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Detecting sleep outside the clinic 
using wearable heart rate devices
Ignacio Perez‑Pozuelo1,2,6*, Marius Posa3,6, Dimitris Spathis4, Kate Westgate1, 
Nicholas Wareham1, Cecilia Mascolo4, Søren Brage1 & Joao Palotti5,6*

The adoption of multisensor wearables presents the opportunity of longitudinal monitoring of sleep 
in large populations. Personalized yet device-agnostic algorithms can sidestep laborious human 
annotations and objectify cross-cohort comparisons. We developed and tested a heart rate-based 
algorithm that captures inter- and intra-individual sleep differences in free-living conditions and 
does not require human input. We evaluated it on four study cohorts using different research- 
and consumer-grade devices for over 2000 nights. Recording periods included both 24 h free-
living and conventional lab-based night-only data. We compared our optimized method against 
polysomnography, sleep diaries and sleep periods produced through a state-of-the-art acceleration 
based method. Against sleep diaries, the algorithm yielded a mean squared error of 0.04–0.06 and 
a total sleep time (TST) deviation of −2.70 (± 5.74) and 12.80 (± 3.89) minutes, respectively. When 
evaluated with PSG lab studies, the MSE ranged between 0.06 and 0.11 yielding a time deviation 
between −29.07 and −55.04 minutes. These results showcase the value of this open-source, device-
agnostic algorithm for the reliable inference of sleep in free-living conditions and in the absence of 
annotations.

Human sleep is a reversible physiological state that is essential for health and performance1. Its functions are not 
fully understood, despite extensive studies on its its influence on energy homeostasis, immune function, cogni-
tive performance and behaviour2–10. As such, sleep lies at the cross-roads of multiple research programs in both 
life sciences and public health. This makes the objective monitoring of sleep crucial for understanding human 
health. Apart from outright sleep disorders, sleep patterns impact the quality of life and history of common 
diseases, whether cardiovascular, metabolic or neurodegenerative. The gold-standard method for quantifying 
sleep quantity and quality is polysomnography (PSG). PSG requires signals from multiple sensors, as well as 
expert input and is thus limited to the laboratory. This has limited large-scale and long-term population stud-
ies. Furthermore, the unfamiliar laboratory environment might not favor the patients’ typical sleep pattern11.

Actigraphy is an established and popular alternative to PSG. It originates in early telemetric measurements 
of motor activity in the 1970s which were used to assess sleep quality12. Since then, many studies have assessed 
actigraphy against PSG13–15. The advantage over PSG is that actigraphy, and modern counterpart, accelerometry, 
require sensors amenable to affordable wrist-worn devices13,16. At present, the use of actigraphy in healthy sleep-
ers is approved by both the FDA and recommended by the American Academy of Sleep Medicine (AASM)14.

Over the past 30 years, several actigraphy-based algorithms have been developed to detect night-time sleep 
and wake periods. Some have proved to have strong validity and reliability against PSG17–22. These algorithms 
have been widely adopted and were recently bench-marked against both each other and newer machine learning 
and deep learning methods23–26. Actigraphy often struggles to classify wake events during the sleep period, yield-
ing poor specificity compared to PSG16,21,23,27,28. Additionally, actigraphy algorithms have only been optimised to 
detect sleep at night, as study participants typically spend one or two nights in the laboratory. Using them with 
data recorded over the entire day is unreliable, even with sleep annotations provided by PSG technicians or the 
subjects themselves29,30. This limitation extended to proprietary algorithms used by commercial wearables. In 
addition, actigraphy devices do not provide real-time feedback about the user’s sleep, which hinders longitudinal 
monitoring. The result is that unconventional sleep patterns (eg. due to shift work) have been understudied.

Novel wearables add photoplethysmography (PPG)-derived heart rate to the accelerometry signal. These 
multimodal devices rely on recent advances in microelectromechanical systems (MEMS) along with improve-
ments in cost, battery capacity, and memory, allowing for higher sensor sampling rates. The widespread adoption 

OPEN

1MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK. 2The Alan Turing 
Institute, London, UK. 3School of Clinical Medicine, University of Cambridge, Cambridge, UK. 4Department 
of Computer Science and Technology, University of Cambridge, Cambridge, UK. 5Qatar Computing Research 
Institute, Hamad Bin Khalifa University, Doha, Qatar. 6These authors contributed equally: Ignacio Perez-Pozuelo, 
Marius Posa and Joao Palotti. *email: ip325@cam.ac.uk; jpalotti@hbku.edu.qa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11792-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7956  | https://doi.org/10.1038/s41598-022-11792-7

www.nature.com/scientificreports/

of these devices for both research and commercial use promises robust inferences about the user’s sleep/wake 
periods. To this end, large investments have been made both by companies providing personal health monitoring 
and through research grants for programs such as “All of US”31. The increased attention has made paramount the 
need for validation against PSG32, given some have recently even claimed to label sleep stages33,34. Furthermore, 
incorporating heart rate (HR) and heart rate variability (HRV) connects sleep algorithms directly with the car-
diovascular fitness predictors that many studies focus on24,35,36.

Whilst valuable, these approaches have limited generalizability due to three reasons: first, lack of domain 
adaptation between different datasets used to train the models; second, lack of data recorded beyond night-time37. 
Finally, they rely on self-reported sleep (through diaries or questionnaires), which is prone to recall bias38,39. Even 
with regular sleepers taking careful diaries, it can take more than 6 recorded nights to match the diaries with 
objective labels40. This period is close to usual study lengths, which are limited by device battery life. Sidestep-
ping laborious annotations would encourage adoption by more users over a longer time, providing abundant 
and cheaper data for further improving inference algorithms.

