified with an integer z generali-
zation term. For both generalizations, phase spaces contain stability islands and two chaotic seas with different 
chaoticities and Eq. (10) successfully models the limiting probability distribution of the entire phase space. As the 
three-component probability distribution and the phase spaces giving rise to this distribution are newly observed 
in the literature, to the best of our knowledge, a more interesting observation is made on the ( W = 3 , K = 0.1 ) 
system.The phase space is occupied by the stability islands and three chaotic seas with different chaoticities that 
can be clearly seen in the set of graphs of this system given in Fig. 2. Phase space occupation ratios of these regions 
are determined from the Lyapunov color map by detecting the ranges of LLE values where the number of initial 
conditions remains constant. LLE ranges of different chaotic regions, with decreasing chaoticity, are detected as 
� ≥ 8.0× 10−2 , 8.0× 10−2 > � ≥ 5.0× 10−2 , 5.0× 10−2 > � ≥ 3.0× 10−3 and initial conditions that are placed 
in stability islands have LLE values in the range of � < 3.0× 10−3 . In line with the different regimes observed 
in the phase of the system, the probability distribution that characterizes the whole space is modeled as a linear 
combination of a q-Gaussian and three Gaussian functions with different widths and given as

where q1 ≃ 1.935 and q2 = q3 = q4 = 1 . The αq contribution ratios of these functions are equal to the phase space 
occupation ratios determined for the regimes given above and increasing subscripts of q indices are assigned to 
the chaotic seas with decreasing occupancy and chaoticity.

The obtained parameter values of the probability distributions of the aforementioned group are provided in 
Tables 1, 2, 3, and 4. Here, the Bq widths are determined numerically using the probability distributions of the 
each component of Eqs. (10) and (11). For the systems that exhibit stability islands (weakly chaotic) and strongly 
chaotic behavior in the phase space, we see that a q-Gaussian with q ≃ 1.935 is obtained for the initial conditions 
selected from the stability islands, and even for the large number of iteration steps, this limit behavior is as robust 
as the Gaussian distribution that originated from the chaotic trajectories.

As the probability distributions of the previous systems are remarkable from both statistical mechanical and 
chaos theory viewpoints, we encounter a more interesting situation, which was also observed in analyses of the 
z-generalized standard map24, for the ( W = 3 , K = 0.4 ) and ( W = 3 , K = 0.6 ) cases in Figs. 4 and 5, respectively. 
Even though the phase space is occupied by a strongly chaotic sea and several stability islands, the probability 
distribution of the whole system is modeled by Eq. (10) again, but with two different q-Gaussians and a Gaussian 
this time, namely q1 = 1.935 , q2 = 1.45 and q3 = 1 for ( W = 3 , K = 0.4 ), and q1 = 1.935 , q2 = 1.5 and q3 = 1 
for ( W = 3 , K = 0.6 ). Analogously with the previous scenarios, the q-Gaussian with q ≃ 1.935 is obtained for 
the initial conditions chosen from the stability islands, and the αq1 phase space occupation ratio is determined 
via the Lyapunov color map with the LLE value range � ≤ 10−3 . Despite the analogy for the limiting behavior 
of the stability islands, we cannot explain the unexpected second q-Gaussians observed in these two systems 
in the same way that we explain the second Gaussian in the systems of the first group using Lyapunov color 
maps. Since the second Gaussians in these systems arise from the chaotic necklaces that we can distinguish 
as discussed above, in the present case we need to find out how this second q-Gaussian distribution arises. In 
the latter part of this paper, analyses on the ( W = 3 , K = 0.6 ) are given, but it should be noted that the same 
analyses and observations are also made for the ( W = 3 , K = 0.4 ) system, and they are all consistent with that 
of the z-generalized standard map24.

After detecting the phase space region that is responsible for the q-Gaussian with the q = 1.935 contribution 
to the Eq. (10) and extracting this region from the phase space, only the chaotic sea presenting the largely posi-
tive LLE is left in the phase space. Thus, the Gaussian and q-Gaussian distributions originated from the initial 
conditions located in the chaotic sea. We can conclude from the observations of the previous cases and recent 
works1,3–7 that the Gaussian distribution arises from the initial conditions whose trajectories ergodically wander 
through the allowed energy region. As the Lyapunov color map does not provide any clue for the occurrence of 
the second q-Gaussian, we must analyze the behavior of the system in detail to clarify this observation.

