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KATP channel dependent heart 
multiome atlas
D. Kent Arrell1,2,3, Sungjo Park1,2,3,4, Satsuki Yamada1,2,3,5, Alexey E. Alekseev1,2,3,6, 
Armin Garmany1,2,3,7, Ryounghoon Jeon1,2,3, Ivan Vuckovic4,8, Jelena Zlatkovic Lindor1,3 & 
Andre Terzic1,2,3,9*

Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their 
cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel 
pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. 
Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss 
of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem 
mass spectrometry resolved 111 differentially expressed proteins and their expanded network 
neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric 
gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter 
of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class 
analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide 
(NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled 
metabolome and proteome revealed functional convergence and an integrated signature of disease 
susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, 
with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent 
vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive 
atlas of the KATP channel dependent landscape.

ATP sensitive potassium (KATP) channels operate as high fidelity rheostats in response to metabolic stress1–5. 
Abundant in the cardiomyocyte sarcolemma, where originally discovered6, KATP channels adjust membrane 
electrical activity to match cellular energetic demand7,8. Channel opening under diverse stressor challenges is a 
recognized cardioprotective event, with channel deficiency associated with poor outcome9–15. The KATP channel 
dependent molecular landscape, however, remains only partially understood.

Myocardial KATP channels assemble into a heteromeric complex of the KCNJ11 encoded Kir6.2 potassium 
conductive pore and the regulatory ATP binding cassette sulfonylurea receptor 2A (SUR2A) partner16–18. Channel 
metabolic sensing relies on intrinsic ATP mediated gating of Kir6.2, governed by ATP/ADP dependent confor-
mations of tandem SUR2A nucleotide binding domains19–21. Under physiological workload, hearts lacking KATP 
channels exhibit a switch in metabolic substrate and an augmented oxygen consumption, indicating excessive 
energy cost compared to hearts containing intact channels22,23. Channel linkage to the cellular bioenergetic 
machinery involves communication with energy shuttles facilitated by near equilibrium enzymatic transfer24,25. 
Messaging with NAD+/NADH interconverting enzymes (lactate dehydrogenase), phosphotransferring enzymes 
(creatine kinase and adenylate kinase), and glycolytic enzymes (glyceraldehyde-3-phosphate dehydrogenase, 
triose-phosphate isomerase, and pyruvate kinase) have been implicated in KATP channel contribution to cellular 
metabolism26–31. Comprehensive molecular profiling would enable decoding the full extent of the cardiac KATP 
channel interactome.

In this regard, systems biology approaches provide unbiased means of resolving the complex cellular 
milieu32,33. Downstream from genetic and epigenetic inputs, proteomic surveillance captures infrastructure 
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constituents while metabolomic assessment provides a readout of functional activity34–36. These complementary 
approaches facilitate expression analysis and function prioritization based on objective dataset interrogation37, 
and when used in conjunction provide greater insight into complex biological processes than can be achieved 
from either approach alone. Multiomics data offer extraction of distilled biological signatures, identification of 
cross-strata common denominators, and merged interpretation. Integrated consideration mitigates misinter-
pretation due to potential single perspective idiosyncrasy and can alleviate the risk of overlooking pertinent 
information. These attributes help address the molecular intricacy of the cardiovascular system38.

The present study drafts an integrated map of the cardiac plasmalemmal KATP channel dependent 
multiome, leveraging a systems strategy applied to a transgenic model lacking the channel pore. Parallel 
application of proteomics and metabolomics deciphered differential molecular expression segregating 
Kir6.2 knockout from wildtype hearts. Molecular reorganization induced by KATP channel loss prioritized 
a metabo-centric adaptation, handicapped by risk of compromised cardiac resilience. Corroborated in 
the corresponding plasma metabolome, the resolved multilevel cartography provides an expanded omics 
guide of KATP channel reliant cardiac homeostasis.

Results
Kir6.2 knockout deviates beyond KATP channels.  Kcnj11 ablation produced viable offspring 
that reached adulthood with no apparent adverse cardiac phenotype at the organ level (Fig. 1A). Adult 
(3–4  months) Kir6.2 KATP channel knockout hearts (KO; n = 7) did not differ from age, sex, and envi-
ronment matched wildtype (WT; n = 7) counterparts on echocardiography and catheterization. Left ven-
tricular end-diastolic/end-systolic dimensions, pressures, volumes, and ejection fraction were all compa-
rable in WT and KO (Fig. 1A). Concordant with KATP channel ablation, under whole-cell patch clamp, 
metabolic stress-induced outward current was evident in WT but not in KO cardiomyocytes (Fig. 1B). 
Mean current density provoked by the oxidative phosphorylation uncoupler 2-[2-[4-(trifluoromethoxy)
phenyl] hydrazinylidene]-propanedinitrile was 14.4 ± 1.5 pA/pF in WT (n = 7) versus 0.09 ± 0.08 pA/pF 
in KO (n = 6) cardiomyocytes (P = 0.0002). At the molecular level, high mass accuracy nano-flow liquid 
chromatography tandem mass spectrometry (LC–MS/MS) of ventricular tissue homogenates (WT, n = 10; 
KO, n = 10) identified 56,086 peptides assigned to 4846 proteins of which 4205 were quantifiable (Supple-
mentary Table 1). Resolved by label-free relative quantitation (median coefficient of variance: WT = 2.3%, 
KO = 2.4%), Kir6.2 protein was found abundant in WT but absent in KO (Fig.  1C). In addition to the 
discrete loss of channel pore expression, extensive KO proteome deviation away from WT was prominent 
(Fig. 1C). Kir6.2 deletion, while apparently phenotypically silent, causes molecular departure beyond the 
KATP channel proper.