Our sleep detection algorithm leverages heart rate data available from most commercial and research-grade 
wearable devices. The algorithm is device-agnostic and matches the quantitative sleep/wake inferences offered 
by previous methods. We validated it against four datasets where heart rate data was recorded together with 
multiple PSG-grade sensors or actigraphy. As our algorithm does not, unlike machine learning models, require 
training before deployment, it can run on the device independently of cloud computing. This preserves user 
privacy, a paramount concern for health data. The algorithm was first developed in a large population (n=193) 
with about 8 recorded nights accompanied by detailed sleep diaries. This cohort wore a combined heart rate and 
movement sensor, in addition to a set of 3 accelerometers on both wrists and hip. This provided the additional 
opportunity to benchmark against previous algorithms relying on accelerometer angle changes. Data from mul-
tiple consecutive days and nights facilitated testing for inter- and intra-individual variability (i.e., sleep statistics 
across the entire cohort or across each participant’s sleep windows). We then assessed our method in a larger, 
more diverse, open-source dataset (n=1,743), as well as a smaller cohort (n=31) that used a commercial-grade 
device (Apple Watch) during PSG. Finally, performance in free-living conditions was tested against sleep diaries 
in a cohort (n=22) wearing accelerometer/heart rate sensor.

Methods
Data sources and processing.  In this study we used four different data sources with a variety of devices 
and populations to showcase the performance of our proposed method. Table 1 summarizes the types of wear-
able devices and ground truth used in each one of the studies. We describe the detailed data processing used in 
each one of these datasets in the supplementary material. The study was carried out in accordance with relevant 
guidelines and regulations. Note that MESA41–43, Apple Watch PhysioNet33 and MMASH44 are publicly available 
datasets (see detailed on supplementary material) while BBVS45 is restricted. No identifying participant informa-
tion was available to the authors of this study.

Algorithm to estimate the sleep window using heart rate.  Several challenges must be accounted for 
when developing a method for the detection of sleep in free-living conditions. First and foremost, most methods 
derived for sleep-wake classification using wearable devices have been derived on and for use during the night 
period17,19,20,23,33. These approaches were mostly conducted in small studies using concurrent PSG and as such, 
their application during the full day period greatly compromises the quality of the results. They also tend to be 
optimized in small, non-diverse populations, comprising their generalizability to other cohorts. Moreover, they 
tend to be device and make specific, often requiring conversions into arbitrary activity intensity measures or 
counts. Finally, most algorithms that can be applied during the 24 hour period require sleep diaries or question-
naires for guidance, which are often biased and burdensome to obtain46.

Here we introduce a simple approach to estimate sleep window leveraging the HR sensing capabilities that 
most modern wearables have. One of the major challenges presented by large cohort studies is inter-individual 
differences. For instance, individuals who are fitter, tend to have lower resting heart rates than those who are 
not as fit47. Hence, an approach that relies on HR signals should not follow a one size fits all, but rather adapt to 
each individuals’ own heart rate profiles. To account for these considerations, we use the empirical cumulative 
distribution function (ECDF) of each individual’s daily heart rate profile. This function, F(x), is the probability 
that for each individual their heart rate takes a value x such that:

Table 1.   Summary of population size and devices used in the different datasets.

Study # Participants Sensor type Wearable device make PSG Sleep Diary

Biobank validation study 158 Triaxial accelerometer (3) Wearable ECG AX3, Axivity (Newcastle,UK) Actiheart, 
CamNtech (Cambridge,UK) �

Multi-ethnic study of atherosclerosis 1154 Actigraphy monitor ECG Actiwatch Spectrum, Philips Respironics 
(PA,USA) � �

PhysioNet apple watch 22 Triaxial accelerometer Heart rate sensor 
(PPG) Apple Watch (Series 2,3), Apple (CA, USA) �

Multilevel monitoring of activity and sleep in 
healthy people 20 Triaxial accelerometer Heart rate sensor

ActiGraph wGT3X-BT, ActiGraph LLC 
(FL,USA) Polar H7, Polar Electro Inc 
(NY,USA)

�
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for every sequence i = 1, ..., n . Namely, F(x) is the probability of the event {Xi ≤ x} . In this case, x is a threshold 
heart rate value (in beats per minute). To estimate the probability of a given event, we turn to the ratio of such 
an event given an individual’s daily sample of heart rates. This results in:

as the estimator of F(x), that is the ratio of HR less than x, where I() is the indicator function.
Thus, for every x, we can use such quantity as an estimator, so the estimator of the cumulative distribution 

function, F(x) is F̂(x) , which is referred to as the empirical cumulative distribution function.
By using the HR cumulative distribution function for each participant and each day of recording, our method 

accounts for inter- and intra-individual variation. It can adjust to different levels of fitness which often result in 
different resting HR during sleep47. Further, an elevated resting heart rate (RHR) accompanied by a fever is a 
well-known response to infection48, alcohol consumption49, stress50 and can even be used to monitor influenza-
like illness51, something that our approach would account for. The method contains no in-built assumption 
of absolute time for the sleep window, and can therefore be used in night shift-workers and non-monophasic 
sleepers (those whose have more than one principal sleep windows in a 24-hour period) where the circadian 
HR rhythm is shifted so that most of the lower HR values still occur during sleep independent of the absolute 
time window when their sleep takes place. An example of our method applied to a shift worker can be observed 
in Supplementary Fig. S1.

The first step of our heart rate sleep algorithm involves pre-processing the time series by assigning binary 
wake/sleep labels whenever the participant’s heart rate dips above/below a specific quantile threshold (Q). 
The threshold value is calculated from the ECDF over 24-hour windows arbitrarily starting at 15:00 each day. 
Figure 1 showcases this cutoff for the full BBVS population based on two intervals (full day and from 21:00 to 
11:00, a conventional night).