In recent years it has been shown for several systems that breakdown of ergodicity and a special type of cor-
relation are needed together for the appearance of the q-Gaussians. Correlations among the iterates inside the 
chaotic bands of the band-splitting structure that approaches the chaos threshold of the dissipative logistic map 
via the Huberman-Rudnick scaling law become stronger and the obtained probability distribution seems to 
converge to a q-Gaussian as this critical point is approached4,45. At this marginal point, the system is not ergodic 
or mixing. The iterates inside the nonergodic stability islands of the area-preserving maps display similar cor-
relation behavior with those of the iterates inside the chaotic bands of the logistic map and requirements for the 
appearance of the q-Gaussians are fulfilled. It is also important to note here that in the strongly chaotic regime, 
the iterates of both systems wander through the phase space ergodically and exhibit uncorrelated behavior. Thus, 
Gaussians are the appropriate distributions for the limiting behaviors of strongly chaotic systems. If we take 
into account all of these factors, the unexpected q-Gaussian with q = 1.5 should be understood as arising from 
the chaotic trajectories which behave differently compared to the regular chaotic trajectories. When we look at 
the phase space of the present system in more detail, we see that strongly sticky chaotic regions occur around 
the archipelagos. As the original standard map and other investigated cases do not exhibit such strong sticky 
behavior in the phase space, resonances occurring in this unique system might be the cause of the complicated 

(11)P(y) = αq1Pq1(y;µq1 , σq1)+ αq2Pq2(y;µq2 , σq2)+ αq3Pq3(y;µq3 , σq3)+ αq4Pq4 (y;µq4 , σq4 )
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tangle structures which are not observed in previous cases. The homoclinic-heteroclinic tangles are created by 
complex organizations of in-sets and out-sets of the hyperbolic points18 and we see that for the present case 
these tangles stick around the stability islands arising around the elliptic points located between the hyperbolic 
points. As KAM tori dissolve, the elliptic-hyperbolic point series exhibits specific periodicity which is related to 
the winding number of the dissolved torus. This structure surrounds the remaining stability islands and creates 
archipelagos in the phase space. For the ( W = 3 , K = 0.6 ) system, sticky regions occur around the archipelago 
which is divided into four pieces due to the modulo taken for the variables of the map. This archipelago actually 
develops around the identical ( x = 0 , p = 0 ), ( x = 0 , p = 2π ), ( x = 2π , p = 0 ), ( x = 2π , p = 2π ) period-1 
elliptic point. Even though these sticky regions are connected to the strongly chaotic sea, from our observations 
we see that a trajectory starting from an initial condition located inside one of these sticky regions shows a 
tendency to cover the entire sticky region before escaping into the chaotic sea. As the sticky region trajectories 
escape into the chaotic sea after unpredictable iteration steps, the chaotic trajectories originating from the 
chaotic sea should eventually infiltrate the sticky regions, considering the fact that the chaotic sea is actually 
an equal energy region of the Hamiltonian of the standard map. In order to visualize this chaotic trajectory 
behavior, we utilize the Euclidean distance between two initially neighbor trajectories. In Figs. 10 and 11, we 
plot the Euclidean distance as a function of iteration step for initial conditions ( x = 3.86735 , p = 6.22683 ) and 
( x = 3 , p = 3 ) to make comparison, respectively. For each case, the initial distance between the neighboring 

Figure 10.   (a) Euclidean distance in the phase space between initially neighboring trajectories selected from 
the chaotic sea of the ( W = 3 , K = 0.6 ) system as a function of iteration step. The initial condition used here 
is x = 3.86735 and p = 6.22683 . (b) and (c) Observed gaps indicate that the trajectory enters into the sticky 
region.

Figure 11.   (a–c) Euclidean distance in the phase space between initially neighboring trajectories selected from 
the chaotic sea of the ( W = 3 , K = 0.6 ) system as a function of iteration step. The initial condition used here is 
x = 3 and p = 3.
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points is set as �(0)
x = �

(0)
p = 10−8 and the system is iterated T = 5× 106 times, which is even larger than the 