Kir6.2 ablation restructures myocardial proteome.  Cardiac proteome remodeling imposed by 
Kir6.2 deletion segregated KO (n = 10) from WT (n = 10) hearts, as visualized by 3-D principal compo-
nent analysis (PCA, Fig. 2A). Contrasting WT, cardiac plasmalemmal KATP channel subunits were absent 
(Kir6.2) or significantly reduced (SUR2A, false discovery rate [FDR] P = 0.016) in KO (Fig.  2B). The 
distinct mitochondrial KATP channel subunits, Mitok (Ccdc51) and Mitosur (Abcb8), remained equivalent 
in WT and KO (see Supplementary Table  1). Of the 4205 quantifiable proteins, 111 were differentially 
expressed in KO versus WT (limma FDR corrected P < 0.05; Fig. 2C). The 68 upregulated and 43 downreg-
ulated proteins demarcated a distinct KO molecular substrate delineated by PCA loading plot (Fig. 2C). 
The resulting agglomerative heatmap distinguished the cohorts based on the differential proteome 
(Fig.  2D). The Kir6.2 dependent proteome changes spanned 11 primary biological process categories 
(Fig. 3A). Metabolic or catabolic processes harbored the greatest change, accounting for over 25% of all 
proteins (28 of 111, with 16 upregulated, 12 downregulated), followed by: signaling, transport, and motil-
ity (23%, 12 up, 14 down); immunity or inflammation (13%, 14 up); morphology or structure (9%, 9 up, 1 
down); stress or stimulus response (7%, 3 up, 5 down); protein post-translational modification (PTM) or 
processing (5%, 4 up, 2 down); transcription, epigenetics, or DNA related processes (5%, 3 up, 3 down); 
differentiation or development (5%, 1 up, 4 down); biosynthesis (4%, 2 up, 2 down); cell cycle (1%, 1 up); 
apoptosis or cell death (1%, 1 up); with 2 upregulated proteins uncharacterized (Fig. 3A). The spectrum 
of associated biological processes was validated at the network level, upon integration of the differential 
proteome within an expanded 239 node neighborhood composed of molecules with known interactions 
(Supplementary Figure, left). Gene ontology analysis of the network specified 223 associated biological 
processes enriched at P < 0.001 (Supplementary Figure, right, and Supplementary Table 2). Grouping of 
these processes further highlighted the prioritization of ‘Metabolism, Catabolism’, which harbored the 
largest proportion of enriched processes (> 27%) and exhibited the greatest extent of significance (−log 
harmonic mean P-value = 20.97) compared to other enriched clusters (Fig. 3B). Thus, metabolism-centric 
processes dominated the proteome makeover engendered by Kir6.2 ablation.

Reorganized cardiac metabolome distinguishes Kir6.2 absence.  From the WT (n = 10) and 
KO (n = 10) hearts, distinct metabotypes were independently resolved by high throughput chemometric 
surveillance using multimodal untargeted mass spectrometry, with prominent cohort segregation evident 
by 3-D PCA (Fig. 4A). Over one quarter of the measured cardiac metabolome (Supplementary Table 3) 
was significantly altered by Kir6.2 deletion (59/219 metabolites, P < 0.05), with 73% of changing metabo-
lites upregulated and 27% downregulated (Fig. 4B), underscored by differential metabolite loading plots in 
WT and KO (Fig. 4C). The KATP channel dependent metabolome, arrayed by unsupervised agglomerative 
clustering, spanned 6 of the 7 pathway macroclusters encompassing all measured metabolites. Downregu-
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Figure 1.   KATP channel Kir6.2 knockout deviates from wildtype at cardiac proteome level. (A) Cardiac ultrasound, left ventricular pressure, 
and left ventricular pressure–volume conductance showed equivalent chamber size/volume, wall thickness (IVS, inter-ventricular septum; 
PW, posterior wall), as well as systolic and diastolic function in wildtype (WT) and Kir6.2 knockout (KO). (B) In voltage-clamped isolated 
cardiomyocytes, 2-[2-[4-(trifluoromethoxy) phenyl] hydrazinylidene]-propanedinitrile (FCCP) activated outward current in WT (upper 
panel; tracing representative of 7 cells) but not in KO (lower panel; tracing representative of 6 cells). Plotted recordings are current values 
measured at the end of 200 ms long cell membrane depolarization from −40 to −20 mV, normalized to cell capacitance. Horizontal bars 
represent periods of FCCP application. Insets show whole-cell current recordings prior to and following FCCP application at points denoted 
by arrows. (C) Proteome deviation in KO (blue diamonds; n = 10) is evident as a shift up (increased) or down (decreased) compared to WT 
(orange squares; n = 10). Individual protein abundance is based on mean ion spectral intensity, plotted for the 4846 detected proteins and rank 
ordered by WT intensity (average of n = 10), with KO intensity (average of n = 10) at the corresponding x-coordinate. The respective positions 
of Kir6.2 mean spectral intensity in WT and KO are indicated.
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Figure 2.   KATP channel deficient proteome distinguished Kir6.2 knockout hearts. Differential proteomic profiling of wildtype (WT, 
n = 10) and Kir6.2 knockout (KO, n = 10) ventricular tissue extracts was carried out by data dependent analysis following nano-flow 
liquid chromatography tandem mass spectrometry. (A) KO segregated from WT in singular value decomposition 3-D principal 
component analysis (PCA), with PC1 representing 22%, PC2 9%, and PC3 7% of the variance yielded from the protein data input. (B) 
Kir6.2 expression was consistent in WT (orange boxplot, orange points) but undetected in KO (blue boxplot, blue points). The KATP 
channel partner subunit SUR2A was also reduced (down 1.94-fold, FDR P = 0.016) in KO (blue) compared to WT (orange). (C) In 
PCA loading plot of the differentially expressed proteins (with FDR corrected P < 0.05), 68 were upregulated (purple spheres, 61.3% 
of the altered proteome) and 43 downregulated (green spheres, 38.7% of changes) in KO, displaying polar apposition interspersed 
by unaltered proteins (gray tetrahedrons). (D) Clustering by correlation distance and average linkage, a z-score transformed 
agglomerative heatmap (rose = increased, green = decreased) of differentially expressed proteins distinguished WT from KO (top 
dendrogram: WT orange, KO blue). The position of Kir6.2 is denoted by an arrow.
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lated metabolites contributed to 4 and upregulated metabolites to all 6 pathway macroclusters (Fig. 4D). 
Kir6.2 deletion precipitated a distinct pattern of change. The percent of metabolites changed in each path-
way macrocluster ranged from 17 to 35% (Fig. 4D, upper inset). Specifically, the number of metabolites 
significantly changed were: 16 (12 up, 4 down) out of 53 in the amino acid cluster; 6 (up) out of 27 in the 
carbohydrate cluster; 2 (1 up, 1 down) out of 6 in the cofactor/vitamin cluster; 1 (up) out of 6 in the energy 
cluster; 26 (18 up, 8 down) out of 100 in the lipid cluster; and 8 (5 up, 3 down) out of 23 in the nucleotide 
cluster. Notably, 100% predictive classification accuracy across cohorts was achieved in Random Forest 
modeling using the top 30 differential metabolites (Fig. 4D, lower inset). Thus, the resolved chemometric 
fingerprint mapping the extent and diversity of metabolite changes readily distinguished KO from WT 
hearts, underscoring the impact of KATP channel deficiency on the cardiac metabolome.