Wake/Sleep labels are then smoothed with a 5-minute rolling median and the length of their sequences is 
calculated. Sequences of sleep labels that are longer than a minimum length (L) are extracted and merged with 
other sleep sequences if their gap length (G) is smaller than a pre-defined value. We study the behavior of the 
parameters Q, L and G for each dataset with the goal of finding the best possible combination.

To be eligible as part of the final sleep window, the sleep sequence must not be preceded by more than 90 
minutes of wake in the previous 4 hours of recording. The limits of the merged sleep sequences then guide a 
search (in a window starting 240 minutes before and 60 minutes after) for epochs with high HR volatility. This 
HR volatility threshold is defined as a rolling 10-minute standard deviation of the HR signal of 6 beats per min-
ute. Defining the final sleep window limits as the last, and first high volatility epochs for sleep onset and offset, 

(1)F(x) = P(Xi ≤ x),

(2)F̂n(x) =
number of Xi ≤ x

total number of observations
=

∑n
i=1 I(Xi ≤ x)

n
=

1

n

i=1∑

n

I(Xi ≤ x)

Figure 1.   Cumulative distribution function for BBVS heart rates. The figure shows the HR ECDF for the full-
day across all participants and all days, where the yellow dotted line shows the 0.35 HR quantile cutoff. Each 
individual line represents one participant for one day of recording.
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respectively, is meant to increase the algorithm’s sensitivity at discriminating sedentary time just before or after 
sleep (e.g., reading in bed) from the sleep window itself.

Finally, the algorithm also labels naps and awakenings, but these were not used in the analysis of the present 
datasets. Naps are the initial sleep sequences that lie outside a buffer 180-minute window either side of the main 
sleep window. For awakenings, the algorithm labels all the epochs when the HR rises above a quantile threshold 
AV extracted from the daytime (8am - 10pm) HR ECDF. From these only the sequences longer than 5 minutes 
are kept and then the sequences separated by less than 5 minutes of sleep are merged and then labeled as the 
final awakenings.

Pseudocode for the approach is provided in the Supplementary Material Algorithm 1. A visual overview of the 
algorithm is provided in Figs. 2 and 3 showcases the application of the algorithm to a random participant trace.

Evaluation of the proposed approach.  We used the four previously described cohorts to evaluate our 
method against gold-standard measures of sleep using PSG (MESA, Apple Watch PhysioNet) and detailed silver-
standard measures through sleep diaries, as opposed to habitual sleep diaries which could be subject to recall 
bias (BBVS, MMASH). Although an ideal experimental protocol would have multiple days of PSG and free-

Figure 2.   Heart rate sleep algorithm description. The approach can be broken down into three distinct steps. 
The first step, involves obtaining the wearable sensor HR data, pre-processing that data and setting initial sleep 
blocks through ECDF quantile thresholds Q. Blocks longer than L minutes are kept and merged with other 
blocks if their gap is smaller than G minutes. We extract the limits of the resulting blocks as sleep candidate 
for sleep onset and offset. Next, rolling heart rate volatility is used to refine these candidate times by finding 
nearby periods where this volatility is high. Finally, nap and awakenings are labeled, the former coming from the 
candidate sleep blocks not included in the largest sleep window, while the latter are short periods (<60 minutes) 
within the sleep window when the heart rate exceeds the daytime threshold. A detailed description of this 
algorithm and parameters used can be found in the methods section. The icons used in this figure are licensed 
under Creative Commons by thenounproject.com.

Figure 3.   Heart rate sleep algorithm in action for a participant chosen at random. The first step involves setting 
initial sleep blocks through ECDF quantile thresholds (in this experiment, Q = .35 ). Blocks longer than L = 40 
are kept and merged if the gap between blocks is smaller than G = 60 minutes. We extract the limits of the 
resulting blocks as candidate state changes. The bottom panel highlights the use of rolling heart rate volatility to 
refine these candidate times by finding nearby periods where this volatility is high. The resulting candidate times 
designate each day’s main sleep window.
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living wearable sensor data, detailed sleep diaries allowed us to evaluate the algorithm across more than one 
or two nights, showcasing the strength of our method at discerning both inter- and intra-individual variability.

We performed epoch by epoch evaluation on all four cohorts and derived comparisons regarding the perfor-
mance of our method with regards to total sleep time (TST), sleep onset and sleep offset time.

Evaluation metrics.  The following metrics were used to evaluate against the ground truth in each study: differ-
ences in onset/offset/total sleep block duration (minutes), mean square error (MSE) and Cohen’s κ . We evalu-
ated our algorithm systematically for individual HR CDF quantiles Q ∈ [0.10, 0.95] with step size 0.025, window 
lengths L ∈ [10, 120] minutes with step size of 5 minutes, and gap between blocks G ∈ [30, 420] minutes with 
step size of 30 minutes, optimizing for MSE.

We defined MSE as:

where algo and ground_truth are the binary labels for an epoch (1 for sleep, 0 for wake) out of n epochs in each 
subject’s time series. Epoch length is specified by the different study cohorts (1 minute in BBVS, 30 seconds in 
MESA and 15 seconds in both PhysioNet Apple Watch and 5 seconds in MMASH). Thus, if the sleep windows 
found by the HR algorithm match the ground truth labels exactly, MSE = 0 . If the algorithm labels all epochs 
as wake, then MSE is the proportion of sleep in the time series according to ground truth, while if the algorithm 
and ground truth labels diverge entirely, MSE will be the sum of their sleep proportions out of the total time 
series. For all four cohorts we performed systematic parameter optimization for best MSE on the basis of quan-
tile, window length and window merge values. We also computed Cohen’s kappa, which is used to determine 
the classifier agreement with ground truth (PSG or sleep diary), relative to chance52. Cohen’s kappa is calculated 
through (po − pe)/(1− pe) , where p o stands for the percentage of observed classifications with agreement, and 
p e is the percentage of classifications from hypothetical chance agreement.