number of iteration steps used in our probability distribution analyses, starting from these initial conditions. 
As it can be seen from Fig. 10, while the trajectory is evolving in the chaotic sea by presenting large d values, it 
enters into the sticky regions several times after unpredictable iteration steps. In this figure, the distance values 
decrease abruptly by creating gaps, indicating that the trajectory is wandering in the confined sticky region and 
covering it. Even though the distance values are small, initially neighboring trajectories diverge exponentially in 
sticky regions as expected from the chaotic trajectories. On the other hand, distance values given in Fig. 11 do 
not exhibit decrement gaps and trajectory wanders through the chaotic sea without entering into sticky regions 
during iteration steps used in the calculation. When we look at the Lyapunov color map given in Fig. 5 for the 
present system, we see that initial conditions located inside sticky regions and the chaotic sea exhibit similar 
LLE values. Even though the Euclidean distances are very small while the trajectory is in the sticky regions, 
large distance values originating from the trajectory movement in the chaotic sea repress the contribution of the 
smaller distance values in the summation of logarithmic functions in Eq. (4) and we obtain largely positive LLE 
values. This observation does not indicate that the calculation is incorrect or that some dynamics are ignored. 
For Lyapunov exponent calculation in the theory of nonlinear dynamics, making long-term observations for 
a trajectory instead of short-term observations, and obtaining the exponential value which characterizes the 
long-term behavior of the trajectory is an accurate calculation18. By comparing these figures, we conclude that 
whereas some trajectories may enter into the sticky regions and stay in there for many iteration steps, other tra-
jectories may not visit these regions at all during the observation time. These two different trajectory behaviors 
might be a good explanation for the two distributions obtained in the limiting behavior analyses, i.e., Gaussian 
and q-Gaussian with q = 1.5 . Chaotic trajectories which wander through the chaotic sea without entering into 
the sticky regions exhibit exponential divergence of initially nearby trajectories with large LLE values, and they 
spread into the chaotic sea with apparently random behavior indicating the mixing property. The Gaussian 
distribution obtained from the initial conditions located inside the chaotic sea of the present system is thought 
to originate from these trajectories. On the other hand, when the trajectory enters into the sticky region, it fol-
lows a similar phase space path to that of the archipelago while it is covering the sticky region. As the sticky 
region surrounds the archipelago and stability islands, it exhibits similar spreading behavior in the phase space 
to that of the archipelago due to the tangle structure mentioned above. While a chaotic trajectory is covering the 
sticky region, it does not spread into the most of the allowed energy region for many iteration steps and it also 
does not exhibit apparently random behavior like the regular chaotic trajectories present. By considering this 
spreading behavior, we can conclude that chaotic trajectories which enter into the sticky regions will not exhibit 
mixing property during the iteration process. One last important issue to note here is that, for an infinitely long 
time (number of iterations), each chaotic trajectory will eventually cover the entire allowed region. However, if 
we consider the computation limits in simulations of real world systems, this limit cannot be reached and the 
number of iteration steps used in this paper is reasonable for characterizing the limiting behavior as shown in 
previous papers5–7. As a consequence of the lack of the mixing property, these trajectories can be related to the 
observed unexpected q-Gaussian for the present case. At this point, it is worth mentioning that stickiness and 
detection of sticky regions have already been studied in the literature intensively46–48.

Focusing on the chaotic trajectory spreading behavior in the sticky regions and considering the second 
requirement for the appearance of the q-Gaussians, we can investigate correlations among the iterates of a 
trajectory. At this stage, we investigate the correlations among iterates by regarding trajectories as time series. 
We use the auto-correlation function rκ in order to analyze whether the data of a time series is correlated. This 
function is defined as

where �y� = T−1
∑T

i=1 yi is the mean, T is the total number of data points of the time series and κ is the time lag44. 
The data of the time series is said to be correlated if rκ  = 0 and not correlated if rκ = 0 for κ ≥ 1 . For the present 
scenario, time series are created starting from numerous initial conditions chosen from the chaotic sea by using 
the same T = 222 used in the computation of probability distributions. As large numbers of initial conditions 
are chosen randomly from the chaotic sea, we also choose a few initial conditions located in the stability islands 
in order to be able to make comparisons and provide an example of the suggested correlated behavior among 
iterates located in the stability islands in Ref.5. By considering calculation times and the time required to analyze 
each time series, we decided to use κ = 106 as an upper limit for the time lag. As a result of the analyses, it was 
observed that there are three cases that can be observed for auto-correlation functions of the times series of the 
initial conditions selected from the phase space of the ( W = 3 , K = 0.6 ) system and results are given in Fig. 12. 
From this figure it can be seen that the green curve, obtained for the time series starting from ( x = 5.800745 . . . , 
p = 5.980580 . . . ), located in a stability island, oscillates around zero with very large fluctuations, indicating 
the correlated nature of the data. Moreover, the black curve immediately decreases to zero and oscillates in 
the vicinity of zero, as a consequence of uncorrelated data. This curve is computed for the time series obtained 
from the iteration of the ( x = 6.275676 . . . , p = 6.104209 . . . ) initial condition located in the chaotic sea. Green 
and black signals exhibit oscillating behavior similar to that of the auto-correlation functions calculated for the 
iterates of the logistic map and for the white noise in Ref.4, respectively. Whereas the behavior of the black auto-
correlation function is understandable if we consider the apparently random behavior of the strongly chaotic 
trajectory18, the red auto-correlation function presents unexpected behavior for a chaotic trajectory. It oscillates 
around zero with large fluctuations that are significantly larger than those of the black curve and smaller than 
those of the green curve. This auto-correlation function behavior indicates that the data of the time series used in 