Kir6.2 dependent metabolic prioritization.  Supervised classification of the metabolome by 
soft independent modeling of class analogy (SIMCA) validated KO and WT intra-group consistency and 
inter-cohort separation, as evident by partial least squares—discriminant analysis (PLS-DA; Fig. 5A). Sys-
tems modeling by SIMCA identified 28 metabolites with variable importance in projection (VIP) scores 
exceeding 1.5, affirming their prominence in group segregation (Fig. 5B). The top scoring metabolite was 
nicotinamide adenine dinucleotide (NAD+; reduced in KO by ≈ 30% from WT levels). In parallel, nicoti-
nate and nicotinamide metabolism was the top pathway for cohort discrimination. The Kir6.2 dependent 
differential metabolome was expanded to a 135 node scale-free interactome (Fig. 5C). Unsupervised clas-
sification by Metabolite Pathway Analysis (MetPA) of the interactome corroborated the preeminence of 
NAD+ and the nicotinate and nicotinamide pathway (Fig. 5D), with 75% of the most significant MetPA 
pathways confirmed among the top pathways modeled by VIP scoring (Fig.  5D, bold italicized font). 
While NAD+ levels were significantly reduced in response to Kir6.2 ablation (P = 1.37 × 10−7; Fig. 5E, left), 
flavin adenine dinucleotide (the other primary electron acceptor) did not differ between WT and KO 
cohorts (P = 0.55; Fig.  5E, right). Consistent with NAD+ prioritization by unsupervised and supervised 
systems interrogation, NAD+ was associated with the greatest number of metabolic and signaling path-
ways enriched in KO hearts (Fig.  6A,B). Notably, 61% (22/36) of enriched Ingenuity Pathway Analysis 
(IPA) canonical pathways were NAD+ related (Fig. 6A). Less preeminent was glycine linked to 12 enriched 
pathways, followed by l-glutamine (7 pathways), xanthine (6), l-tyrosine (5), and 4 or fewer IPA enriched 
pathways for the remaining 22 metabolites. Likewise, 95% (60/63) of enriched Metabolite Set Enrichment 
Analysis (MSEA) pathways were associated with NAD+ (Fig. 6B). In contrast, second-ranked glycine was 
associated with only 9 of the 63 pathways. Additional metabolites linking to MSEA enriched pathways 
included l-glutamine (7 pathways), glycerol-3-phosphate (6), and β-alanine (4), with 3 or fewer enriched 
pathways linking to each of the remaining 21 differential metabolites. Concordant with an NAD+-centric 
KO metabotype, the corresponding Kir6.2 dependent proteome displayed altered expression of 9 proteins 
associated with NAD+ biosynthesis, consumption, or utilization (Fig. 6C). Complementary interrogation 
thus identified altered metabolites prioritizing key pathways delineating the metabolic identity of the 
Kir6.2 deficient state.

Cardiac susceptibility imprinted in the remodeled multiome.  Integrated multiomics analy-
sis was used to query the influence of the remodeled metabolome and proteome in the setting of Kir6.2 
deficiency. Metabolome enrichment profiling in response to Kir6.2 ablation revealed 36 overrepresented 
functions, prioritizing metabolism (11 functions), followed by development (7), homeostasis and survival 
(6), signaling, transport, and motility (5), morphology and structure (4), as well as functions (3) involved 
in cell cycle, DNA, and gene expression (Fig.  7A, left). Of note, 97% of proteome-enriched functions 
(35/37) matched the metabolome-enriched functions, revealing synonymity across platform readouts 
(Fig.  7A, Venn diagram). Collective analysis of metabolome and proteome datasets unmasked disease 
and adverse outcome susceptibility in response to Kir6.2 ablation. Specifically, multiomics interrogation 
demonstrated an enrichment of metabolic disease, developmental and hereditary disorders, organismal 
injury, inflammatory and immunological dysfunction, and muscle-related disorder including cardiovas-
cular disease (Fig. 7B). Moreover, an array of cardiac adverse outcomes was overrepresented, with pre-
dicted susceptibility to enlargement, dysfunction, arrhythmia, dilation, tachycardia, necrosis/cell death, 
congenital heart anomaly, and damage (Fig. 7C). Thus, Kir6.2 deficit induces congruent remodeling of the 
proteome and metabolome, yielding a multiome imprint of cardiac compromise.

Plasma metabolome distinct in Kir6.2 knockout.  To assess the utility of peripheral plasma in 
distinguishing Kir6.2 KO, plasma metabolites from corresponding WT (n = 10) and KO (n = 10) mice were 
isolated and analyzed. Of the 257 measured plasma metabolites (Supplementary Table 4), a quarter (or 61 
metabolites) were significantly altered (P < 0.05) in response to Kir6.2 ablation. Supervised classification 
of the plasma metabolome by PLS-DA documented separation of KO from WT (Fig. 8A), with p-cresol 
sulfate and N-acetylornithine the top metabolites in predicting cohort discrimination. Unsupervised 
agglomerative clustering documented 34 elevated and 27 decreased metabolites, segregating WT and KO 
cohorts (Fig.  8B). Random Forest modeling achieved 95% predictive classification across cohorts (i.e., 
correctly allocating 10/10 WT and 9/10 KO; Fig. 8C, upper), and specified p-cresol sulfate and N-acetylor-
nithine as top ranked discriminatory metabolites (Fig. 8C, lower). Rank ordered by mean decrease accu-
racy scores, the top 30 differential plasma metabolites used for classification spanned metabolic pathways 
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(Fig. 8C, lower), with inter-group separation articulated by 3-D PCA (Fig. 8D). Thus, plasma profiling 
discriminated KO from WT at the metabolome level.