The results are represented as the mean ± 95% confidence interval around the mean. The modified Bland-
Altman technique was applied to verify the similarities between the different methods. Significant tests were 
conducted with a two-sided t-test53. All statistical analyses were performed with Python 3.8 and SciPy 1.4.1.

We have developed an open-source, python library that provides the code base for our HR method and other 
well-established techniques for the analysis of sleep and circadian rhythms using accelerometer, actigraphy and 
heart rate data. The library is called HypnosPy and can be found here: https://​github.​com/​Hypno​sPy/​Hypno​sPy/.

Finally, note that a very detail description of how the evaluation was performed for each one of the datasets 
is described in the Supplementary Material.

Results
Participant characteristics.  To develop our heart rate-based sleep inference algorithm, we started our 
optimal parameter search in a cohort (BBVS) where data was recorded for the entire day. However, benchmark-
ing was inevitable against annotated, but structurally different night-only studies (e.g. MESA) and required 
separate analyses on whole-day and night-only BBVS datasets selections. The resulting differences in the best 
parameters stem from the fact that night-time only data rarely comes from free-living conditions and requires 
separate parameter inference built into our heart-rate algorithm. The optimal parameters from the 24-hour and 
night-time BBVS analyses were then applied to the other 3 cohorts. Characteristics of cohort, evaluation and 
validation sets are summarized in Table 2.

Evaluation of the algorithm in the BBVS.  The results of the hyper-parameter search on the BBVS 
dataset are summarized in Table 3 and histograms detailing the results are shown in Figs. S2 and S3. While the 
main application of our algorithm would be on full-day data, we also experiment with night-only datasets. The 
hyper-parameters picked by the grid-search method are used in all the other experiments we report and shows 
the generalizability of our approach.

The set of hyper-parameters varies depending on the use case. For the whole day experiment, the optimal HR 
quantile threshold was 0.325, in line with the fact that we usually spend about one-third of our days sleeping. For 
the night-only experiment, both the HR quantile and the gap-merging threshold are much higher, indicating 
that the best results occurred when the algorithm prioritized a single sleep block and aimed to ignore activity 
outside this block.

(3)MSEalgo,ground_truth =
number of incorrectly labeled epochs

number of epochs
=

∑n
i=1(algoi − ground_truthi)

2

n
,

Table 2.   Summary of data set demographics.

Feature Biobank validation study (BBVS)
Multi-ethnic study of atherosclerosis 
(MESA) PhysioNet apple watch

Multilevel monitoring of activity and 
sleep in healthy people (MMASH)

Number of participants 193 2230 31 22

Age (years, mean(std)) 54.13 (6.95) 68.65 (8.91) 29.42 (8.52) 26.05 (7.12)

Percent Male 54.40 46.28 32.26 100

BMI (mean(std)) 26.21 (3.21) Not available Not recorded 23.12 (3.09)

https://github.com/HypnosPy/HypnosPy/
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The results of the evaluation on the BBVS study are summarized in Table 4. Our HR algorithm optimized 
on the full day yielded an MSE of 0.06 and estimated a TST on average 9.84 minutes longer compared to sleep 
diaries. We compared this result with the angular change approach shown in Table 5. The best performing 
wrist-worn device (non-dominant wrist) had an overestimation of 192 minutes compared to the sleep diaries. 
The results across all three accelerometers for this approach were comparable as summarized in Table 5, each 
yielding an MSE of 0.17.

Our HR model estimated sleep onset on average 8.84 minutes later than sleep diary while the angular change 
approach on the non-dominant wrist resulted in an average overestimation of 87.88 minutes. For diary-based 
sleep offset, our HR algorithm the estimation was on average 1.00 minute earlier, while for the angular change 
approach that estimation was 104.33 minutes earlier for the non-dominant wrist. Modified Bland-Altman plots 
for the HR and angle approaches against sleep diary for the BBVS cohort are presented in Fig. 4. Finally, Fig. 5 
showcases an example BBVS participant analysed with both the HR and angle change sleep algorithms.

Evaluation and fine‑tuning of the algorithm in the MESA study.  To validate the approach used on 
the BBVS cohort, we used the MESA dataset, which contains both sleep diary and PSG data. In addition, some 
MESA participants had been formally diagnosed with sleep disorders. The results are detailed in Table 6. Our 
HR-based algorithm and annotations from sleep diaries and PSG were tested against one another, resulting in 
the modified Bland-Altman plots in Fig. 6.

Results from the MESA cohort confirmed that the HR-based algorithm was non-inferior to human-annotated 
sleep. For both healthy sleepers and participants with sleep disorders, the average MSE for the PSG sleep-wake 
labels was 0.11 (versus 0.13 for sleep diaries). The superior performance of using HR was also reflected in a bet-
ter Cohen’s kappa for all three analyses. Both approaches underestimated the TST compared to PSG-derived 

Table 3.   Optimal hyper parameters extracted from a grid search on the BBVS dataset for both full-day and 
night-only data. These parameters are used accordingly on the other three datasets studied in this work.

Scenario HR quantile threshold (Q) Minimum length (L) Gap merging threshold (G)

Full Day 0.325 20 90

Night Only 0.800 20 420

Table 4.   Results of applying the HR algorithm on the BBVS dataset for both full-day and night-only data. 
Comparisons are made against sleep diaries. BBVS TST for diaries mean ± 95% CI = 7.739 ± 0.073 hours 
(464.34 ± 4.38 minutes).

