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Convolutional neural network 
for automatic maxillary sinus 
segmentation on cone‑beam 
computed tomographic images
Nermin Morgan1,2, Adriaan Van Gerven3, Andreas Smolders3, Karla de Faria Vasconcelos1, 
Holger Willems3 & Reinhilde Jacobs1,4*

An accurate three-dimensional (3D) segmentation of the maxillary sinus is crucial for multiple 
diagnostic and treatment applications. Yet, it is challenging and time-consuming when manually 
performed on a cone-beam computed tomography (CBCT) dataset. Recently, convolutional neural 
networks (CNNs) have proven to provide excellent performance in the field of 3D image analysis. 
Hence, this study developed and validated a novel automated CNN-based methodology for the 
segmentation of maxillary sinus using CBCT images. A dataset of 264 sinuses were acquired from 
2 CBCT devices and randomly divided into 3 subsets: training, validation, and testing. A 3D U-Net 
architecture CNN model was developed and compared to semi-automatic segmentation in terms 
of time, accuracy, and consistency. The average time was significantly reduced (p-value < 2.2e−16) 
by automatic segmentation (0.4 min) compared to semi-automatic segmentation (60.8 min). The 
model accurately identified the segmented region with a dice similarity co-efficient (DSC) of 98.4%. 
The inter-observer reliability for minor refinement of automatic segmentation showed an excellent 
DSC of 99.6%. The proposed CNN model provided a time-efficient, precise, and consistent automatic 
segmentation which could allow an accurate generation of 3D models for diagnosis and virtual 
treatment planning.

Maxillary sinus (antrum of Highmore) is the largest of the four paranasal sinuses, which are air-filled spaces 
located within the skull surrounding the nasal cavity1. An adult’s maxillary sinus has a pyramidal shape and lies 
in the body of the maxilla. It is bounded superiorly by the orbital floor, extending laterally into the zygomatic 
process of the maxilla and the zygomatic bone. At the medial side, it coincides with the lateral wall of the nasal 
cavity communicating with it through the sinus ostium. The floor of the sinus is formed by the alveolar and 
palatine processes of the maxilla, which is in close proximity to the roots of the maxillary posterior teeth2–5.

Owing to the vital position of the sinus, its assessment is of paramount importance for maxillofacial surgeons, 
dentists, ENT surgeons, and dentomaxillofacial radiologists1. An accurate three- dimensional (3D) segmenta-
tion of the sinus is crucial for multiple diagnostic and treatment applications, where evaluation of sinus changes, 
remodeling at follow-up, volumetric analysis6,7 or creation of 3D virtual models is required. Furthermore, the 
most relevant surgical procedures requiring sinus assessment include implant placement, sinus augmentation8,9 
and orthognathic surgery.

Although maxillary sinus is a well-delineated cavity, its 3-D segmentation is not a simple task. The close 
proximity of the maxillary sinus to the nasal passages and the teeth roots, along with its anatomical variations 
and frequently associated sinus thickening, makes the segmentation a challenging task. Such 3-D segmentations 
could be performed either by multi-slice (MSCT)10 or cone-beam computed tomography (CBCT). In oral health 
care, the maxillary sinus is mostly visualized using CBCT imaging for diagnosis and treatment planning11–13. It 
provides a multiplanar sinus reconstruction, relatively lower radiation dose and isotropic volume resolution14. 
However, the segmentation of CBCT images still remains a challenging task due to the issues of image noise, 
low soft-tissue contrast, beam hardening artifacts and lack of absolute Hounsfield Unit15 (HU) calibration16,17.
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The manual segmentation of the maxillary sinus on CBCT images is time- consuming and dependent on 
the practitioner’s experience with high inter- and intra-observer variability18. Other techniques, such as semi-
automatic segmentation improve the segmentation efficiency, yet it still requires manual adjustments that can also 
induce error10,19. Recently, artificial intelligence (AI) technologies have started to play a growing role in the field 
of dentomaxillofacial radiology20,21. In particular, deep learning algorithms have gained much attention in the 
medical field for their ability to handle large and complex data, extract useful information and allow automatic 
learning of feature hierarchies such as edges, shapes and corners22.

Convolutional neural network (CNN) is one of the deep learning approaches that has shown an excellent 
performance in the field of image analysis. It uses multi-layer neural computational connections for image pro-
cessing tasks such as classification and segmentation22. The application of CNN for CBCT image segmentation 
could overcome the challenges associated with the other techniques by providing an efficient and consistent 
segmentation tool, while keeping the anatomical accuracy. Therefore, the aim of this study was to develop and 
validate a novel automated CNN-based methodology for the segmentation of maxillary sinus on CBCT images.