Distinct Kir6.2 knockout plasma reflects heart metabolome.  Functional enrichment analysis 
of the resolved differential plasma metabolome recapitulated 94% of the 36 functional traits enriched in 
the corresponding heart metabolome (Supplementary Table 5). Over one quarter of Kir6.2 dependent tis-
sue metabolome changes (16/59) were also detected as differentially expressed in plasma (Fig. 9A, upper). 
Of these common changes, 94% (15/16) exhibited concordant direction of change in response to Kir6.2 
deletion, with 10 upregulated and 5 downregulated metabolites spanning metabolic pathways (Fig. 9A, 
lower). This shared core included the metabolites prioritized by both SIMCA VIP scoring and Random 
Forest modeling, namely p-cresol sulfate and N-acetylornithine (see also Fig.  8A,C), offering a plasma 
readout of tissue level change (Fig. 9B). The differential plasma metabolome reproduced the disease and 
disorder enrichment associations prioritized in the corresponding heart tissue (Fig.  9C). Matching the 
extent of heart damage susceptibility predicted from the tissue metabolome, the plasma metabolome 
prognosticated cardiovascular adverse outcome (Fig.  9D). Tissue concordant differential metabolites 
within the plasma metabolome thus represent potential reporter molecules of latent cardiac susceptibility 
associated with Kir6.2 deficiency.

Discussion
The present study demonstrates that hearts deprived of the Kir6.2 KATP channel pore undergo a proteomic 
and metabolomic overhaul beyond constitutive channel subunits. The distinct proteome and metabolome 
conversion underpinned adaptation in hearts lacking functional KATP channels. Deep phenotyping char-
acterized a metabo-centric metamorphosis across the molecular infrastructure and biochemical output of 
Kir6.2 devoid hearts, compromised by an imprint of disease susceptibility. The resolved Kir6.2 dependent 
interactome highlights the centrality of intact KATP channels in proteome and metabolome maintenance 
ensuring heart resilience.

A systems biology strategy was here employed to acquire and interpret molecular information sampled 
in vivo across complementary proteomic and metabolomic dimensions39 (Fig. 10). Proteomic surveil-
lance of the myocardium identified over 56,000 peptides representing 4846 proteins, enabling untargeted 
capture of the Kir6.2 dependent expression change spectrum. The high stringency design pinpointed 111 
altered proteins across a range of vital cellular processes, demonstrating metabolic primacy of the remod-
eled KATP channel deficient heart proteome. Comprehensive protein cataloging extended the findings of 
more targeted approaches linking metabolism with the cardiac KATP channel at local partner, associated 
pathway, or subproteome levels40–45. Specificity of observed changes attributed to plasmalemmal KATP 
channel integrity was supported by unaltered expression of Mitok and Mitosur, in line with a distinct, 
non-redundant, channel identity in subcellular compartments46.

Underpinnings of metabolic prioritization were further mined by unbiased evaluation of the car-
diac KATP channel dependent metabolome. Multidimensional chemometric profiling revealed that 27% 
of ventricular metabolites were altered in response to Kir6.2 ablation, spanning metabolic families. The 
metabolomic changes provoked by Kir6.2 ablation are comparable in magnitude to those characterizing 
hearts with compromised energy regulators or failing hearts47,48.

Notably, Kir6.2 dependent metabolome and proteome enriched functions exhibited remarkable overlap 
(97% for the metabolome and 95% for the proteome), revealing convergence across platform readouts. 
Screening multiple omics layers from the same source, in conjunction with data inclusivity free of selection 
and interpretation bias, supports the validity and utility of considering unique yet interrelated datasets49,50. 
Taken together, the congruent interrogation over multiple molecular strata underscored the impact of 
KATP channels as an influential nexus in cardiac metabolism.

Figure 3.   Kir6.2 dependent cardiac proteome spans diverse biological processes and prioritizes metabolic 
reorganization. (A) The 111 proteins significantly altered (FDR corrected P < 0.05) in Kir6.2 knockout (KO, 
n = 10) relative to wildtype (WT, n = 10) heart extracts, including 68 upregulated (upper) and 43 downregulated 
(lower), are listed by gene symbol with log2 fold change (FC) values, and clustered into primary biological 
process categories from greatest to least extensive change. Proteins denoted ‘KO >  > ’ or ‘WT >  > ’ were 
detected in 50% or more of the specified cohort and undetected in the other group. Proteome impact was 
most prominent for ‘Metabolism, Catabolism’ (n = 28 proteins, 16 up and 12 down), followed by: ‘Signaling, 
Transport, and Motility’ (n = 26, 12 up, 14 down); ‘Immunity, Inflammation’ (n = 14 up); ‘Morphology, Structure’ 
(n = 10, 9 up, 1 down); ‘Stress, Stimulus Response’ (n = 8, 3 up, 5 down); ‘Protein PTMs, Processing’ (n = 6, 4 
up, 2 down); ‘Transcription, Epigenetics, DNA’ (n = 6, 3 up, 3 down); ‘Differentiation, Development’ (n = 5, 1 
up, 4 down); ‘Biosynthesis’ (n = 4, 2 up, 2 down); ‘Apoptosis, Cell Death’ (n = 1 up); ‘Cell Cycle’ (n = 1 up); and 2 
proteins that remain ‘Uncharacterized’. PTMs = post-translational modifications. (B) Bubble plot of the Kir6.2 
dependent differential proteome derived network (see Supplementary Figure) prioritized metabolism among 
enriched biological processes (P < 0.001). Enriched biological processes were grouped into distinct clusters (see 
also Supplementary Table 2). Circle diameters are proportional to the number of enriched biological process 
annotations per cluster and centered at the harmonic mean P-value (−log) for cluster constituents. Calculated 
as the reciprocal of the arithmetic mean of the reciprocal for all P-values in a cluster, the harmonic mean applies 
Bayesian modeling to account for mutually exclusive P-values that are not independent of one another.
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Figure 4.   Kir6.2 deletion reforms cardiac metabolome. Differential metabolomic profiling of wildtype (WT, n = 10) and Kir6.2 
knockout (KO, n = 10) ventricular tissue extracts was carried out by liquid and gas chromatography mass spectrometry. (A) Intra-
group clustering and inter-group segregation of WT from KO was evident by singular value decomposition 3-D principal component 
analysis (PCA), with PC1 representing 44%, PC2 10%, and PC3 8% of the variance yielded from the metabolic data input. (B) Of the 
219 endogenous metabolites identified, 59 differed significantly between KO and WT (P < 0.05), with 43 increased (19.6%) and 16 
decreased (7.3%). (C) PCA loading plots distinguished differentially up/down expressed metabolites. (D) Agglomerative clustering by 
correlation distance and average linkage of z-score transformed differential metabolites, with differential cohort upregulation (purple) 
and downregulation (green) in response to Kir6.2 deletion, was distributed across multiple metabolic pathways. Identified metabolites 
spanned 7 pathway macroclusters (D upper inset, with number of detected metabolites in each pathway indicated) with differential 
expression distributed across 6 of the 7, impacting 17–35% of detected metabolites per pathway macrocluster. Random Forest 
modeling of the top thirty differential metabolites accurately classified WT from KO (D lower inset).
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Across the breadth of KATP channel dependent reorganization, systems deconvolution prioritized the 
multivalent coenzyme NAD+ and its associated metabolic pathways. The decrease in NAD+ in Kir6.2 defi-
cient hearts was paralleled by change in NAD+ associated proteins, including upregulation of NAD+ salvage 
enzymes, namely the metazoan spot homologue 1 (Hddc3)51 and renalase (Rnls)52. Maintenance of NAD+ 
is vital to tissue homeostasis53,54, with myocardial NAD+ pool derangement associated with metabolic 
remodeling in heart failure and supplementation preserving cardiac performance55–57. Notably, NAD+ at 
physiological concentrations regulates KATP channel activity58, and a nicotinamide-rich diet upregulates 
KATP channel expression and increases myocardial resilience59. In this context, the present findings support 
a reciprocal relationship of KATP channels and metabolism, and reveal that the Kir6.2 null heart is typified 
by NAD+ deficit, a prominent feature of cardiomyopathy prone environments60.