Sleep parameter Metric

HR algorithm (Full day) HR algorithm (Night only)

p-value(mean ± 95% CI) Value (mean ± 95% CI)

Total sleep time

Time difference (minutes) −2.70 ± 5.74 12.80 ± 3.89 < 0.00

MSE 0.06 ± 0.00 0.04 ± 0.00 < 0.00

Cohen’s kappa 0.86 ± 0.00 0.90 ± 0.00 < 0.00

Sleep onset Time difference (minutes) −0.49 ± 5.67 −4.59 ± 3.27 0.158

Sleep offset (Wake Up) Time difference (minutes) −3.19 ± 4.80 8.20 ± 2.88 < 0.00

Table 5.   Comparison of angle algorithm performance for the BBVS dataset by the limb on which the device 
was worn. All participants wore devices on their dominant (dw) and non-dominant (ndw) wrist as well as 
on their thigh. The best performance metrics were obtained for the non-dominant wrist device, but thigh 
wearables gave the least time differences overall in terms of total sleep time (TST), sleep onset and offset. BBVS 
TST for diaries mean ± 95% CI = 7.739 ± 0.073 hours (464.34 ± 4.38 minutes).

Sleep parameter Metric

Angle change algo. 
(ndw)

Angle change algo.
(dw) p-value

Angle change algo. 
(Thigh) p-value

Value (mean ± 95% 
CI)

Value (mean ± 95% 
CI) ndw-dw

Value (mean ± 95% 
CI) ndw-thigh

Total sleep time

Time difference 
(min.) 222.64 ± 7.78 218.96 ± 7.92 0.271 214.90 ±8.08 0.048

MSE 0.16 ± 0.00 0.16 ± 0.00 0.052 0.16 ± 0.00 0.291

Cohen’s kappa 0.58 ± 0.01 0.59 ± 0.01 0.027 0.58 ± 0.01 0.650

Sleep onset Time difference 
(min.) −100.99 ± 6.63 −96.00 ± 7.01 0.167 −96.07 ± 7.85 0.250

Sleep offset (Wake 
Up)

Time difference 
(min.) 121.65 ± 7.05 122.96 ± 7.43 0.727 118.82 ± 8.11 0.501
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labels by -55.04 and -34.04 minutes, respectively for the HR algorithm and sleep diaries, a difference that was 
statistically significant. Interestingly, our algorithm was better at inferring sleep offset (-15 minutes compared to 
PSG labels, versus about -30 minutes for sleep diaries), but worse at detecting sleep onset (40 minutes, versus 6 
minutes for the sleep diary). As the MESA study only recorded night-time data, the HR quantile optimal for the 
24-hour BBVS data was not suitable. Instead, we benchmarked the MESA data against the best HR quantile for 
a night-only window of the BBVS cohort, which was 0.80. This led to an MSE of 0.11 between the HR algorithm 
and PSG sleep labels.

Validation of the algorithm in the PhysioNet apple watch polysomnography study.  Our 
algorithm was applied to data obtained from a commercial wrist-worn wearable and evaluated against gold-
standard PSG-labelled sleep. Given the presence of triaxial accelerometry, we could compare the HR- and angle 

Figure 4.   Modified Bland-Altman plot for BBVS. Modified Bland-Altman plot on the left shows the TST 
differences (delta) between the full-day HR algorithm and diary in the Y-axis and the X-axis shows the TST 
average for every participant. The figure to the right shows the same comparison for the angle algorithm and 
diaries in BBVS. Dashed lines represent limits of agreement (LoA) which are defined as the mean difference ± 
1.96 SD of differences. TST: total sleep time.

Figure 5.   Example participant (chosen at random), showcasing estimated sleep through the heart rate 
sleep window algorithm, sleep diary sleep onset and offset and angle changes for both wrists and the thigh 
accelerometers. The algorithm picks up subtle sleep regularity differences at a participant level. This approach 
overlaps more closely to the sleep diary than any of the accelerometer-based approaches. Notice that, for the 
angle change approach, the algorithm is more effective on the non-dominant wrist accelerometer than on the 
dominant wrist or thigh accelerometer for most nights. TST: total sleep time.
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change-based methods. Using the optimal parameters derived from the night-only BBVS data, the HR algorithm 
resulted in an MSE of 0.07, while the wrist-based angular change approach yielded an MSE of 0.12. TST devia-
tion was -29.07 minutes for the HR approach and 44.39 for the angle change approach. Sleep onset time devia-
tion was 20.73 minutes for the HR approach and -21.77 for the angle change approach, while the difference was 
-8.34 and 22.61 for sleep offset. However, Cohen’s kappa was slightly lower for the HR approach (0.59) than for 
the angle change algorithm (0.71). These results are summarized in Table 7.

Validation of the algorithm in the MMASH study.  Our final set of evaluations took place in the 
MMASH cohort, which included both HR and triaxial accelerometer data recorded continuously for full-day 
periods. We evaluated HR- and angle change-based algorithms against detailed sleep diaries. Starting from the 
best parameters from full day BBVS data, the HR method gave an MSE of 0.11 and TST difference of 17.64 
minutes, with a Cohen’s kappa of 0.75. As additional validation, we repeated analysis on MMASH data from the 
night period only, using the night-only BBVS best parameters, with a similar MSE result of 0.09 against sleep 
diaries. On the other hand, the angle change approach resulted in an MSE of 0.10 and Cohen’s kappa of 0.78, but 
the TST deviation was substantially worse, yielding a total sleep time difference of -55.86 minutes. Full results 

Table 6.   Results for the MESA dataset. Both the HR algorithm and sleep diaries are evaluated against PSG. 
Results are also shown for the subset of healthy participants and participants with sleep disorders. MESA TST 
for PSG mean ± 95% CI = 7.433 ± 0.079 hours (445.95 ± 4.71 minutes). N=1,154.

