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Investigating meteorological/
groundwater droughts by copula 
to study anthropogenic impacts
Sina Sadeghfam  1, Rasa Mirahmadi1, Rahman Khatibi  2*, Rasoul Mirabbasi  3 & 
Ata Allah Nadiri  4

A critical understanding of the water crisis of Lake Urmia is the driver in this paper for a basin-wide 
investigation of its Meteorological (Met) droughts and Groundwater (GW) droughts. The challenge 
is to formulate a data-driven modelling strategy capable of discerning anthropogenic impacts 
and resilience patterns through using 21-years of monthly data records. The strategy includes: (i) 
transforming recorded timeseries into Met/GW indices; (ii) extracting their drought duration and 
severity; and (iii) deriving return periods of the maximum drought event through the copula method. 
The novelty of our strategy emerges from deriving return periods for Met and GW droughts and 
discerning anthropogenic impacts on GW droughts. The results comprise return periods for Met/
GW droughts and their basin-wide spatial distributions, which are delineated into four zones. The 
information content of the results is statistically significant; and our interpretations hint at the basin 
resilience is already undermined, as evidenced by (i) subsidence problems and (ii) altering aquifers’ 
interconnectivity with watercourses. These underpin the need for a planning system yet to emerge 
for mitigating impacts and rectifying their undue damages. The results discern that aquifer depletions 
stem from mismanagement but not from Met droughts. Already, migration from the basin area is 
detectable.

The challenge for defining meteorological (Met) and groundwater (GW) droughts is topical research through the 
following approaches: (i) those based on drought indices, which refer to frequency analysis1–3; and (ii) those based 
on the balance equation4, which refers to the continuity equation alone. The first approach defines droughts as 
a deficit in water-related variables, such as precipitation or groundwater level (for wider definitions, see https://​
droug​ht.​unl.​edu/​Educa​tion/​Droug​htIn-​depth/​Types​ofDro​ught.​aspx), using Standard Precipitation Index (SPI)5 
or Standard Groundwater Index (SGI)6 but these are not capable of studying the interactions between human 
activities and drought indices. The second approach is capable of studying such interactions (see7) by using the 
mass balance equation, but they include parameters that cannot be determined readily. These parameters (such as 
aquifer recharge and natural discharge) are inherently uncertain, and as such, balance equations are not capable 
of studying variations in drought within a basin without approximations. Thus, the second approach is avoided 
in this research investigation. Yet another technique is through trend analysis in timeseries, but their applica-
tions to the basin of Lake Urmia are not reviewed here as their defensibility depends on having long records of 
data, which is not the case here.

The modelling strategy is pivotal for the novelty of the paper in terms of discerning the causes for aquifer 
depletion with possible causes comprising climate change, Met droughts, lack of an effective planning system and 
mismanagement. The key issues in the data-driven modelling strategy, depicted in Fig. 1, are now highlighted, 
in which the term maximum events is pivotal. As detailed in due course, the available sparse data comprise 
the precipitation records at 48 synoptic stations and groundwater levels at 158 observation wells, each with its 
21 years of recorded timeseries at monthly intervals. Notably, a statistical summary of the synoptic stations and 
observation wells are given in the Electronic Information Data. Following Step 3 for each of Met/GW droughts, 
SPI/SGI timeseries are generated for each station/well, which serve to generate two more timeseries of dura-
tion and severity at each station/well (Step 5). Each of the generated timeseries has a maximum value, which is 
extracted to form one more basin-wide timeseries for Met droughts and GW droughts (Step 5), and as such, the 
study forms 48 values for duration/severity for Met droughts and 158 values for GW droughts. The application 
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of Steps 5 and 6 to these data renders return periods, which are distributed over the study area using a spatial 
interpolation technique.

Met droughts are outcomes of natural processes but the role of carbon emission on Met droughts is global 
and not considered specifically here by the virtue of 21 years of data; whereas, GW droughts are impacted by 
both natural and anthropogenic factors. The impact of the Met drought on GW drought would take time, which 
should vary according to the capacity available in the aquifer but this is unknown for the aquifers in the study 
area. As the outcome of the modelling strategy is an emerging capability by putting Met droughts side-by-side of 
GW droughts, it becomes possible to ask the question that can interactions between Met/GW droughts be seen 
through data-driven modelling studies? To the best knowledge of the authors, there is no technique to investigate 
the questions, but the modelling strategy in Fig. 1 is a heuristic approach to discern anthropogenic impacts in 
terms of return periods. There is no precedence for the inter-comparison of Met/GW return periods, hence the 
learning from the results is ‘heuristic,’ as defined later.

Three techniques are used for the intercomparisons of the results: (i) visual comparisons; (ii) study relative 
differences between Met and GW return periods ((MetT-GWT)/GWT, where MetT denotes the return period of 
Met drought and GWT is that due to groundwater); and (iii) derive a ‘risk matrix’ for each aquifer depending 
on the mean of the return periods of Met/GW droughts. On a similar note, Ashraf et al. (2021) use the term 
‘anthropogenic drought” as the ratio of anthropogenic withdrawal to the total outgoing flux using the balance 
equation4. Notably, heuristics refers to a clearly defined ‘scheme of doing things’ by any credible approach (fur-
ther discussed by8).

The return periods are derived from bivariate distributions, which represent the mean time interval between 
drought events with the highest duration and severity observed in the recorded periods, where the term bivariate 
refers to duration and severity. The actual techniques are reviewed in due course but instead attention is drawn 
to delicate issues on drought studies that can be easily overlooked. By definition, a lower return period means a 
higher probability of occurrence. For floods, by definition, higher (or large) values of return periods stem from 
lower probability of occurrences, and this is generally understood to refer to adverse conditions; whereas, in 
drought studies, adverse conditions are captured by low values of return periods (higher frequencies and in plain 
language frequent droughts are adverse). Notably, drought studies set the condition to the event of the maximum 
conditions, as explained above. Thus, severe droughts are frequent droughts with maximum durations and maxi-
mum severities. Although SPI/SGI are derived individually at the synoptic stations and observation wells, the 
modelling strategy renders spatially-distributed return periods, which can be compared throughout the study 
area, and this serves as a heuristic basis for their inter-comparison. Comparing two stations with identical return 
periods does not mean identical drought events but it is the statement of the obvious that (i) Met droughts are 

Figure 1.   Modelling strategy and definition of drought duration (d) and severity (s).
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unlikely to be impacted by GW droughts in the planning periods; (ii) GW droughts are likely to be impacted by 
mismanagement and by Met droughts.