Indeed, dual metabolome and proteome assessment of the Kir6.2 knockout heart exposed an acquired pre-
disposition to disease susceptibility. This vulnerability signature was herein evident in the young adult at an 
age apparently free from Kir6.2 dependent extracardiac confounders such as altered insulin secretion, glucose 
tolerance, and muscle properties61. The molecular imprint of heart disease susceptibility was present in advance 
of overt physiological dysfunction, suggesting that molecular reorganization in response to Kir6.2 deletion is a 
compensatory adaptation in the young adult animal. Documented independently or collectively across profiling 
modalities, the current multiomics findings build on initial single omic exploration of Kir6.2 loss62. The predictive 
imprint of disease risk is further reinforced by overt organ failure compromising KATP channel deficient hearts 
subjected to stress63–69. KATP channels are implicated in the maintenance of cellular homeostasis, recognized as 
early responders to metabolic challenge70. The mechanism by which Kir6.2 ablation mediates subcellular adapta-
tion needs further study. In principle the observed proteome and metabolome remodelling could be related to 
the energetically costly KO heart’s propensity for exaggerated Ca2+ loading9,11,12,22. Calcium overload has been 
directly implicated in cellular transformation at the protein and metabolite level71. Here none of the identified 
proteins involved in Ca2+ handling, regulation, or homeostasis differed in expression between WT and KO (see 
Supplemental Table 1). This would suggest that omic alterations could be mediated by a proclivity for Ca2+ load-
ing on a beat-to-beat basis, rather than a structural change across the Ca2+ regulatory proteome.

Corroborating the cardiac disease risk exposed at the tissue level, the resolved KATP channel dependent 
plasma metabolome independently reflected myocardial susceptibility. Diverse pathological processes associ-
ated with organ failure can be monitored by blood biomarkers, serving as molecular surrogates for early disease 
diagnosis, stratification, and detection at an asymptomatic state72. Among concordant differential metabolites 
shared between tissue and plasma, p-cresol sulfate and N-acetylornithine were consistently prioritized across 
applied modeling algorithms. Upregulation of p-cresol sulfate and downregulation of N-acetylornithine have 
been associated with cardiovascular disease, namely in (a)symptomatic cardiac dysfunction and incident heart 
failure73–76. These candidate biomarkers offer a clinically applicable and readily accessible source for detecting 
KATP channel dependent vulnerability.

Limitations in proteomic and metabolomic analyses may arise from small sample number, restricted data 
inclusivity, absence of cross-validation, or inadequate application of interrogation resources77–80. Here, quality 
control ensured that the extended cohort size used was adequately powered to capture distinct patterns at high 
resolution. Moreover, high throughput screening was applied without imposed constraints for inclusive data 
input, avoiding inadvertent biases. Examining datasets with, and extracting common signatures from, multi-
ple algorithms here provided added confidence in interpretation. Accordingly, supervised and unsupervised 
approaches were systematically employed following best practices, generating matching output across plat-
forms. Additionally, examination of the heart and plasma in a global deletion model must account for potential 
confounding effects arising from extracardiac influences. To mitigate this possibility in the present study where 
Kir6.2 expression in pancreas and skeletal muscle was also impacted, young adult mice (< 4 months of age) were 
chosen for analysis at an age when insulin secretion, glucose tolerance, and skeletal muscle properties are known 
to be equivalent between WT animals and those with Kir6.2 deletion61.

In conclusion, an atlas of KATP channel dependent interactome was here constructed using an unbiased 
systems strategy integrating proteome and metabolome strata. Multiomics surveillance of Kir6.2 null hearts 
mapped a metabo-centric landscape, exposing latent vulnerability further traceable in the plasma metabolome. 
The captured multidimensionality of the KATP channel reliant bioenergetic system offers a broadened perspective 
on a vital contributor to cardiac homeostasis.

Methods
Ethics approval.  Protocols were approved by the Mayo Clinic Institutional Animal Care and Use Com-
mittee, following National Institutes of Health guidelines. Reporting of animal studies here follows the recom-
mendations in the ARRIVE guidelines81. Mice were young adult (up to 4 month-old) male WT (C57BL6) and 
age-, sex-, environment-matched Kir6.2 null KATP channel KO counterparts. Of note, up to this age, KO mice 
maintain insulin secretion, glucose tolerance, and skeletal muscle properties within a normal range61.