Materials and methods
This study was conducted in accordance with the standards of the Helsinki Declaration on medical research. 
Institutional ethical committee approval was obtained from the Ethical Review Board of the University Hospitals 
Leuven (reference number: S57587). Informed consent was not required as patient-specific information was 
anonymized. The study plan and report followed the recommendations of Schwendicke et al.23 for reporting on 
artificial intelligence in dental research.

Dataset.  A sample of 132 CBCT scans (264 sinuses,75 females and 57 males, mean age 40 years) from 2013 
to 2021 with different scanning parameters was collected (Table 1). Inclusion criteria were patients with perma-
nent dentition and maxillary sinus with/without mucosal thickening (shallow > 2 mm, moderate > 4 mm) and/
or with semi-spherical membrane in one of the walls24. Scans having dental restorations, orthodontic brackets 
and implants were also included. The exclusion criteria were patients with a history of trauma, sinus surgery and 
presence of pathologies affecting its contour.

The Digital Imaging and Communication in Medicine (DICOM) files of the CBCT images were exported 
anonymously. Dataset was further randomly divided into three subsets: (1) training set (n = 83 scans) for training 
of the CNN model based on the ground truth; (2) validation set (n = 19 scans) for evaluation and selection of the 
best model; (3) testing set (n = 30 scans) for testing the model performance by comparison with ground truth.

Ground truth labelling.  The ground truth datasets for training and testing of the CNN model were labelled 
by semi-automatic segmentation of the sinus using Mimics Innovation Suite (version 23.0, Materialise N.V., 
Leuven, Belgium). Initially, a custom threshold leveling was adjusted between [− 1024 to − 200 Hounsfield units 
(HU)] to create a mask of the air (Fig. 1a). Subsequently, the region of interest (ROI) was isolated from the rest of 
the surrounding structures. A manual delineation of the bony contours was performed using eclipse and livewire 
function, and all contours were checked in coronal, axial, and sagittal orthogonal planes (Fig. 1b). To avoid any 
inconsistencies in the ROI of different images, the segmentation region was limited to the early start of the sinus 
ostium from the sinus side before continuation into the infundibulum (Fig. 1b). Finally, the edited mask of each 
sinus was exported separately as a standard tessellation language (STL) file. The segmentation was performed by 
a dentomaxillofacial radiologist (NM) with seven years of experience and subsequently re-assessed by two other 
radiologists (KFV&RJ) with 15 and 25 years of experience respectively.

CNN model architecture and training.  Two 3D U-Net architecture were used25, both of which consisted 
of 4 encoder and 3 decoder blocks, 2 convolutions with a kernel size of 3 × 3 × 3, followed by a rectified linear 
unit (ReLU) activation and group normalization with 8 feature maps26. Thereafter, max pooling with kernel size 
2 × 2 × 2 by strides of two was applied after each encoder, allowing reduction of the resolution with a factor 2 in 

Table 1.   CBCT scanning parameters.

Device Number of scans Field of view (cm) Voxel size (mm)

Newtom VGi evo (Cefla, Imola, Italy) 71

24 × 19

16 × 16 0.30

15 × 12 0.25

10 × 10 0.10

8 × 8

3D Accuitomo 170 (J. Morita, Kyoto, Japan) 61

17 × 12

14 × 10 0.25

10 × 10 0.20

10 × 5 0.125

8 × 8
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all dimensions. Both networks were trained as a binary classifier (0 or 1) with a weighted Binary Cross Entropy 
Loss:

for each voxel n with ground truth value  yn = 0 or 1, and the predicted probability of the network = pn
A two-step pre-processing of the training dataset was applied. First, all scans were resampled at the same 

voxel size. Thereafter, to overcome the graphics processing unit (GPU) memory limitations, the full-size scan 
was down sampled to a fixed size.

The first 3D U-Net was used to provide roughly low-resolution segmentation for proposing 3D patches and 
cropped only those which belonged to the sinus. Later, those relevant patches were transferred to the second 3D 
U-Net where they were individually segmented and combined to create the full resolution segmentation map. 
Finally, binarization was applied and only the largest connected part was kept, followed by application of a march-
ing cubes algorithm on the binary image. The resultant mesh was smoothed to generate a 3D model (Fig. 2).