Currently, Lake Urmia undergoes an unprecedented crisis as its water level has declined severely, most of 
which took place in the living memory during 2009–2016. The literature review on Lake Urmia is presented in 
the next section but its high-level summary is that it is an outcome of multiple factors including the absence a 
planning control system and mismanagement, lack of risk-based decision-making, anthropogenic and natural 
processes. The plethora of research outputs on the decline of lake water level (see the next section) is often 
focussed on climate change and/or drought but without a due regards to the absence of a planning system and 
mismanagement. Deriving return periods for Met and GW droughts provides the basis for a novel contribution 
by the paper, which uses the basin of Lake Urmia as the pilot study for the discernment of anthropogenic impacts 
on GW droughts. The discernment is facilitated by the modelling strategy in Fig. 1 and the emerging capability 
is novel and yet to become topical.

Discussion of the findings and their implications
The results are presented in the next section but their salient findings are discussed below by interpreting them 
with respect to an identified zoning in droughts; identifying the baseline in the 1990s; evaluating the resilience 
of the basin under the current situation; relating the findings of the paper to other studies touching on policy 
issues in Iran and relating the thinking in the paper to the United Nations lead on sustainable development goals.

The heuristic zoning study to learn from return periods of Met/GW droughts, see the next section for results, 
by three approaches is based on the basic assumption that if the return period of the Met drought at a location is 
equal to that of GW drought, the location is likely to be exposed to natural agents of drought, hence groundwater 
shortages ought to stem from Met droughts. Such a location is deemed sustainable. However, if GW droughts 
are more frequent (of lower return period), this must be due to such factors as excessive water abstractions 
from aquifers and/or land use changes. Notably, land use is not under investigation in the paper, but Barideh 
and Nasimi9 demonstrate that agricultural lands in the basin of Lake Urmia have increased by 48% from 1987 
to 2013. They also provide evidence that this increase is 13% in the period of the present study (2000–2021), 
which impacts the water demand abstracted from groundwater and consequently intensifies GW droughts. The 
results presented in the next section serve as evidence to explore the bearing of Met droughts on GW droughts 
in explicit terms through identifying the following zones (see Fig. 5):

	 (i)	 Sustainable Zones the results show no zone in the basin to have the return period of GW droughts to 
be significantly equal to its Met drought. Therefore, the aquifers in the basin are all impacted but under 
varying degrees, as explored below.

	 (ii)	 Northern Aquifers these aquifers are seen to be under relatively severe Met and GW droughts, although 
their relative differences fails to expose the severity of the problem. It is a challenge to discern the bear-
ing of Met droughts and mismanagement on GW droughts in explicit terms but the challenge does not 
preclude the impacts of mismanagement.

	 (iii)	 Central Aquifers (eastern and western aquifers): these are found under relatively severe Met and GW 
droughts although their values of return period are somewhat closer to each other. The degree of severity 
suggested by relative differences in return periods of Met/GW droughts and by their risk matrices are 
somewhat divergent, in which case it is necessary to resort to the principle of precaution. Nonetheless, 
these aquifers are deemed to be reaching the biting point toward aquifer depletion, where the scope for 
mismanagement is wide.

	 (iv)	 Southern Aquifers (covering three major waterways of the basin): the situation in this zone corresponds 
to relatively moderate Met drought regimes but relatively severe GW drought regimes, which confirm 
the aquifers to be under relatively severe anthropogenic stresses by interrupting the natural regime of 
water exchanges between the aquifers and watercourses reaching irreparable damages.

The results section discusses the correlation between Met/GW return periods and states that their overall 
correlation is poor and as such, Met droughts are not dominant factors on GW droughts. The authors are devis-
ing a more appropriate analytics to study the correlation within each zone by extending arithmetic calculus as 
developed by11.

The baseline for the environmental damage and impacts on Lake Urmia and its basin is relevant to under-
standing the results and building the overall mitigation plan. The problems were triggered circa 1990 at the 
onset of the green revolution in Iran, a period which coincided with the followings unprecedented changes: (i) 
population in the country rose from 39 million in 1980 to 56 million in 1990 and nearly 80 million in 2016; (ii) 
uncontrolled developments broke the backbone of traditional agricultural practices and opened the gateways 
to aquifer water abstraction practices by pumping and deep-well pumping; and (iii) the use of fertilisers have 
subsequently been contaminating the aquifers, although this is not the subject of investigation in the paper. The 
outcome was the ‘tragedy of the commons, which stemmed from a lack of long-term thinking, and this created 
an opportunity for individuals, rational or irrational, to reap the maximum benefit from their shared resource 
of aquifers. Soon the normal well pumps were not enough but the practice changed to using deep-wells.

Resilience in the basin is undermined as outlined here by interpreting the results in the light of the authors’ 
professional knowledge of the local area. Three cases may be related to droughts impacting resilience, as follows. 
Depleting aquifers give rise to land subsidence, and its varying degrees have already been reported in relation 
to some of the aquifers surrounding the lake, see12–14. Subsidence undermines inherent land resilience and 
thereby undermine soil structures, agriculture, infrastructure, transport systems and buildings to the extent 
that future recoveries can be difficult if not impossible. Droughts, in general, have impacts on aquifer water 
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quality through anthropogenic and geogenic processes, by reducing both aquifer storage and water quality; as 
well as causing over-abstraction15. Over-abstraction of groundwater is likely to alter (i) the dilution processes 
between stored water freshwater by recharging and (ii) the geogenic processes of maintaining rock-water ion 
exchanges, both of which have been observed in the aquifers of the basin16–20. As discussed in the next section, 
the past interactivities among the various hydrological components of the basin have largely been impacted in 
the sense that watercourses feed the aquifers when water is available but are not fed by aquifers anymore and 
these amplify environmental damage on the basin. Migration from the basin, with the recent memory of its lush 
valleys, is very concerning.

When the water crisis in Lake Urmia captured international attention, the urge for ‘saving face’ was turned 
into blaming climate change, where during 1995–2006 the global average temperature in the basin was approx. 
0.5–1.0 °C rise (see21) but not enough to blame climate change. Even now climate change refers to the likely 
future possibilities but not to the present situation other than detecting some of its early signals. Currently, the 
average annual temperature rise in the basin of Lake Urmia is 1.5–1.6 °C (see21) but this is not still large enough 
to substantiate the onset of destructive forces of climate change. The blame culture prolongs the tragedy of the 
commons. In recent years, organisational arrangements have been put in place to cater for abstraction controls 
but these are operating nominally and shifting the blame game to the users without mitigating the problems by 
overhauling water use practices; as well as not producing publicly-communicated water resources plans, drought 
plans and water cycle management plans.

Drought studies are also reported by Maghrebi et al. (2021) concerning impacts on agriculture in Iran. They 
investigate the footprint of unsustainable development and report that during 1981–2013 increased agricul-
tural activities gave rise to increased productivity but reduced water availability22. However, in time, depleting 
groundwater and surface water would instigate the process for reduced water/food security, and undermine 
environmental resilience. They also conclude that urgent policy reforms are required to create a balance between 
agricultural activities and water availability, else current policies expose the people to the risk of insecurity, job 
losses, migration, conflicts and tension.