In vivo physiology.  Group-housed sedentary mice (≤ 5 siblings per cage) received standard chow, with WT 
and KO exhibiting equivalent glycemic levels61. Cardiac structure and function were evaluated under 1–2% iso-
flurane anesthesia (n = 14). Left ventricular (LV) dimension and wall thickness were measured by echocardiog-
raphy M-mode parasternal long-axis view (MX400 transducer, Vevo3100 system; MS-400 transducer, Vevo2100; 
FUJIFILM VisualSonics, Toronto, Canada)82,83. Hemodynamics was assessed by LV catheterization (PVR-1045 
catheter, MPVS-400; PowerLab 8/30; Miller Instruments, Houston, TX; ADInstruments, Colorado Springs, CO). 
LV ejection fraction (EF) was calculated as EF% = 100 × (LVEDV − LVESV)/LVEDV, where LVEDV and LVESV 
are end‐diastolic and end‐systolic volumes84,85. First derivatives (dP/dT maximum and minimum) evaluated LV 
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systolic and diastolic pressure86. Difference between groups was assessed by Mann‐Whitney U test (JMP Pro 
14.1.0, SAS Institute Inc., Cary, NC). Data are presented as mean ± standard deviation with P < 0.05 significant.

Cell electrophysiology.  Cardiomyocytes were isolated by enzymatic dissociation87. Under anesthesia, fol-
lowing thoracotomy, the right ventricle was perfused with 7 mL of HEPES buffer (in mM: 10 4-(2-hydroxyethyl)-
1-piperazine ethanesulfonic acid [HEPES], pH 7.8; 130 NaCl; 5 KCl; 0.5 NaH2PO4; 10 glucose; 10 2,3-butan-
edione monoxime; 10 taurine) containing 5  mM EDTA. Following aortic clamping, the coronary arteries 
were perfused through the left ventricle with 10 mL HEPES buffer + 5 mM EDTA, followed by 3 mL HEPES 
buffer + 1 mM MgCl2, and 30–40 mL HEPES collagenase buffer + 1 mM MgCl2 (with 0.5 mg/ml collagenase II, 
0.5 mg/ml collagenase IV, and 0.05 mg/ml protease XIV). Released cells were filtered through 100 μm nylon 
mesh and gravity settled, with CaCl2 increased to 1.2 mM. Whole cell voltage-clamp was conducted by patch-
clamp amplifier (Axopatch 200B, Molecular Devices, San Jose, CA) for cardiomyocytes bathed in (in mM) 136.5 
NaCl, 5.4 KCl, 1.0 MgCl2, 5.5 glucose, and 10 HEPES–NaOH (pH 7.3) at 31 ± 0.5 °C using an HCC-100A tem-
perature controller (Dagan Corp., Minneapolis, MN). Pipettes (resistance: 4–5 MΩ) contained (in mM) 140 
KCl, 1 MgCl2, 5 EGTA-KOH, 5 HEPES–KOH, and 5 MgATP (pH 7.3). Stimulation protocol, data acquisition, 
and cell parameter determination were performed using BioQuest software88.

Multiomics sampling.  For molecular profile sampling, excised hearts were rinsed with ice-cold phosphate 
buffered saline. For proteomics, ventricular apex was placed in cryovials, snap frozen in liquid N2, and stored at 
−80 °C, with remaining ventricle snap frozen and stored at −80 °C for tissue metabolomics. For plasma metabo-
lomics, blood collected in cryovials containing 5 µL of 0.5 M EDTA was centrifuged at 2000×g (10 min at 4 °C), 
with supernatant transferred to fresh cryovials, frozen in liquid N2, and stored at −80 °C.

Proteomics.  Protein extraction.  Ventricular proteins were extracted by 3 rounds of homogenization and 
centrifugation in 150 µL of 25 mM HEPES, pH 7.4, Mini-Complete™ protease inhibitor (−)EDTA cocktail (Roche 
Applied Science, Indianapolis, IN), and 1% phosphatase inhibitor cocktails 2 and 3 (Sigma, St. Louis, MO) at 
4 °C, followed by 3 rounds of pellet extraction in 150 µL of 7 M urea, 2 M thiourea, and 2% 3-((3-cholamido-
propyl) dimethylammonio)-1-propanesulfonic acid89. Extracts were quantified by Bio-Rad protein assay (Bio-
Rad, Hercules, CA) using bovine γ-globulin standard. Samples (30 µg per extract) were resolved by 10.5–14% 
gradient Criterion Tris–HCL precast (Bio-Rad) sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 
stained with Coomassie blue R-250, with gel lanes sectioned for individual mass spectrometry runs.

Nano‑flow liquid chromatography tandem mass spectrometry.  Gel tranches were de-stained, with protein 
reduced, alkylated, digested with trypsin, and peptides extracted and dried89. Peptides were resuspended in 0.2% 
formic acid, 0.1% trifluoroacetic acid, and 0.002% zwittergent 3–16 (Calbiochem, San Diego, CA), and ana-
lyzed by nano-flow LC–MS/MS using a Q-Exactive Hybrid Quadrupole Orbitrap mass spectrometer (Thermo 
Fisher Scientific, Bremen, Germany) coupled to a Thermo UltiMate 3000 RSLCnano HPLC system. Peptides 
were loaded onto a 250 nL OPTI-PAK trap (Optimize Technologies, Oregon City, OR) packed with Michrom 
Magic C8, 5 µm solid phase (Michrom Bioresources, Auburn, CA). Chromatography was performed using 0.2% 
formic acid in solvents A (98% water, 2% acetonitrile) and B (80% acetonitrile, 10% isopropanol, 10% water), 
over a 2–45% B gradient for 60 min at 400 nL/min through a 100 µm × 35 cm PicoFrit column (New Objective, 
Woburn, MA) packed with Agilent Poroshell 120 EC-C18 (Agilent Scientific Instruments, Santa Clara, CA). 
MS1 survey scans 350–2000 m/z were acquired at 70,000 resolution targeting 3 × 106 ions and 60 ms maximum 
inject time, followed by data dependent high energy collisional dissociation MS2 on the top 15 ions at 17,500 
resolution targeting 2 × 105 ions with 60 ms maximum inject time, using dynamic exclusion of measured ions 
for 60 s.