Sleep parameter Metric

HR algorithm Sleep diary

p-valueValue (mean ± 95% CI) Value (mean ± 95% CI)

Total sleep time

Time difference (min.) −55.04 ± 3.75 −34.04 ± 5.50 < 0.00

MSE 0.11 ± 0.01 0.13 ± 0.01 < 0.00

Cohen’s kappa 0.59 ± 0.02 0.62 ± 0.01 0.01

Sleep onset Time difference (min.) 39.72± 3.01 6.25 ± 3.30 < 0.00

Sleep offset (Wake Up) Time difference (min.) −15.32 ± 2.52 −27.79 ± 4.86 < 0.00

Healthy participants (N = 965)

Total sleep time

Time difference (min.) −56.12 ± 4.32 −36.05 ± 6.05 < 0.00

MSE 0.11 ± 0.01 0.13 ± 0.01 < 0.00

Cohen’s kappa 0.59 ± 0.02 0.62 ± 0.02 0.013

Sleep onset Time difference (min.) 40.36 ± 3.30 6.12 ± 3.64 < 0.00

Sleep offset (wake up) Time difference (min.) −15.76 ± 2.78 −29.93 ± 5.34 < 0.00

Participants with sleep disorders (N = 189)

Total sleep time

Time difference (min.) -49.51 ± 9.47 −23.75 ± 13.05 < 0.00

MSE 0.11 ± 0.01 0.13 ± 0.01 0.071

Cohen’s kappa 0.58 ± 0.04 0.60 ± 0.04 0.448

Sleep onset Time difference (min.) 36.45 ± 7.41 6.92 ± 7.82 < 0.00

Sleep offset (wake up) Time difference (min.) −13.07 ± 5.96 −16.84 ± 11.66 0.540

Figure 6.   Modified Bland-Altman plot for MESA. Modified Bland-Altman plot on the left shows the TST 
differences (delta) between the HR algorithm and PSG in the Y-axis and the X-axis shows the TST average for 
every participant. The figure to the right shows the same comparison for the sleep diaries and PSG in MESA. 
Further, healthy participants are color coded in blue for both plots and participants that were diagnosed with 
sleep disorders are shown in orange.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7956  | https://doi.org/10.1038/s41598-022-11792-7

www.nature.com/scientificreports/

for the MMASH cohort are presented in Table 8. Similar to BBVS, results of the optimal parameter search for the 
MMASH cohort can be found in the Supplementary Material Fig. S4.

Discussion
Objective and unobtrusive measurement of sleep in large, free-living populations at scale will help facilitate 
epidemiological investigations powered to explore the relationships between sleep, behavior and disease. This 
is helped by the rapid adoption of wearables. However, most commercial devices use proprietary algorithms 
or do not thoroughly validate against gold-standard measures. Similarly, conventional algorithms often rely on 
device specific metrics, such as counts, requiring extensive adaptation for each device and cohort tested, as well 
as a predefined search window through expert annotations or sleep diaries. This often renders evaluation across 
devices and without sleep diaries impractical.

We presented a device-agnostic algorithm that exploits the HR-sensing capabilities present in most modern 
wearable devices. The proposed method relies on the established changes in HR that occur when individuals 
transition from wake to sleep54. Hence, our approach is versatile over individual fitness levels or illness and 
could be used amongst those who sleep outside the night period (as explored in Fig. 3). These qualities may 
be particularly relevant when evaluating sleep in populations of shift workers, in countries where sleep timing 
changes due to seasonality or where cross-cultural sleep differences are observed55. The algorithm is also in 
theory capable of inferring naps and fragmented sleep episodes. Naps are as default defined as sleep periods 
shorter than one hour more than 3 hours apart from the main sleep window. Polyphasic sleep is accounted for 
if more than 2 sleep episodes exceed 90 minutes in length. Given the nature of the datasets used for this study, 
we could not systematically evaluate the performance of the method in naps, which is something we aim to do 
in future studies. This could improve the performance of the algorithm at detecting wake periods that occur 
during or close to sleep and allow us to include additional sleep metrics such as wake after sleep onset (WASO) 
and number of awakenings during the sleep period, which were not evaluated in this paper. This approach could 
help address and overcome the long-standing issue of low specificity for actigraphy-based sleep scoring when 
evaluated against PSG and complement studies that have attempted to achieve this by incorporating other types 
of wearable and environmental sensors.

Performance evaluation and benchmarking against state‑of‑the‑art methods.  We validated 
our HR-based algorithm using four cohorts: BBVS, MMASH, PhysioNet and MESA. Both BBVS and MMASH 
include free-living HR, movement and sleep diary data for multiple days. By contrast, PhysioNet and MESA pro-
vide lab-based HR data and gold-standard PSG. Our aim was to optimize the algorithm in the BBVS free-living 

Table 7.   Results for the PhysioNet Apple Watch dataset. The table presents results for both the HR and angle 
change algorithm for total sleep time, sleep onset and sleep offset in the PhysioNet Apple Watch dataset. 
PhysioNet Apple Watch TST for PSG mean ± 95% CI = 7.165 ± 0.544 (429.89 ± 32.65 minutes). ndw: Non-
dominant Wrist. N = 22.