The UN Sustainable Development Goals (SDGs) are one way of avoiding the tragedy of the commons, which 
are outcomes of scientific learning from past failures towards a more sustainable future. Delivering SDGs are 
now a common purpose in the global agenda and comprises 17 SDGs, broken down to some 169 targets (each of 
them are described in UN sites, see: https://​unsta​ts.​un.​org/​sdgs/​metad​ata/ or https://​www.​conce​rnusa.​org/​story/​
susta​inable-​devel​opment-​goals-​expla​ined/). The goals and targets are transformed into several hundred indica-
tors which are being used to measure progress towards achieving the goals and targets8. The issue of droughts is 
mentioned in Targets 2.4 and 15.3; Paragraph 14 of Our Shared Principles; Paragraph 33 of the New Agenda; and 
Paragraphs 205, 207 and 208 of the Future We Want. The study underpins the need for sustainable development 
in the basin of Lake Urmia to stop the ongoing damages before they become irreparable.

The paper shows that return periods on their own are capable of giving a heuristic insight into drought prob-
lems. These may be seen as the evidence for the proof of concept for the modelling strategy to discern the role of 
anthropogenic impacts on aquifer droughts. The authors are now expanding their works in a number of directions 
including: (i) investigating a synthetic index to better summarise the problem; (ii) assessing impacts of climate 
change both on precipitation and on the aquifers of the Lake Urmia basin and thereby on Met/GW droughts; and 
(iii) introducing indices to gain an insight into aquifer droughts towards resilient and sustainable performances.

Results
An insight into the catastrophe of Lake Urmia.  To date, the surface area of Lake Urmia is 2558 km2, 
which is shrunk to 51% of its value in 2000 and the measures by the government to restore the lake is still 
uncertain. A saltpan of approximately 1 m deep is left behind the shrunken lake, the health impacts of which are 
evident but not yet documented. However, the depleting aquifers are already showing land subsidence problems 
at some of these aquifers, see12–14. Khatibi et al.23 take an overview of the past initiatives on restoring Lake Urmia 
and note that any material solution is yet to emerge from all those apparent project proposals.

Unsustainable groundwater abstractions threaten water availability in Iran, which is evidenced by doubling 
abstraction wells in 13 years (2002–2015) (see24). Ashraf et al. (2021) demonstrate that the basin-scale ground-
water droughts in Iran are affected by groundwater withdrawal by humans even though Met droughts intensify 
GW droughts4. Of the plethora of studies on Lake Urmia, Khatibi et al. (2020) study the decline of water levels 
at Lake Urmia and conclude that it is the outcome of mismanagement23; Vahedoost and Aksoy (2021) study the 
water balance in Lake Urmia in conjunction with the surrounding aquifers and surface water inflows and con-
clude that groundwater and evaporation are significant variables on the decline in the water level of Lake Urmia 
but the effect of groundwater surpasses all other variables25. Attributing the decline to droughts is not rare but 
there is no reason to assume that there is any prolonged extreme drought in the region other than operational 
water shortages during peak demands. Indeed, there has been exceptionally high precipitations e.g. in 2006–07 
and 2018–19, significantly raising the water levels in the lake, when floodwaters were allowed to bypass the vast 
number of dams.

The hydrological cycle of the Lake Urmia basin has been encroached since the 1990s both in terms of surface 
water hydrology and groundwater exploitations23. There is no published study of the baseline conditions on 
drought occurrences in the study area with only some sporadic record of precipitation and GW levels. However, 
Khatibi et al.23 and Khatibi and Nadiri (2020) 26 hint at the pristine natural conditions prior to the 1990s, when 
traditional agricultural activities were woven over the natural resources in a sustainable fashion. Since the 1990s, 
mismanagements of resources have not been controlled and this remains the norm to date. The results produced 
by the paper and presented below examine critically the wisdom of attributing the crisis of Lake Urmia to mete-
orological droughts or climate change.

https://unstats.un.org/sdgs/metadata/
https://www.concernusa.org/story/sustainable-development-goals-explained/
https://www.concernusa.org/story/sustainable-development-goals-explained/
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The scope of the dependence of water level in Lake Urmia on direct precipitation, streamflows, groundwa-
ter flows and baseflow (compensation flows or their absence) has received some attention, see27, according to 
which the Lake level may only depend by as much as 10% on direct precipitation; whereas water resources over-
abstraction and the construction of dams are major contributors to the water level decline of the lake. Alizade 
Govarchin Ghale et al. (2018) compared the water balance change of Lake Urmia and SPI and observed that 
anthropogenic activities are 80% more effective on the lake water decline than the climatic changes account-
ing for as little as 20%28. They list the anthropogenic activities, which include over-abstraction of groundwater 
and surface water resources, developing agricultural lands and mismanagement of water resources  to a severe 
encroachment onto the natural regime of the basin, both onto the lake water levels and groundwater levels. 
Subsequent to the risk realisations in 2008–2015 of the encroachments, there were no re-examination of the 
past decisions but more ambitions plans were proposed, which include the following: (i) water transfer from 
the Caspian Sea were discussed to restore the water levels in the lake but no steps were taken to this end; (ii) 
pilot schemes were nominated in 2014 for the artificial recharging of the aquifers by the West Azerbaijan Water 
Authority entitled “Groundwater Rehabilitation and Balancing;” and (iii) in the East Azerbaijan province pilot 
schemes were initiated to artificially recharge aquifers (four basins in the Shabestar aquifer from 1996 and one 
basin in the Azershahr aquifer from 2003).

The aim of the “Groundwater Rehabilitation and Balancing initiative was to stop the total over-abstractions 
and then, within 20 years, compensate cumulatively by reducing deficits in the aquifers and by bringing them 
to their baseline conditions through 15 projects (the Ministry of Agriculture: 3 projects; the Geological Survey 
Organization: 1 project; and the Ministry of Energy: 11 projects). Among the main projects being implemented 
by the Ministry of Energy aimed to address some issues [https://​www.​wsanw.​ir/​cs/​Artic​les/​18/​291] including: (i) 
establish and strengthen water resources patrol teams; (ii) control, monitor and exploit unauthorised wells that 
are harmful to public interests; (iii) install volumetric and smart gauges and create a system for monitoring and 
controlling groundwater abstraction; (iv) prepare online water balance sheet and database of water resources; 
(v) organise authorised drilling companies and install GPS devices on drilling rigs; (vi) modify licenses for 
authorized agricultural wells based on the national water document and apply adjustment coefficient in order 
to achieve programmable groundwater.