Figure 5.   Systems interrogation of the KATP channel deficient metabolome. (A) Supervised classification of 
the tissue metabolome by partial least squares—discriminant analysis (PLS-DA) segregated wildtype (WT, 
n = 10) from Kir6.2 knockout (KO, n = 10) hearts, with (B) soft independent modelling of class analogy variable 
importance in projection (VIP) scores ranking nicotinamide adenine dinucleotide (NAD+) as the top scoring 
metabolite for cohort discrimination. (C) Pairwise interactions identified by Ingenuity Pathway Analysis for 
Kir6.2 dependent metabolome changes yielded a 135-node network comprising 902 edges. Network degree 
distribution (scatter plot) exhibited a scale-free topology, consistent with a biologically structured neighborhood 
of the KATP channel deficient metabolome. (D) Unsupervised interrogation of the metabolite interactome using 
MetaboAnalyst Metabolite Pathway Analysis (MetPA) yielded enrichment output synonymous with supervised 
modeling, independently prioritizing the nicotinate and nicotinamide pathway, while 9 of the 12 most 
significant pathways (bold italics) overlapped with PLS-DA findings. For each pathway, circle color and size are 
proportional to P-value and betweenness centrality, respectively, with the centrality metric defining differential 
metabolite contribution to shortest paths within the enriched pathway. (E) The significant decrease observed 
for NAD+ in Kir6.2 KO (left) occurred in the absence of change to the related electron acceptor flavin adenine 
dinucleotide (right). For pathways listed in (B) and (D): amino acids are indicated by their 3 letter abbreviations; 
3-P = 3-phosphate; PPP = pentose phosphate pathway; SAM = S-adenosyl methionine.
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Figure 6.   Cross platform validation of NAD+-dependent KATP channel deficiency. (A) Enriched pathways arising 
from the Kir6.2 knockout (KO) versus wildtype (WT) differential metabolome (n = 10 per cohort) were identified 
in Ingenuity Pathway Analysis canonical pathways (P < 0.05) documenting a predominant link to NAD+ amongst all 
27 differential metabolites associated with overrepresented pathways, with NAD+ linking to 22 of 36 pathways and 
other differentially expressed metabolites linking to 12 or fewer. (B) Validating cross-algorithm evidence of NAD+ 
dependence, Metabolite Set Enrichment Analysis specified NAD+ linkage to 60 of 63 enriched metabolic pathways 
(P < 0.05), whereas 26 other differential metabolites linked to 9 or fewer pathways each. (C) Within the corresponding 
proteome (n = 10 per cohort), 9 differentially expressed proteins were NAD+ associated. Listed by gene symbol, 
biological processes, and protein name (mito. = mitochondrial), NAD+ associated proteins were rank ordered by 
relative abundance in KO versus WT, with 8 linked to ‘Metabolism, Catabolism’ processes.
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Mass spectrometry data analysis.  Raw files consisting of 10 LC–MS/MS runs per sample were processed in 
MaxQuant 1.6.7.090, using Andromeda search engine for label-free quantification (LFQ), with applied fastLFQ 
settings. Spectra were searched against UniProt mouse entries, combining forward and reverse peptides as 
decoys to estimate FDR, with peptide match and protein assignment FDR set at 0.01. Search parameters included 
trypsin/P digestion, cysteine carbamido-methylation, and variable modifications of amino-terminal protein 
acetylation, glutamate to pyro-glutamate, and methionine oxidation. Maximum charge was + 7, with up to 3 
dynamic modifications, maximum of 2 missed cleavages, and minimum of 7 amino acids. Mass tolerance was 
20 and 10 ppm for first and main searches. LFQ identification was maximized by MaxQuant’s ‘Match Between 
Runs’ feature, assigning identified spectra from one LC–MS/MS run to corresponding aligned mass and reten-
tion time spectra in other runs. Peptides were rolled into protein assignments, requiring ≥ 2 peptides per protein.

Differential expression.  Relative protein abundance was calculated in R (cran.r-project.org) using Proteus91, 
for limma analysis92 of label-free MaxQuant data. Peptide information acquired from MaxQuant evidence files 
was filtered for contaminants and reverse peptides without imputing missing values. Peptides were rolled into 
corresponding proteins, data median normalized, and the high-flyer method applied to calculate relative protein 
abundance. Proteins with FDR corrected P < 0.05 were considered differentially expressed.

Metabolomics.  Tissue (> 50 mg) and plasma (> 150 µL) metabolites were processed for untargeted gas chro-
matography (GC)/MS, and for positive and negative ion mode liquid chromatography (+ LC and − LC)/MS 
(Metabolon, Research Triangle Park, NC). Protein was removed using organic and aqueous buffers, placed on a 
TurboVap® (Zymark, Hopkinton, MA), frozen, and small molecules dried under vacuum.

Gas chromatography mass spectrometry.  For GC/MS of volatile metabolites, samples were re-dried under vac-
uum prior to derivatization under N2 using bistrimethyl-silyl-triflouroacetamide. Samples were analyzed on a 
Thermo-Finnigan Trace DSQ single-quadrupole MS by electron impact ionization using a 5% phenyl GC col-
umn with a 40–300 °C ramp over 16 min.

Liquid chromatography mass spectrometry.  LC/MS samples were resolved on a Waters ACQUITY UPLC and 
Thermo-Finnigan LTQ-FT mass spectrometer. For + LC/MS and − LC/MS, extracts were gradient eluted using 
water and methanol buffers containing 0.1% formic acid or 6.5 mM ammonium bicarbonate, respectively, alter-
nating between MS1 and MS2 injection scans using dynamic exclusion.

Identity and expression.  Metabolites were identified by matching spectral chromatographic elution proper-
ties to Metabolon’s curated library. Expression values were log transformed, and imputation applied using the 
minimum measured value. Random Forest classification was carried out to model individual cohort allocation, 
generating decision tree ensembles of the top 30 predictive metabolites. Boxplots of metabolite expression were 
generated with JMP 14.1.0 (SAS Institute Inc., Cary, NC). Statistical analysis was performed in R, using Welch’s 
Two-Sample t-test with P < 0.05 significant.