Sleep parameter Metric

HR Algorithm Angle change algorithm (ndw) p-value

Value (mean ± 95% CI) Value (mean ± 95% CI) (n = 22)

Total sleep time

Time difference (minutes) −29.07 ± 13.38 44.39 ± 40.01 0.001

MSE 0.07 ± 0.03 0.12 ± 0.08 0.277

Cohen’s kappa 0.59 ± 0.12 0.71 ± 0.13 0.234

Sleep onset Time difference (minutes) 20.73 ± 5.45 −21.77 ± 29.77 0.008

Sleep offset (Wake Up) Time difference (minutes) −8.34 ± 11.98 22.61 ± 31.01 0.056

Table 8.   Results for the MMASH dataset. The table presents results for both versions of the HR algorithm and 
compares them to the angle change algorithm for total sleep time, sleep onset and sleep offset in the MMASH 
dataset. MMASH TST for diaries mean ± 95% CI = 6.200 ± 0.622 hours (371.98 ± 37.33 minutes). ndw: Non-
dominant Wrist. N = 21.

Sleep param. Metric

HR Algo. Full Day 
- HRD

Angle change Algo. 
(ndw) p-value

HR Algo. Only 
Night - HRN p-value

Value (mean ± 
95% CI)

Value (mean ± 
95% CI) (ndw - HRD)

Value (mean ± 
95% CI) (ndw - HRN)

Total sleep time

Time difference 
(min) 17.64 ± 47.78 −55.86 ± 42.67 0.009 −34.36 ± 35.24 0.366

MSE 0.11± 0.04 0.10 ± 0.04 0.487 0.09 ± 0.03 0.742

Cohen’s kappa 0.75 ± 0.10 0.78 ± 0.09 0.465 0.80 ± 0.06 0.692

Sleep onset Time difference 
(min) −39.14 ± 44.60 9.55 ± 34.87 0.127 36.00 ± 24.85 0.204

Sleep offset Time difference 
(min) −21.50 ± 33.85 −46.31 ± 31.64 0.080 1.64 ± 33.09 < 0.00
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dataset and then validate it against gold-standard measures in the other three cohorts. Through this process, we 
identified the range of parameters (Q, L, G) that produce the best results in free-living conditions, allowing for 
application and deployment in the absence of any ground truth.

For the first evaluation in the BBVS study, the method we propose performed strongly in free-living con-
ditions, with an average time deviation for TST compared to non-habitual sleep diaries of 2.70 minutes. The 
optimal parameter search used both full-day and night-only HR to analyze how the availability of sensor data 
or the design of the experiment affect the best parameter choice. The parameter search for the optimal MSE 
was performed based on quantile, window merge and window length values and is presented in Supplementary 
Fig. S2. The optimal full-day parameters for this cohort were 0.325 for quantile (Q) and 20 minutes for window 
length (L) with a time merge block of 90 minutes (G). This resulting optimal quantile makes intuitive sense as it 
represents about 8 hours, approximately the expected time spent sleeping for most individuals in a day. For the 
night-only data, the best parameters were 0.80 for the quantile, 20 minutes for the window length and a time 
merge block of 420. The higher quantile for the night period also makes sense as a lower percentage of the total 
time would have been spent in active behaviour and participants would have been more likely to be sedentary 
and supine later in the day. The MSEs against sleep diaries were comparable for night-only and full-day data (0.04 
vs. 0.06), which shows that a window-agnostic analysis does not lead to a significant loss of performance. This 
flexibility allows discovery of non-standard sleep patterns, such as biphasic sleep or daytime sleep in shift workers.

The algorithm detected self-reported sleep offset (wake up) better than sleep onset, yielding a time difference 
between 1.64 (MMASH) and -15.32 (MESA) and between -0.49 (BBVS) and 39.72 (MESA) minutes, respectively. 
These results may be affected by two factors. First, sleep diaries recording onset and offset are self-reported and 
may be inaccurate. While sleep offset is relatively straightforward to annotate as most people wake up with 
alarm clocks, the exact time of sleep onset cannot be recorded, and is prone to measurement bias, if attempted 
at the time, or recall bias, if filled in the next day. The quality of self-reported sleep may vary based on the sleep 
onset latency of each participant for each night. Second, the considerable differences in the MESA dataset are 
likely due to the experiments starting when participants were already supine in bed, yielding limited variance 
on the HR signal as opposed to other full-day datasets. Nevertheless, the method’s performance across a diverse 
population and multiple nights of recording showcases its potential for free-living applications. Supplementary 
Table S2 also evaluates the performance of the method against traditional actigraphy based methods, showcasing 
that these traditional approaches were not meant to be deployed in full-day recordings and greatly benefit from 
the inclusion of a sleeping window for guidance. This sleeping window has traditionally come from sleep diaries 
and can now be derived using the proposed HR method in the absence of these diaries.

Finally, in the BBVS cohort, we evaluated the performance of an angle change-based algorithm inspired by 
previous work29,56 leveraging the multiple accelerometers available to evaluate angle-based postural changes. 
We found this approach to be valuable, but the results were more modest than those of our method, yielding a 
total sleep time MSE of 0.16 and a time deviation of 222.64 minutes for the non-dominant wrist device. Using 
the combined pitch and roll approach versus only the z-angle did not significantly alter the results. These results 
suggest that when HR is available, it should be used preferentially, but when it is missing, triaxial accelerometry 
is a valuable secondary option.

Full‑day versus night‑only evaluation.  The algorithm was also evaluated in the MESA cohort, a large, 
diverse population where PSG was available, alongside self-reported sleep diaries. We started from the BBVS 
night-only optimized parameters, with additional segmentation into healthy and sleep disorder-diagnosed pop-
ulation subsets. This HR algorithm analysis yielded the results reported in Table 6. In MESA, the TST deviation 
versus PSG measures of sleep was -55.04 minutes and MSE of 0.11 for the full population, whereas the same 
comparison between PSG and sleep diaries yielded a total sleep time deviation of -34.04 minutes and MSE of 
0.13. This shows that our HR-based method can reliably and objectively monitor sleep in the absence of PSG and 
performs better than sleep diaries.