To the best of the authors’ knowledge, the projects went to the backburner apparently due to the lack of finan-
cial resources and no strong support to the project; as well as the absence of bottom-up management strategies 
and participatory decision-making did not trigger any serious challenges. Overall, these plans have not been 
effective enough and some of the reasons include: lack of stable financial support for repairing and dredging, 
lack of macro-planning and goal setting both at the level of scientific centres and at the level of executive bodies, 
lack of a framework for the participation of farmers and rural councils for efficient water usage, prevention of 
soil erosion and the maintenance of watercourses and canals. The outcome is that the aquifers are being depleted 
and there is no drought plans, as overviewed below.

Drought planning in developed countries are through publicly communicated plans put in place for the 
delivery of various goals. For instance, in the UK, the aim is to safeguard the environment during drought and 
to oversee actions to secure public water supplies over often one year period. There are also severe and extreme 
droughts, as they become more prolonged that can be considered as part of drought planning. There are no 
known plans of this nature for managing Lake Urmia and its basin. An understanding of the occurrences of 
droughts in the Lake Urmia basin is a challenge since Lake Urmia has undergone a severe water level decline 
during 2009–2016 due to extensive program of constructing embankments on its watercourses. It is not scien-
tific to attribute the decline to droughts or climate change without focussing on the extensive number of dams 
constructed since the 1990s. Nonetheless, the results presented in the section leads to answering the question 
that: did the Met droughts induce GW droughts; or do anthropogenic activities intensify the usual water short-
age problem; and under what mechanisms do these activities intensify the decline in Lake Urmia and its basin? 
Without clear responses to these question, resilience planning is unlikely to be effective.

Data, processed datasets and information contents of the results.  Precipitation and groundwater 
level timeseries with 21 years length (2000–2020) are incorporated in this study for analysing meteorological 
and groundwater droughts, respectively. Although Tong et al. (2015) discusses the uncertainty within copula’s 
results increases when the data availability is reduced from 100 year-data to 20 year-data29, arguably still there 
are significant information signals within 21 years of data availability. For some stations in the study, the data 
availability is 30 or more, but 21 years of data are available for all of the stations and therefore all the results are 
produced for the common time base of 21 years. These are quite sparse but are all that is available. Data examina-
tions in the pre-processing stage indicated that there were no outliers based on using the interquartile range30; 
also, the gaps in the data for all synoptic stations were less than 5% of the total data, estimated by fitting regres-
sion equations between a station with data gaps and other stations, rendering a correlation coefficient greater 
than 0.9. This justified the gap-filling algorithm; hence the pre-processed timeseries are deemed fit-for-purpose 
in calculating SPI and SGI.

Both SPI and SGI are calculated using the gamma distribution as per recommendations in the literature6,31–33. 
For SPI, the use of the gamma distribution seems widespread but for SGI there are recommendations to select a 
more appropriate distribution for a particular dataset. In the present study, the objective was not to identify the 
most accurate distribution but a fit-for-purpose distribution is deemed sufficient and this assumption was tested 
by the Kolmogorov–Smirnov test. The modelling strategy shown in Fig. 1 produces the results summarised in 
Table 1.

The results in Table 1 show the details of the fitted copulas to monthly precipitation data for 48 synoptic sta-
tions; the details of which comprise: (i) select the best copula among its seven types of Clayton, Ali-Mikhail-Haq, 

https://www.wsanw.ir/cs/Articles/18/291
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Farlie-Gumbel-Morgenstern, Frank, Galambos, Gumbel-Hougaard, and Plackett (see34); (ii) identify the param-
eters related to their inherent marginal distributions (λ, α, β) using the data related to duration and severity, in 
which the exponential distribution is used for duration and the gamma distribution for severity, as discussed 
in Methods; (iii) optimise copula dependency parameter (θ) based on the method of Inference Function for 
Margins (IFM); (iv) calculate the logarithmic likelihood values corresponding to the optimised θ; and (v) cal-
culate Nash–Sutcliffe Efficiency (NSE) and Root Mean Square Errors (RMSE) values by comparing fitted and 
empirical copulas. NSE varies in the range of 0.51–0.95 and RMSE in the range of 0.06–0.19. These serve as some 
evidence that the fitted copulas are fit-for-purpose and information content of the modelled return periods are 
statistically significant.

Similar to Table 1, the fitted copulas for the data of the 158 observation wells are presented in Table 2 using 
groundwater levels. For brevity, all the results are reported in the form of mean and standard deviations for each 
aquifer. The table also represents the best copula types and the number of corresponding observation wells but 
the other details are defined as for Table 1. The preliminary investigations with respect to fitting different distri-
butions to duration and severity show that the exponential distribution is more appropriate to duration and the 
gamma distribution for severity of GW droughts. The table shows the means of NSE per aquifer, which vary in 
the range of 0.59–0.85 and that of RMSE in the range of 0.09–0.17. These serve as some evidence that the fitted 
copulas are fit-for-purpose and information content of the modelled return periods are statistically significant.

The copulas in Tables 1 and 2 are employed to carry out frequency analysis and obtain the return period of 
drought events corresponding to the maximum duration and severity in the available historical data. The bivariate 
return periods using the fitted copulas in terms of duration and severity are displayed in Fig. 2 for Met drought at 
a sample of synoptic stations and a similar sample is displayed in Fig. 3 for GW drought. The spatial distributions 
of copula-based bivariate return periods are given in Fig. 4 in two sets: (i) return period values for Met droughts 
within the basin of the lake; (ii) and that for GW droughts within each of the 13 aquifers around the lake. The 
identical red-to-blue colour palette for both types of droughts corresponds to low-to-high return periods.

Overview of the results.  To understand the results better, the physical system is subdivided into: (i) the 
lake, (ii) the surrounding aquifers, (iii) streamflows due to quick runoff, (v) interflows due to percolations; (iv) 
baseflows originating lost by aquifers or gained by them; and (vi) possible connectivity between the lake and its 
surrounding aquifers. A further issue of the primary importance is the compensation flows that must be allowed 
from the dams to maintain the ecological functions at their downstream. The overwhelming perception is that 
the embankment dams retain all the water and very little compensation flow or none is allowed to flow through, 
unless there is a risk of over-spillage. These are discussed in due course.

Table 1.   Meteorological drought: a summary of statistical parameters for the fitted marginal distributions and 
copulas in 48 synoptic stations.