The model parameters were optimized with ADAM27 (an optimization algorithm for training deep learning 
models) having an initial learning rate of 1.25e−4. During training, random spatial augmentations (rotation, 
scaling, and elastic deformation) were applied. The validation dataset was used to define the early stopping which 
indicates a saturation point of the model where no further improvement can be noticed by the training set and 
more cases will lead to data overfitting. The CNN model was deployed to an online cloud-based platform called 
virtual patient creator (creator.relu.eu, Relu BV, Version October 2021) where users could upload DICOM dataset 
and obtain an automatic segmentation of the desired structure.

Testing of AI pipeline.  The testing of the CNN model was performed by uploading DICOM files from 
the test set to the virtual patient creator platform. The resulting automatic segmentation (Fig. 3) could be later 
downloaded in DICOM or STL file format. For clinical evaluation of the automatic segmentation, the authors 
developed the following classification criteria: A—perfect segmentation (no refinement was needed), B—very 
good segmentation (refinements without clinical relevance, slight over or under segmentation in regions other 
than the maxillary sinus floor), C—good segmentation (refinements that have some clinical relevance, slight 
over or under segmentation in the maxillary sinus floor region), D—deficient segmentation (considerable over 
or under segmentation, independent of the sinus region, with necessary repetition) and E—negative (the CNN 
model could not predict anything). Two observers (NM and KFV) evaluated all the cases, followed by an expert 
consensus (RJ). In cases where refinements were required, the STL file was imported into Mimics software and 
edited using the 3D tools tab. The resulting segmentation was denoted as refined segmentation.

LBCE = yn ∗ log
(

pn
)

+
(

1− yn
)

∗ log
(

1− pn
)

Figure 1.   (a)  Air mask creation using custom thresholding, (b)  The edited mask with 3D reconstruction 
(version 23.0, Materialise N.V., Leuven, Belgium).
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Evaluation metrics.  The evaluation metrics28,29 are outlined in Table 2. The comparison of outcome amongst 
the ground truth and automatic and refined segmentation was performed by the main observer on the whole 
testing set. A pilot of 10 scans were tested at first, which showed a Dice similarity coefficient (DSC) of 0.985 ± 004, 
Intersection over union (IoU) of 0.969 ± 0.007 and 95% Hausdorff Distance (HD) of 0.204 ± 0.018 mm. Based 
on these findings, the sample size of the testing set was increased up to 30 scans according to the central limit 
theorem (CLT)30.

Time efficiency.  The time required for the semi-automatic segmentation was calculated starting from opening 
the DICOM files in Mimics software till export of the STL file. For automatic segmentation, the algorithm auto-
matically calculated the time required to have a full resolution segmentation. The time for the refined segmen-

Figure 2.   Working principle of the 3D U-Net based segmentation model.

Figure 3.   The resultant automatic segmentation on virtual patient creator online platform (creator.relu.eu, Relu 
BV, Version October 2021).



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7523  | https://doi.org/10.1038/s41598-022-11483-3

www.nature.com/scientificreports/

tation was calculated similarly to that of semi-automatic segmentation and later added to the initial automatic 
segmentation time. The average time for each method was calculated based on the testing set sample.

Accuracy.  A voxel-wise comparison amongst ground truth, automatic and refined segmentation of the testing 
set was performed by applying a confusion matrix with four variables: true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN) voxels. Based on the aforementioned variables, the accuracy of the 
CNN model was assessed according to the metrics mentioned in Table 2.

Consistency.  Once the CNN model is trained it is deterministic; hence it was not evaluated for consistency. 
For illustration, one scan was uploaded twice on the platform and the resultant STLs were compared. Intra- and 
inter-observer consistency were calculated for the semi-automatic and refined segmentation. The intra-observer 
reliability of the main observer was calculated by re-segmenting 10 scans from the testing set with different pro-
tocols. For the inter-observer reliability, two observers (NM and KFV) performed the needed refinements, then 
the STL files were compared with each other.

Statistical analysis.  Data were analyzed with RStudio: Integrated Development Environment for R, ver-
sion 1.3.1093 (RStudio, PBC, Boston, MA). Mean and standard deviation was calculated for all evaluation met-
rics. A paired-sample t-test was performed with a significance level (p < 0.05) to compare timing required for 
semi-automatic and automatic segmentation of the testing set.

Results
Time efficiency.  The average time required for the semi-automatic segmentation was 60.8 min (3649.8 s) 
and 24.4  s for automatic segmentation, showing a significant reduction (p-value < 2.2e−16). Considering the 
refined data, around 30% of the testing set needed refinements (20% class B, 10% class C, no class D and E) with 
an average refinement time of 7.1 min (422.84 s). The automatic and refined segmentations were approximately 
149 and 9 times faster than the semi-automatic segmentation, respectively.