It is also worth noting that the HR approach was better at detecting PSG measured sleep offset (wake up) with 
a time difference versus PSG of -15.32 minutes compared to the -27.79 for the diaries. Furthermore, comparable 
results were obtained on the separate healthy and sleep disordered subgroups, suggesting our method may be 
valuable when trying to diagnose these sleep disorders or monitor the sleep of those already diagnosed. To the 
best of our knowledge, this is the first study that conducts these types of sensitivity analyses on a subset of sleep 
disorder subjects to show the validity of the proposed method in these individuals. Future work should benefit 
from a larger sleep disorder population sample with free-living data. Our method could offer additional insights 
through its ability to detect naps and daytime sleep.

We then examined the performance of the HR algorithm in the PhysioNet cohort that recorded concurrently 
Apple Watch data and a night of PSG. This experiment followed a similar protocol to that of the MESA study, 
including the use of the BBVS night-only optimal parameter benchmark. In this cohort, the HR algorithm yielded 
an MSE of 0.07 and a time-deviation of -29.07 minutes when compared to gold-standard measures of PSG sleep. 
These results showcase the photoplethysmography-derived HR’s potential for sleep inference in commercial-
grade wearables. Our approach should transfer well to other similar devices. These have been shown to be reli-
able at detecting resting and sleeping heart rate, which are critical for our method, despite being less reliable 
at higher heart rates due to activity-associated artifacts57. We also examined the angle change approach in this 
cohort, but this method performed less well than it did in BBVS, yielding an MSE of 0.12 and a TST deviation 
of 44.39 minutes.

Finally, we tested our method in the MMASH cohort, where free-living HR, movement and sleep diary data 
was available for whole days. As additional validation, we split this data into full-day and night-only subsets to 
replicate the BBVS analysis. Using BBVS-optimised parameters for these subsets, the MSEs against sleep diaries 



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7956  | https://doi.org/10.1038/s41598-022-11792-7

www.nature.com/scientificreports/

were 0.11 for the full-day and 0.09 for the night-only analyses. For the full-day data, the TST deviation was 
17.64 minutes. As a comparison, the angle change approach resulted in an MSE of 0.10 and total time deviation 
of -55.86.

The results show the HR algorithm to be versatile across datasets. Pre-derived optimal parameters can be run 
quickly on other cohorts, with the caveat of choosing appropriate full-day and night-only values, as a sleep time 
prior is built into the Q parameter. If the lowest possible MSE value is desired, then the analysis can be further 
optimized with a cohort-specific parameter search.

Further implications and future work.  One important limitation of the BBVS and MMASH studies is 
that they did not include PSG-derived ground truth sleep annotations. An ideal experimental protocol would 
have multiple days of PSG and free-living wearable sensor data, but detailed sleep diaries allowed us to evaluate 
the algorithm across more than one or two nights. This showed the usefulness of our method when both inter- 
and intra-individual variability are important. Similarly, the accelerometers included in these studies offer an 
important perspective on how methods based on postural angle changes fare against or add to our approach. In 
ideal circumstances, full-day HR would have been available in both the MESA and PhysioNet cohorts. Exposure 
of the HR algorithm to non-sedentary wake behaviour would have further optimized it. However, the results in 
these two datasets showcase the validity of our approach even under constrained laboratory conditions.

While in this work we focused on sleep onset and offset evaluation, another limitation of this paper is the 
lack of an evaluation of other important sleep quality metrics, such as WASO and number of awakenings during 
the sleep period. In future work, we will also aim to study these metrics and how to integrate our proposed HR 
algorithm with traditional sleep-wake algorithms (i.e.: Scripps-Clinic22 or Oakley58) to improve their sensibility 
to detect wake during sleep.

Future studies should explore the robustness of the HR-based algorithm in special cohorts such as inpatients. 
As the algorithm relies on HR signals already monitored continuously for other medical purposes, no additional 
accelerometer sensor would be required. Accurately labelling sleep in inpatients is challenging due to other 
factors that influence HR range and variability, such as limited mobility, fever, medication, physiological and 
psychological stress, drug and alcohol use and cardiovascular conditions. However, objectively monitoring sleep 
without additional obtrusion could help improve sleep quality during hospital stays, which is a challenge for 
most patients59, and hence promote both healing and patient satisfaction. Moreover, optimization of the angle 
change approach should be explored independently of HR and beyond those reported in van Hees et al.29, which 
we used directly. Parameter optimization could yield stronger, more generalizable outcomes for this approach. 
Finally, our method could be used in tandem with other established activity-based approaches where multimodal 
settings are available. For instance, using conditional programming, traditional methods could complement our 
HR algorithm to detect awakenings and assist in deriving conventional and novel sleep metrics.

Conclusion
Overall, our work highlights the potential of HR to detect the sleeping window not only in research and clinical 
contexts, but also in ecologically-valid free-living conditions. This frees sleep monitoring from the constraints of 
PSG and diaries without compromising its objectivity. The low effort involved in collecting and analysing inferred 
sleep data through our method, coupled with fewer exclusions due to technical errors, incomplete diaries or 
dropout would likely result in larger and more diverse study cohorts that can be monitored over longer times. 
For instance, few studies have the means to adequately test the longitudinal and synergistic association between 
sleep quality and disease. Where this has been attempted, sleep data is often collected through questionnaires60 
or after short, arbitrary follow-up periods. These studies could have missed trends that significantly influence 
health status over months or years.

To conclude, our proposed method was shown to be a valuable device-agnostic tool that can infer sleep in both 
free-living and laboratory conditions without the need for diaries. As highlighted by Depner and colleagues61, 
our evaluation could enable the translation of findings from laboratory sleep studies to large-scale cohort stud-
ies and clinical trials, by providing objective and annotation-free sleep inference valid across multiple wearable 
devices and recorded time windows.
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