Station Copula λ α β θopt Log-likelihood NSE RMSE Station Copula λ α β θopt Log-likelihood NSE RMSE

1 Frank 3.5 1.05 2.59 7.90 − 139.1 0.72 0.14 25 Clayton 3.5 1.43 1.48 1.06 − 107.8 0.89 0.09

2 Frank 3.0 0.77 4.43 8.22 − 124.2 0.72 0.14 26 Clayton 3.5 1.29 1.43 0.98 − 99.1 0.88 0.09

3 Galambos 3.5 0.88 2.73 2.72 − 101.5 0.73 0.14 27 Galambos 4.0 1.39 1.65 1.91 − 100.8 0.89 0.09

4 Frank 3.0 0.99 1.74 8.59 − 112.3 0.66 0.15 28 Clayton 3.5 2.38 0.96 0.46 − 105.6 0.77 0.12

5 Frank 3.5 0.71 4.07 7.45 − 133.9 0.67 0.15 29 Clayton 3.0 2.72 0.68 0.42 − 92.6 0.58 0.16

6 Frank 3.0 1.41 1.55 8.24 − 118.1 0.65 0.16 30 Clayton 3.5 0.93 2.62 0.98 − 111.6 0.66 0.15

7 Frank 3.0 0.95 3.64 11.67 − 105.7 0.55 0.18 31 Clayton 3.5 1.29 1.60 0.99 − 109.2 0.82 0.11

8 Frank 3.0 0.77 2.78 7.62 − 114.6 0.51 0.18 32 Clayton 3.5 1.01 2.15 0.69 − 108.9 0.78 0.12

9 Galambos 3.0 1.78 1.03 2.29 − 81.7 0.90 0.09 33 Galambos 2.5 0.88 2.68 2.02 − 112.7 0.87 0.09

10 Galambos 3.0 0.96 1.95 2.39 − 92.9 0.88 0.10 34 Frank 2.5 0.96 2.63 7.21 − 133.4 0.72 0.14

11 Clayton 2.5 1.17 1.25 0.65 − 98.4 0.87 0.11 35 Frank 3.0 1.34 1.40 8.30 − 114.3 0.75 0.14

12 Frank 2.5 1.02 1.97 7.28 − 120.5 0.60 0.18 36 Frank 2.5 1.03 2.11 5.72 − 131.0 0.65 0.16

13 Frank 2.5 1.38 1.65 6.38 − 99.9 0.65 0.16 37 Galambos 3.5 0.84 2.79 1.47 − 111.9 0.78 0.13

14 Frank 3.0 0.98 2.47 7.30 − 132.3 0.51 0.19 38 Frank 2.5 1.40 1.73 5.99 − 136.9 0.59 0.18

15 Galambos 3.5 0.98 2.38 2.58 − 92.1 0.86 0.10 39 Plackett 3.0 1.07 1.87 20.00 − 89.0 0.90 0.09

16 Galambos 3.0 1.20 1.76 2.11 − 113.2 0.87 0.10 40 Plackett 3.0 1.61 1.16 20.00 − 86.1 0.95 0.06

17 Frank 3.0 0.94 2.68 13.17 − 109.7 0.92 0.08 41 Galambos 3.5 0.95 1.90 2.68 − 82.6 0.90 0.08

18 Galambos 2.5 1.76 1.01 2.20 − 88.7 0.93 0.07 42 Clayton 3.5 0.96 2.63 1.15 − 113.7 0.84 0.10

19 Galambos 2.5 0.79 2.31 3.02 − 87.3 0.94 0.07 43 Galambos 3.5 0.67 5.15 2.96 − 102.5 0.88 0.09

20 Frank 3.0 1.05 2.10 9.81 − 117.7 0.90 0.08 44 Galambos 3.5 0.93 3.46 2.95 − 103.5 0.93 0.07

21 Frank 3.0 1.14 1.76 12.94 − 84.2 0.84 0.10 45 Clayton 3.5 1.21 2.10 1.11 − 112.3 0.87 0.10

22 Frank 2.5 1.09 2.02 9.61 − 120.8 0.84 0.10 46 Clayton 3.5 1.11 1.88 1.06 − 114.1 0.85 0.10

23 Galambos 4.0 1.00 2.43 2.33 − 118.6 0.72 0.15 47 Clayton 3.0 1.62 1.18 0.76 − 98.3 0.88 0.09

24 Frank 3.0 1.00 2.16 8.59 − 112.6 0.70 0.15 48 Clayton 3.0 0.70 3.93 1.44 − 117.2 0.85 0.10
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Table 2.   Groundwater drought: statistical parameters for the fitted marginal distributions and copulas in 158 
observation wells.

Aquifers and 
number of 
observation 
wells

Number of observation wells related to each type of 
Copula λ α β θopt

Log-
likelihood NSE RMSE

Clayton
AM 
Haq FGM Frank Galambos

Gumbel 
H Mean St dv Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv

Tasuj (8) 3 0 0 1 4 0 15.4 9.3 0.7 0.3 27.9 33.0 6.0 3.9 − 38.7 22.8 0.71 0.17 0.13 0.04

Shabestar (8) 2 0 0 5 1 0 9.7 5.2 1.2 1.2 18.7 18.6 9.6 5.6 − 41.3 27.0 0.68 0.16 0.13 0.04

Tabriz (16) 1 0 0 8 7 0 6.5 3.1 1.2 1.0 10.6 8.4 7.1 5.1 − 64.1 27.2 0.75 0.13 0.12 0.04

Azershahr (7) 0 0 0 5 2 0 8.6 4.2 0.9 0.4 12.3 10.6 9.7 6.7 − 70.3 29.5 0.71 0.20 0.14 0.05

Shiramin (3) 0 0 0 2 1 0 13.3 7.2 0.8 0.4 24.1 25.6 11.1 7.8 − 63.9 24.3 0.65 0.25 0.15 0.05

Ajabshir (6) 0 0 0 3 3 0 12.0 6.1 0.8 0.4 23.4 30.4 8.2 6.5 − 59.2 18.9 0.59 0.25 0.17 0.06

Maragheh-
Bonab (13) 2 0 0 4 7 0 8.7 5.5 0.9 0.6 12.3 7.7 6.9 5.8 − 53.4 27.0 0.78 0.14 0.11 0.03

Miandoab-
(Qoshachay) 
(23)

1 1 0 12 8 1 8.2 5.7 1.3 1.0 10.9 14.5 6.9 5.6 − 56.3 21.2 0.75 0.15 0.12 0.04

Mahabad (10) 2 0 0 8 0 0 10.5 2.4 0.5 0.1 25.0 5.8 14.6 4.7 − 51.0 14.5 0.65 0.06 0.15 0.02

Naghadeh 
(Sulduz) (20) 1 0 0 6 13 0 5.1 1.3 1.2 0.6 7.2 3.6 4.3 5.0 − 74.3 10.1 0.85 0.10 0.09 0.03

Urmia (28) 1 0 0 8 19 0 6.4 3.7 1.2 0.7 7.7 4.8 5.6 5.8 − 64.7 20.6 0.84 0.11 0.10 0.03