Accuracy.  Table 3 provides an overview of the accuracy metrics for automatic segmentation. Overall, the 
automatic segmentation showed a DSC of 98.4% and RMS of 0.21  mm in comparison to the ground truth, 
implying that the 3D volumes and models along with the surfaces were closely matched between them. (Fig. 4).

The comparison between automatic and refined segmentations showed a DSC of 99.6% and RMS of 0.21 mm 
indicating perfect overlap between them. The minimal difference meant that minor refinements were needed.

Consistency.  Table 4 shows the metrics for intra- and inter-observer reliability with a DSC of 98.4% and 
99.6% respectively. For the CNN model test–retest reliability, it had by default an identical match with a DSC 
value of 100%.

Discussion
CBCT imaging has been widely employed in the field of oral and maxillofacial radiology for the visualization 
of orofacial structures, pre-surgical planning and follow-up assessment11–13. It allows for a 3D evaluation that 
is crucial for an accurate diagnosis and management of certain pathologies affecting the maxillofacial complex. 
Volumetric (3D) assessment of the maxillary sinus not only enhances the diagnostic process but also permits 
creation of reconstructed virtual models for presurgical planning purposes including implant placement, sinus 
floor elevation, removal of (impacted) posterior teeth and/or root remnants, reconstructive and orthognathic 
surgical procedures. In this sense, an accurate segmentation of the sinus cavity is an essential step.

Manual segmentation is not a feasible task in a daily clinical practice since it is a time-consuming task and 
requires high operator experience. Semi-automatic segmentation techniques still require operator intervention 
for manual threshold selection. Additionally, the manual adjustments of segmented structures also require a 
considerable amount of time and may induce operator-based errors31. For overcoming the above-mentioned 

Table 2.   Metrics used for assessing accuracy and consistency.

Metric Legend Formula

Dice similarity coefficient (DSC)
Represents the overlap of voxels between volume X and volume Y 
divided by the total number of voxels in both of them. A DSC of 1 
indicates complete overlap

DSC(X,Y) = 2|X∩Y |
|X|+|Y | =

2TP
2TP+FP+FN

Intersection over Union (IoU)
Represents also the overlap of voxels between volume X and volume 
Y divided by their union. An IoU of 1 means a perfect overlapping 
segmentation

IoU(X,Y) = |X∩Y |
|X∪Y | =

TP
TP+FP+FN

95% Hausdorff distance (HD)
Represents the maximal distance between all pairs of voxels of volume 
X and volume Y. A HD of 0 mm indicates a perfect segmentation
95th percentile is used to eliminate the impact of a very small subset 
of outliers

dHausdorff (X,Y) = max

{

supxǫX inf yǫY d
(

x, y
)

, supyǫY inf xǫXd
(

x, y
)

}

95%HD = (min
yǫY

∣

∣

∣
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∣
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∣

2
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xǫX

∣

∣

∣
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∣
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∣
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)

Root mean square distance (RMS) Measures the imperfections of the fit between two surfaces in mm. An 
RMS of 0 mm indicates perfect match

RMS(x) =

√

1
n (x

2

1
+ x22 + · · · + x2n)

x = distance (mm) between two closest points of the two surfaces
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limitations and to provide a reproducible and consistent technique, the present study aimed to develop and vali-
date a novel automated maxillary sinus segmentation methodology on CBCT images using a CNN-based model.

The model in the current study was trained using data acquired by 2 CBCT devices (NewTom VGi evo and 
3D Accuitomo 170) with different scanning parameters. Furthermore, images both with and without metal 
artifacts were included for increasing its robustness. A comparison was performed between the CBCT devices 
by using the CNN model versus the ground truth, and no significant differences were observed. Both devices 
showed a high DSC value of 98.37% (NewTom VGi evo) and 98.43% (3D Accuitomo 170). Hence, the whole 
dataset was treated as one sample.

When comparing the performance of the automatic versus the semi-automatic technique, the CNN-model 
showed remarkable results in relation to time, accuracy and consistency. The automatic segmentation was 
approximately 149 times faster (24.4 s) than the semi-automatic approach (60.8 min). When considering all the 
evaluation metrics, the CNN model showed a high similarity to the ground truth (see Table 3).

Based on the proposed classification for the clinical evaluation of automatic segmentation, almost 70% of 
the testing set was classified as perfect segmentation (class A), with no refinements required. For cases classified 
as B or C, refinements were mainly associated with cases having mucosal thickening. No deficient or negative 

Table 3.   Accuracy assessment of automatic segmentation. DSC dice similarity coefficient, IoU intersection 
over union, HD hausdorff distance, RMS root mean square, SD standard deviation, Min minimal value, Max 
maximal value.