(12)rκ =
T−κ
∑

i=1

(yi − �y�)(yi+κ − �y�)
∑T

i=1(yi − �y�)2
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the computation is correlated. The initial condition ( x = 5.815235 . . . , p = 5.523288 . . . ), for which red-colored 
auto-correlation function is obtained, is located inside the sticky region. As the whole chaotic sea is an allowed 
energy surface created by dissolution of the stability islands arising due to the increment of the nonintegrability 
of the system, these sticky regions are also a part of this chaotic sea. A chaotic trajectory of the chaotic sea has to 
visit sticky regions as the system evolves in time, and that trajectory will enter sticky regions and escape back to 
the chaotic sea. As we see from the auto-correlation functions, however, some trajectories which arise in sticky 
regions may exhibit correlations which are weaker than those in the stability islands and stronger than those 
of the regular chaotic trajectories. The observed correlated nature of the chaotic trajectories is significant from 
both the theory of nonlinear dynamics and the statistical mechanical viewpoints. Here we suggest that these 
three kinds of auto-correlation functions might be directly related to the three-component probability distribu-
tion obtained for the ( W = 3 , K = 0.6 ) system. Together with their phase space behavior mentioned above, 
the initial conditions give rise to green, red and black signals with decreasing correlations, and those might be 
responsible for the q1 = 1.935 , q2 = 1.5 and q3 = 1 distributions in Eq. (10), respectively. In other words, the 
stronger correlation property is related to the larger q value for the present system. As the contribution of the 
q1 = 1.935 distribution is also verified via the phase space occupation ratio detected from the Lyapunov color 
map, we are able to determine the contribution ratios of the other two distributions numerically only by using 
the obtained probability distribution as a consequence of the unpredictable phase space behavior of the chaotic 
trajectories of the present system.

Discussion
The results obtained in this paper have great potential importance in diverse fields of physics and also in Hamilto-
nian chaos theory investigations by considering the examples given in the “Introduction” section for the original 
standard map. The present modification of the standard map enables us to create unique area-preserving maps 
derived from the Hamiltonian with multiple-well potential. For each scenario analyzed in this paper, a q-Gaussian 
distribution with q ≃ 1.935 is obtained for initial conditions chosen from the stability islands. Together with 
the results of the recent papers6,7, observations made for the generalized standard map can be considered as an 
indication of the robustness of this specific q-Gaussian for the stability islands of the area-preserving maps. Even 
for the large number of iteration steps used in our simulations, this limiting behavior is maintained together 
with those of the other distributions, as can be understood from the obtained linear combination form for the 
probability distributions. As these probability distributions describe the entire system, which consists of differ-
ent behavior regions with different phase space occupation ratios for each case, we also observe effects of the 
generalization made for the standard map. In some scenarios, the second and even third chaotic region occurs 
together with strongly chaotic sea and stability islands. For these cases, the limiting probability distribution is 
obtained as a linear combination of a q-Gaussian with q ≃ 1.935 and Gaussians with different widths that are 
related to the number of regions in the phase space. Since this multi-component probability distribution can be 
understood by considering different behavior regions, we encounter a complicated limit behavior for the ( W = 3 , 
K = 0.4 ) and ( W = 3 , K = 0.6 ) systems which exhibit strong sticky regions. For these cases, the sticky regions 
that occur around archipelagos cause chaotic trajectories to behave in a different way from that expected for the 
regular chaotic trajectories. As chaotic trajectories starting from sticky regions may not spread into the allowed 
energy surface apparently randomly during iteration process used in limiting distribution analyses, these chaotic 
trajectories also exhibit a correlated nature. These revealed properties of the sticky region chaotic trajectories are 
thought to be directly related to the obtained q-Gaussian with q = 1.5 in the above-mentioned system. Even if 
the probability distribution of the sticky region chaotic trajectories should converge to a Gaussian in the limit of 
infinite time, considering the unreachability of this limit in numerical calculations or in physical applications, 
one can conclude that this observation should be valid not only for the present case also for other area-preserving 
maps that exhibit such strong sticky behavior in their phase spaces.
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Figure 12.   Auto-correlation functions of data points obtained for initial conditions selected from the stability 
island (green) and the chaotic sea (red and black) of the ( W = 3 , K = 0.6 ) system.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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