Kahriz (4) 0 0 1 1 2 0 7.1 4.3 1.9 1.8 10.2 14.2 6.2 9.2 − 47.5 29.4 0.77 0.24 0.11 0.05

Salmas (12) 4 0 0 3 4 1 6.6 2.9 1.7 1.4 4.9 4.6 4.4 3.9 33.4 26.5 0.71 0.18 0.12 0.03

Figure 2.   Bivariate return period for Met drought for a sample of stations based on fitted copulas.
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Figure 3.   Bivariate return period for GW drought for a sample of observation wells based on fitted copulas.
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Figure 4.   (a) Location map of the study area; (b) spatial distribution of Met drought return period within the 
Lake Urmia basin; and (c) spatial distribution of GW drought return period within the aquifers around the lake. 
Note 1: The contours for each aquifer varies but not much and more often are lower (more severe) than those of 
Met droughts. Note: 2: The figure is produced by the authors using QGIS 3.01 v 2018.
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The return period values produced by implementing the modelling strategy for Met/GW return periods are 
spatially distributed by the ordinary Kriging technique, the implementation of which is justified in the method 
section. The results are displayed in Fig. 4, which underpins the following broad findings:

	 (i)	 The return periods for the Met drought at the Southwest of the Basin are relatively high (and therefore less 
adverse regimes) in the region. This corresponds to the source of three dominant rivers with the potential 
to supply of more than 50% of the input surface flows to the lake in the old hydrological regime before its 
encroachment. Thus, at least, water levels at Lake Urmia should potentially be robust to adverse effects, 
if the flow regimes of these rivers are not encroached. However, the values of the Met return periods 
gradually decrease towards the southeast and northern parts of the basin (and therefore relatively more 
adverse drought regimes).

	 (ii)	 The GW return periods do not show significant differences from one aquifer to another, and this is 
apparent from the return period contours within the aquifers, where both droughts return periods use 
an identical colour pallet. Nevertheless, the comparison demonstrates a salient feature on return periods 
that for GW droughts, their values are detectably lower (more adverse) than those for Met droughts, and 
this signifies an intensified anthropogenic impact on drought occurrences.

	 (iii)	 The differences between the Met and GW droughts are wide among the aquifers and these are further 
shown in Fig. 5 as they have significant implications to be discussed next. Naturally, the rivers and aqui-
fers in a basin exchange water through a gain/ loss process or mode, in which a river is recharged by its 
aquifers and hence the river is in its gain mode (but the aquifer is in the loss mode); whereas the aquifer 
is recharged by its river and hence the aquifer is in its gain mode (but the river is in the loss mode).

The authors’ observations on the above interconnectivities show that the rivers crossing the aquifers surround-
ing Lake Urmia used to display both modes in the course of past years. However, since the onset of anthropogenic 
activities and their intensification, the gain mode of the rivers has turned into a loss mode, and consequently 
the baseflows would hardly match their past states. There are a lack of comprehensive studies on the relation-
ship between rivers and aquifers in the Lake Urmia basin, but this issue has been emphasized sporadically in 
authors’ previous studies35.

Informations obtained from soil texture and geological logs related to aquifers around the lake provide evi-
dence that there are not significant interconnectivity between the lake and aquifers. So that the soil texture near 
the lake becomes clay and impermeable, although some limited interconnectivities have been noted for some 
of the aquifers, e.g. the Tasuj aquifer 36. The groundwater over-abstraction decrease surface inflow to the lake 
by changing rivers behaviour from the mode of gaining in an aquifer to the mode of losing to the aquifer. The 
paper indicates that this phenomenon becomes more probable due to the significant relative difference between 
Met and GW drought in some aquifers such as the Qoshachay (Miandoab) aquifer. The implication of this local 
knowledge is that the decline of Lake Urmia is not related to the aquifers but stems from the 40 embanking dams. 
Likewise, the depletion of the aquifers stems from over-abstraction by pumping.

The focus in Fig. 5 is on the aquifers, which uses an identical colour palette and ranges for the return period 
distributions of Met/GW droughts, where the range of the palette is from 3 to 31 years. It displays the mean 
values within the aquifers in the digital form on the top of solid lines. A comparison of Fig. 5a (Met droughts) 
with Fig. 5b (GW droughts) provides a visual evidence that GW droughts tend to be more frequent (lower val-
ues of return periods and more adverse) than those of Met droughts (higher return periods). These two visual 
observations are also supported statistically by a poor correlation coefficient between the mean return periods for 
Met/GW droughts, as follows. The value of the coefficient is 0.26 but this is not significant enough to underpin 
any significant dependence of return periods of GW droughts on those of Met droughts. The range of the return 
period of Met droughts is from 11 to 31 years but that of GW droughts is from 3 to 16 years and their relative 
differences range from 0.1 to 0.64 (the full range is from 0 to 1).

Detecting anthropogenic impacts.  GW droughts in the aquifers, displayed in Fig. 5, are the basis to 
extract the salient features on anthropogenic impacts by a combination of three techniques of visual inspection 
of the results in Fig. 5, studying the patterns in terms of the differences between return periods of Met and GW 
drought and working out a risk matrix for the aquifer. The results suggest the breaking down the aquifers into 
the following zones:

	 (i)	 Return periods of Met droughts coincide with those of GW droughts: This is not observed in this study area 
but it is argued that their coincidence should generally prevail in sustainable aquifers recharged annually 
by adequate amounts without triggering drought events.

	 (ii)	 Northern Aquifers (Tasuj, Shabestar, and Salmas): The contours of both Met and GW droughts in this zone 
are within relatively severe (low values of return periods, see Fig. 5a, b) but their relative differences seem 
to be in the moderate range. The heuristic learning is that relative differences can be quite misleading as 
both return periods are relatively severe (low values of return period) but their differences diffuse their 
severity. Drought occurrences in these aquifers are further supported by the authors’ investigations on 
subsidence, who report that the subsequent subsidence is significant due to GW over-abstractions and 
may be considerable (e.g.,12–14).

	 (iii)	 Aquifers at the Central Zones (eastern aquifers: Tabriz, Azershahr, Shiramin and Ajabshir; and western 
aquifers: Urmia and Kahriz):The contours of both Met and GW droughts in this zone are relatively severe 
in terms of return periods (low values of return period), but those of GW droughts are only slightly 
severer than Met droughts. In these aquifers, anthropogenic activities are known to be intensive and 
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Figure 5.   Variations in drought return periods between aquifers: (a) meteorological drought; (b) groundwater 
drought; (c) relative differences; (d) risk matrix derived for each aquifer based on return periods of Met/GW 
droughts. Note: The figure is produced by the authors using QGIS 3.01 v 2018.
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therefore it is anticipated that as soon as they reach a biting point, the likely critical state of GW droughts 
could inflict a greater impact, if there is a failure on the ‘preparedness’ for droughts and the catastrophe 
of depleted aquifers. Relative values of mid-range droughts in Fig. 5c are justifiable, as high subsidence 
occurrences are yet to be observed in this zone.