Systems bioinformatics.  Clustering.  Hierarchical agglomerative clustering (with z-score transformed 
normalization) and PCA visualization were conducted using ClustVis93. For 3-D PCA, principal components 
were plotted in Spotfire 10.0.0 (TIBCO, Palo Alto, CA).

Soft independent modeling of class analogy.  Metabolome grouping and class membership was predicted by 
soft independent modeling of class analogy (SIMCA 15.0.2, Sartorius, Bohemia, NY) using PLS-DA. Individual 
metabolite PLS-DA contributions were rank ordered by VIP scores.

Functional enrichment.  Differential metabolome interrogation was carried out by MSEA and MetPA within 
MetaboAnalyst 4.0 (metaboanalyst.ca)94. Using Human Metabolome Database (HMDB) identifiers, normalized 
expression values were analyzed by MSEA, screening Small Molecule Pathway Database (smpdb.ca) libraries. 
For pathway analysis, the HMDB identifier expression matrix was uploaded in MetPA, surveying the Kyoto 
Encyclopedia of Genes and Genomes Mus musculus metabolic pathway library. In MetPA a global enrichment 
test was applied, with calculation of the relative betweenness centrality, a network topological parameter of 
metabolite contribution to shortest paths within the enriched pathway. The entire library served as reference for 
MSEA and MetPA calculations.
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Pathway and network analysis.  Proteins and metabolites were submitted to IPA (QIAGEN Bioinformatics, 
Hilden, Germany), prescribing cutoffs of corrected P < 0.05 for proteins, P < 0.05 for metabolites. IPA output 
included: enriched canonical pathways; molecular, cellular, and physiological functions; diseases and disor-
ders; cardiac adverse outcomes; and network interactions. Significance was calculated using Fisher’s Exact Test, 
screening proteins against the gene background and metabolites against the compound library, or both when 
interpreting merged data. Merged pairwise interactions generated composite networks, exported to Cytoscape 
3.8.295. In Cytoscape, NetworkAnalyzer yielded degree distributions to evaluate network topology96, with Gene 
Ontology (GO) Biological Process enrichment assessed in BiNGO (Biological Network Gene Ontology), apply-
ing a hypergeometric distribution and Benjamini–Hochberg FDR correction97. Enriched processes were clus-
tered and visualized as a bubble plot, with bubble diameters proportional to the number of annotations and 
vertically centered at the harmonic mean P-value98.

Figure 7.   Metabolome and proteome convergence pinpoints acquired disease risk in KATP channel deficient 
hearts. Kir6.2 knockout (n = 10) versus wildtype (n = 10) differential metabolome, differential proteome, 
and merged multiomics integration were interrogated by Ingenuity Pathway Analysis (IPA). (A) Differential 
metabolome enriched cellular functions (left, P < 0.05) encompassed metabolism (11 functions), followed 
in frequency by development (7), homeostasis and survival (6), signaling, transport, and motility (5), 
morphology and structure (4), and cell cycle, DNA, gene expression functions (3). Differential proteome 
enriched cellular functions (right, P < 0.05) were highly synonymous, with 37 enriched functions matching 
97% (35/36) of enriched metabolome functions (center, Venn diagram). Rearranged relative to metabolome 
ranking, proteome enrichment likewise exhibited a plurality of metabolism functions (10), along with 
development (7), homeostasis and survival (6), signaling, transport, and motility (5), cell cycle, DNA, gene 
expression functions (5), and morphology and structure (4). replic. = replication; recomb. = recombination; 
transcript. = transcriptional. (B,C) Integrated differential metabolome and proteome data were surveyed in IPA 
for disease and adverse outcome associations. (B) KATP channel deficiency enriched a collection of diseases 
and disorders, including metabolic disease, developmental and hereditary disorders, organismal injury, 
inflammation, and immunological dysfunction, in the context of muscle-related cardiovascular disease. (C) 
The KATP channel deficient profile predicted susceptibility to cardiac outcomes, with adverse functions ranging 
across enlargement, dysfunction, arrhythmia, dilation, tachycardia, necrosis/cell death, congenital heart 
anomaly, and damage.

◂
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Figure 8.   Kir6.2 knockout alters the plasma metabolome. Metabolomic profiling was carried out by liquid and gas 
chromatography mass spectrometry on plasma from 10 wildtype (WT) and 10 Kir6.2 knockout (KO) animals. (A) Supervised 
classification of the 257 identified plasma metabolites by partial least squares—discriminant analysis documented separation 
between KO and WT, ranking metabolites based on variable importance in projection scores. (B) Nearly one quarter of 
the resolved plasma metabolome (61/257 metabolites, or 23.7%) was differentially expressed in KO relative to WT, with 34 
upregulated (purple) and 27 downregulated (green), separating cohorts by z-score transformed agglomerative clustering by 
correlation distance and average linkage. (C) Random Forest ensembles of decision trees documented 95% accuracy in predictive 
classification of WT and KO. The 30 differential plasma metabolites exhibiting the largest contribution to classification, rank 
ordered by mean decrease accuracy scores, spanned metabolic pathways. (D) Documenting the discriminatory resolution of 
differential plasma metabolites, singular value decomposition 3-D principal component analysis segregated KO from WT.
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Figure 9.   Concordant Kir6.2 knockout plasma and tissue metabolome. (A) Overlap between tissue and 
corresponding plasma of Kir6.2 knockout (KO; n = 10) versus wildtype (WT; n = 10) metabolomes identified 
15 shared concordant differential metabolites. Overlapping core metabolites are members of distinct metabolic 
pathways, primarily associated with amino acid and lipid metabolism. (B) WT and KO plasma and tissue 
spectral intensities were cross-referenced for p-cresol sulfate (left) and N-acetylornithine (right), the top ranking 
metabolites upregulated and downregulated in KO versus WT as modeled by soft independent modeling of class 
analogy variable importance in projection (VIP) scoring and Random Forest (RF) classification. (C) Plasma 
and tissue Kir6.2 dependent metabolomes yielded matching disease and disorder profiles, with (D) equivalent 
magnitude of predicted cardiovascular adverse outcome.
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