Metric Descriptive analysis Automatic vs ground truth Automatic vs refined

DSC

Mean 0.984 0.996

SD 0.004 0.004

Min 0.962 0.983

Max 0.991 0.999

IoU

Mean 0.968 0.992

SD 0.008 0.007

Min 0.926 0.967

Max 0.983 0.998

95% HD (mm)

Mean 0.232 0.109

SD 0.059 0.115

Min 0.200 0

Max 0.447 0.283

RMS (mm)

Mean 0.209 0.214

SD 0.072 0.123

Min 0.142 0.100

Max 0.445 0.372

Figure 4.   Overlap between automatic segmentation (yellow color) and ground truth (blue color) in 3 
orthogonal planes, RMS in mm between STL surfaces illustrated with a color map.
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predictions were present. Moreover, the small difference between automatic and refined segmentations (see 
Table 3) suggested that minimal refinements were needed. The inter-observer reliability for the refined segmen-
tation showed a DSC of 99.6% which implied consistency amongst observers. The models’ performance was 
also 100% consistent during repeated segmentation of the same case which is a great advantage to overcome 
human variability. As the human performance will always be variable each time a segmentation is performed. 
Additionally, the developed model was fully automatic without the need for any human intervention which also 
overcomes the issues of threshold leveling and grey scale variability.

To date, few researchers32–34 have investigated maxillary sinus segmentation from CBCT datasets with dif-
ferent study designs. Bui et al.32 investigated an automatic segmentation technique of the paranasal sinuses and 
the nasal cavity from 10 CBCT images. They applied a multi-step level coarse to fine active contour modelling 
and reported a dice of 95.7% in comparison to manual segmentation by considering experts as a ground truth. 
Neelapu et al.33 developed a knowledge-based algorithm for automatically segmenting the maxillary sinus from 
15 CBCT imaging scans. The authors compared five segmentation techniques following automatic contour ini-
tialization and reported a dice ranging between 80–90% for all the segmentation methods. Ham et al.34 proposed 
an automatic maxillary sinus segmentation technique using one 3D U-Net and found a DSC score of 92.8%. Even 
though a comparison with the aforementioned studies was difficult due to the variability in relation to CBCT 
devices, scanning protocol and study design, the currently proposed CNN model in the current study showed 
better results considering the metrics evaluated. Furthermore, the time needed for each segmentation method 
was clearly stated and sample size was justified, which have been rarely reported in the previous studies. Recent 
studies35,36 have reported on automatic segmentation of sinus mucosal thickening and pathological lesions, yet 
this was not the focus of our study.

The limitations of this study were similar to the already present challenges of artificial intelligence in 
dentistry21,37. Firstly, lack of data heterogeneity and model generalizability exists, which could be solved by incor-
porating data from different CBCT devices having variable scanning parameters. Secondly, the online platform 
only allowed visualization and export of the automatic segmentation, and a third-party software was required 
for performing the refinements. Recently, some editing tools have been added to the platform and additional 
features will be added soon to overcome this issue. Finally, the CNN model enabled to extract the normal clear 
sinus and separate the bony borders in cases with sinus thickening, however, it cannot delineate the soft tissue. 
Future work will focus on the pathological conditions of the maxillary sinus.

Table 4.   Mean and standard deviation for reliability assessment. DSC dice similarity coefficient, IoU 
intersection over union, HD hausdorff distance, RMS root mean square, SD standard deviation, Min minimal 
value, Max maximal value.

Metric
Descriptive 
analysis Intra-observer Inter-observer CNN model test–retest

DSC

Mean 0.984 0.996

1
SD 0.005 0.003

Min 0.974 0.987

Max 0.991 1

IoU

Mean 0.969 0.993

1
SD 0.008 0.006

Min 0.949 0.974

Max 0.982 1

95% HD 
(mm)

Mean 0.200 0.113

0
SD 0.021 0.121

Min 0.100 0

Max 0.321 0.346

RMS (mm)

Mean 0.155 0.113

0
SD 0.029 0.069

Min 0.100 0.010

Max 0.180 0.250

STL 
comparison 
map
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Conclusions
A novel 3D U-Net architecture CNN model was developed and validated for automatic segmentation and 3D 
virtual model creation of the maxillary sinus from CBCT imaging. Owing to its promising performance in rela-
tion to time, accuracy and consistency, it can represent a solid base for future studies by incorporation of patho-
logical conditions. An additional benefit of the model is the deployment to an online web-based user-interactive 
platform which could facilitate its application in clinical practice.
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