	 (iv)	 Aquifers of Southern Zones (Qoshachay-Miandoab, Mahabad, Sulduz-Naghade): The contours of Met 
droughts in this zone are within relatively low contours in terms of return periods (high values of return 
periods and less adverse), but those of GW droughts are in severe contours (low values of return periods 
and more adverse). These aquifers are already known to be stressed from severe anthropogenic impacts 
and Fig. 5c captures this salient feature.

A deeper understanding emerges by assessing a risk matrix for the area, which complements the above 
zones but with a different emphasis. The risk matrix (see,10) is a well-established risk management tool and its 
simplified application is captured in Fig. 5d, by breaking both Met and GW droughts into three bands of Band 
1, Band 2 and Band 3. The likelihood of drought in each aquifer zone is qualified as High (Band3-Band3), Fairly 
High (Band3-Band2 or Band2-Band3), Intermediate (Band1-Band3, Band2-Band2 or Band3-Band1), Fairly Low 
(Band1-Band2 or Band2-Band1) and Low (Band1-Band1). Notably, the first occurrence of the band number 
refers to the return periods of Met Droughts and the second one to that of GW droughts. These results evidently 
corroborate with the observation and highlight the potential hotspots for droughts. There are some differences 
between the Fig. 5c and d, in which case for real project works, it is necessary to resort to the principle of precau-
tion and select the worst cases.

The above results provide a heuristic basis to learn from the data on both visual grounds, and the analysis of 
differences and statistical coefficients that GW droughts are being impacted by anthropogenic encroachments 
more directly than meteorological processes. Arguably, this is a significant evidence for discerning anthropogenic 
impacts, as the local knowledge is of all aquifers are fast being depleted. However, the heuristic learning is that the 
resolution of dividing each return period to a number of bands need to be investigated. An adequate resolution 
should then be the base for devising an analytics for quantifying anthropogenic impacts. This may additionally 
require further dimensions and parameters into the inter-comparison, e.g. the capacity of an aquifer departing 
from its long-term recharged state).

The study employs an identical procedure to define return period for Met and GW droughts using monthly 
data but 3-month or 6-month SPI can normally be used too. However, the study seeks to cope with data sparsity 
with respect to the 21-year available data and therefore higher intervals would restrict the validity of frequency 
analysis. The above visual extraction of information using 21 years of data is fit-for-purpose but for the defensi-
bility of the results need to be improved as more data becomes available.

Methods
Statistical distributions.  The gamma distribution is used in the study by implementing its standard pro-
cedure with the two parameters, which comprises a shape parameter, α, and a scale parameter β, where both are 
positive real numbers (for more details, see37). Its parameter estimation procedure is inbuilt in the MATLAB 
platform and further details are available in the supplementary information file.

The exponential distribution is also used in the study by implementing its standard procedure with the one 
parameter, which comprises the rate parameter (λ), where it is a positive and real number (for more details, 
see37). Its parameter estimation procedure is inbuilt in the MATLAB platform and further details are available 
in the supplementary information file.

Meteorological drought events.  Further to the categorisation of drought studies in the introduction, the 
focus is now on Standardised Precipitation Index (SPI), developed by McKee et al.5, which is detailed next. It 
quantifies drought events based on precipitation timeseries for specific time scales, e.g., 1, 3, 6, or 12 months. To 
calculate SPI, a probability distribution is fitted to long-term precipitation data, and this renders the calculation 
of cumulative probabilities. More than often, the distribution fitted is the gamma distribution (see5,38). As per 
Eq. 1(a), the SPI values are defined in terms of the transformed inverse standard normal distribution (further 
details are available in 39):

where ∅−1(·) represents the inverse standard normal distribution; and α(·) is the gamma distribution fitted to 
precipitation timeseries (P). Notably, SPI varies in accordance with the x-axis range of standard normal distribu-
tion (approximately between − 3 to 3), and the negative values identify dry month. As per McKee et al. (1993) 
5, the duration of a drought event is defined as a period in which SPI is continuously negative but its severity is 
defined as the cumulative magnitude of SPI for the duration (see Fig. 1).

Groundwater drought events.  Similarly, the focus is on index-based drought studies and the paper uses 
Standardised Groundwater level Index (SGI), developed by Bloomfield and Marchant6, which is processed by 
using changes in groundwater levels. The calculation procedure is similar to SPI (see Eq. 1b), but previous stud-
ies highlight that the monthly timeseries distribution for groundwater levels may not follow the gamma distri-
bution and hence more distributions need to be evaluated 6. Therefore, the Gamma distribution was evaluated 
using the Kolmogorov–Smirnov test and the result confirmed the goodness-of-fit at 5% level of significance.

(1a)SPI = ∅−1(α(P))

(1b)SGI = ∅−1(β(GWL))
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where ∅−1(·) represents the inverse standard normal distribution; and β(·) is an appropriate distribution fitted 
to groundwater level timeseries (GWL). Similar to SPI, the negative values for SGI identify the dry months. The 
duration and severity are also defined similar to SPI (Fig. 1).

Copula.  Copulas, are multivariate cumulative distributions normally applied for estimating the joint prob-
ability of multiple random variables, first developed in statistics by Sklar40 and then applied in hydrological 
studies such as rainfall-runoff41 and drought42. In drought studies, these functions calculate the probability of 
joint occurrences of drought characteristics such as duration and severity using marginal distribution functions. 
Marginal distribution functions indicate the probability of independent occurrence of drought characteristics 
34,43. Shiau (2006) used Copulas to analyse the frequency of Met droughts, based on duration and severity char-
acteristics using SPI42. The technique became topical with extensive reports (e.g.,32,44).

Recent applications of copulas include: (i) groundwater drought frequency analysis based on SGI3; (ii) con-
ducting tri-variate (duration, severity, and peak)45 and fourth-variate (duration, severity, peak, and inter-arrival 
time)46 frequency analysis for Met droughts; (iii) uncertainty analysis in estimating copulas’ parameters using the 
Monte Carlo Markov chain47,48; (iv) combining different drought indices such as SPI with other drought indices 
such as the agricultural drought index49, the evaporative drought index50; and (v) drought frequency analysis 
based on the results of climate models 51–54.

A Copula function is a technique that indicates the relationship between a multivariate distribution function 
and one-dimensional marginal distributions. Copula models are based on the Sklar theory40, which use joint 
distributions for the random variable of X defined for n-dimensional continuous random variables (X1, X2, …, 
Xn) with marginal distributions of F(Xi) = Px(XI < xi), as follows:

The bivariate copula (C) is defined as follows:

where x and y are dependent random variables; FXY is bivariate distribution function; and FX and FY are marginal 
distributions.

The bivariate copula for drought duration and severity is defined as follows:

where d and s are drought duration and severity, respectively; and FD and FS are marginal distributions for 
drought duration and severity, respectively (further information is available in55). In Met drought studies, previ-
ous research works indicate that the exponential distributions are appropriate for duration and the gamma dis-
tributions for severity32,33,42. In GW drought studies, there are no recommendations for the types of duration and 
severity probability distributions. Therefore, Gamma distribution was accepted using the Kolmogorov–Smirnov 
test at the 5% level of significance.

Table 3 illustrates the incorporated copulas in the study, which involves the estimation of copula param-
eters and for this, there are various techniques, including parametric, semi-parametric and non-parametric 
approaches. Among them, the Inference Function for Margins (IFM) method is the most common technique 
for estimating the copula parameter56 and requires two distinct steps outlined as follows. Step 1: marginal dis-
tributions are obtained from observed values; Step 2: the joint likelihood functions are maximised to estimate 
the copula parameter, θ. The logarithmic likelihood function is defined as follows:

where n is number of data; and c is the density function of copula and is calculated as follows 57:

(2)HX1,...,Xn(x1, . . . , xn) = P[X1 < x1,X2 < x2, . . . ,Xn < xn]

(3)FXY
(

x, y
)

= C
(

FX(x), FY
(

y
))

(4)C(u, v) = FDS(d, s) = C(FD(d), FS(s))

(5)L(θ) =

n
∑

k=1

log[c(FD(d), FS(s))] =

n
∑

k=1

log[c(u, v)]

Table 3.   The list of incorporated copulas and related formulas.

Copula Family Copula CDF C(u, v) Interval θ

Clayton C(u, v) =
(

u−θ + v−θ − 1
)−1/θ

θ ≥ 1

Ali-Mikhail-Haq C(u, v) = uv
1−θ(1−u)(1−v)

−1 ≤ θ ≤ 1

Farlie-Gumbel-Morgenstern C(u, v) = [1+ θ(1− u)(1− v)] −1 ≤ θ ≤ 1

Frank C(u, v) = − 1
θ
ln
[

1+

(

e−θu−1
)((

e−θv−1
))

(e−θ−1)

]

θ  = 0

Galambos C(u, v) = exp

{

−
[

−(lnu)−θ + (−lnv)−θ
]− 1

θ

}

θ ≥ 0

Gumbel-Hougaard C(u, v) = exp

{

−
[

(−lnu)θ + (−lnv)θ
]

1
θ

}

θ ≥ 1

Plackett C(u, v) = 1
2

1
θ−1

{

1+ (θ + 1)(u+ v)−
[

(1+ (θ − 1)(u+ v))2 − 4θ(θ − 1)uv
]
1
2

}

θ ≥ 0
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Joint return period.  Two cases are considered for the return period: (i) simultaneous exceedance of both 
duration and severity from a given threshold, denoted by TDS; and (ii) exceedance of either duration or severity 
from a given threshold, denoted by T ′

DS , as defined below42:

where L is the interval between the onset of a drought to the next drought; and E(L) is the average of all L values.

Empirical copula.  The empirical copulas are order-based joint cumulative probabilities 34 and a two-dimen-
sional copula with n number of observations (Ce) is defined as follows:

where d(i) and s(j) represent the order statistics of observed duration and severity, 0 ≤ i, j ≤ n ; and # denotes the 
cardinality of the identified sets.

Specification of further techniques.  The production of results includes the following techniques: (i) 
Root Mean Square Error (RMSE), Nash–Sutcliffe Efficiency (NSE) are used to select the best copula in addition 
to calculating the maximum logarithm likelihood. A ‘perfectly’ fitted copula has RMSE closer to zero and NSE, 
closer to 1. (ii) the calculated return periods in synoptic stations and observation wells are spatially distributed 
using the ordinary Kriging technique. The study employed a QGIS 3.01 v 2018 to implement the kriging method 
based on the concept of semivariogram to account for the spatial configuration of the sample points by using 
both the first and second moments of the measured data, which had the internal ability to set its parameters. 
Although the aim of the paper is not to investigate the capability of interpolation techniques, the literature review 
highlights the advantages of the kriging techniques over the others as follows: a relatively very small error prob-
ability, a relatively optimal smoothed contour line, and a small influence of very irregularly distributed station58.

The modelling strategy.  The modelling strategy in the paper is the key to be able to discern the role of 
anthropogenic impacts on aquifers. Whilst the theoretical groundworks are already laid down for estimating 
return periods of Met droughts, the paper tests the application of the procedure for GW droughts. The Introduc-
tion section outlined the salient features of the narrative for the modelling strategy. The modelling strategy is 
implemented in 9 steps and as illustrated in Fig. 1 and its description at each step is given below.

The strategy is as follows: Step 1 –identify the spatial boundaries of the basin and aquifers and prepare data 
within the boundaries; data include precipitation data of synoptic stations within the Lake Urmia basin and also 
groundwater levels obtained from observation wells within the aquifers around the lake; Step 2—pre-process data 
to select or eliminate stations according to data length, conduct an outlier test based on the interquartile range30 
and fill the gap in the data by using the data from the nearest stations with high correlation coefficient values; 
Step 3—calculate SPI values at 48 synoptic stations using Eq. (1a) and SGI values at 158 observation wells using 
Eq. (1b); Step 4—calculate duration and severity timeseries for Met/GW droughts at the investigated synoptic 
stations and observation wells; Step 5—fit the exponential distribution for duration, and the gamma distribution 
for severity; Step 6—identify the maximum durations and severities for Met/GW droughts at the investigated 
synoptic stations and observation wells; Step 7—examine the fitness of different copulas listed in Table 3 and 
select the best fitted one for the investigated synoptic stations and observation wells by optimizing the copulas’ 
parameter; Step 8—conduct frequency analysis to calculate return periods of Met/GW droughts for the estimated 
maximum severity and duration at the investigated synoptic stations and observation wells; Step 9—identify the 
role of anthropogenic activities in intensifying drought by (i) the relative difference between Met/GW droughts 
and (ii) risk matrix; and Step 10—spatially-interpolate the calculated return periods for Met/GW droughts.

The modelling strategy provide the basis for a heuristic study in the sense that there was no basis to anticipate 
the outcome of the study beforehand but their comparison guided by a number of simple rules/ observations 
born out of professional experience provided a sufficient basis to gain an evidence-based insight into a complex 
situation.
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