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Phase retrieval based on deep 
learning in grating interferometer
Ohsung Oh1, Youngju Kim2,3, Daeseung Kim1, Daniel. S. Hussey3 & Seung Wook Lee1*

Grating interferometry is a promising technique to obtain differential phase contrast images with 
illumination source of low intrinsic transverse coherence. However, retrieving the phase contrast 
image from the differential phase contrast image is difficult due to the accumulated noise and artifacts 
from the differential phase contrast image (DPCI) reconstruction. In this paper, we implemented a 
deep learning-based phase retrieval method to suppress these artifacts. Conventional deep learning 
based denoising requires noise/clean image pair, but it is not feasible to obtain sufficient number of 
clean images for grating interferometry. In this paper, we apply a recently developed neural network 
called Noise2Noise (N2N) that uses noise/noise image pairs for training. We obtained many DPCIs 
through combination of phase stepping images, and these were used as input/target pairs for N2N 
training. The application of the N2N network to simulated and measured DPCI showed that the phase 
contrast images were retrieved with strongly suppressed phase retrieval artifacts. These results can be 
used in grating interferometer applications which uses phase stepping method.

Lab-based X-ray imaging is a widely employed, non-destructive imaging modality finding various applications 
in clinical and biological  areas1–3. Conventional transmission attenuation imaging provides limited information 
about an object. X-ray grating interferometer is a method to obtain more information about the object effectively. 
This method can use not only synchrotron  sources2,4, but also conventional X-ray  sources5,6, neutron  sources7–11, 
etc. We obtain three types of images through X-ray grating interferometer which include the transmission, the 
phase contrast, and dark-field images using phase stepping  method12. The interactions between the X-ray and the 
object are described as the complex refractive index n ( = 1− δ + iβ ), where the imaginary part β is related to the 
absorption and the real part δ is related to the phase shift of the objects. In the low energy region, δ is about 1,000 
times larger than β for low Z materials, such as soft tissues, polymers,  etc1,5,13. Therefore, the phase information 
is more sensitive and provides higher contrast than the absorption information in soft materials. However, the 
phase contrast image using grating interferometer is not phase contrast image (PCI), but it is one-dimensionally 
differentiated. The differential phase contrast image (DPCI) is strong in edge position, but it requires retrieving 
phase contrast images for quantitative analysis.

There are several methods for retrieving phase information, such as direct integration,  filtering14, two-direc-
tional  method15,16, and non-linear regularization  method17,18, etc. Direct integration (shown in Fig. 1) is the 
simplest method to phase retrieval, but it generates severe artifacts in the PCI, so one cannot use this method 
directly. Filtering methods remove stripe artifacts using filter functions in the  PCIs14. These methods are also fast 
and simple, but the resulting images are blurry, of poor visual image quality, and often contain systematic noise. 
The two-directional method uses two DPCI images which are obtained along two-orthogonal  directions15,16. 
This method can yield high quality images compared to other methods, but it needs additional DPCI image. It 
requires additional scan time, and it poses the dose problem and the grating alignment problem compared to 
one-directional method. The non-linear regularization method, which is briefly described in the Methods section 
below, is retrieving DPCI using an iterative  method17. This method uses an appropriate cost function to reduce 
the stripe artifacts and the DPCI is retrieved by minimizing it. It shows better results than filtering methods, but 
it often introduces image artifacts.

Deep learning methods are promising modeling  techniques19–28 due to their accuracy enabled by the ongo-
ing improvement of graphical processing unit (GPU) hardware. These methods have been developed for many 
computer vision tasks, such as image  classification21,22,  segmentation23,24, artifact  removal25,26,  denoising27,28, etc. 
In a published study, a deep learning technique for phase retrieval using the filtered image as an input and the 
reference image as a target was  used29. Most deep learning methods are data-driven, and require preparation of 
training data, for instance, noise/clean image pairs for denoising algorithms. However, it is often hard or impos-
sible to prepare noise-free real data, therefore it is impractical for real applications. Recently, the Noise2Noise 

OPEN

1School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea. 2Department 
of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA. 3Neutron Physics Group, 
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. *email: seunglee@pusan.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10551-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6739  | https://doi.org/10.1038/s41598-022-10551-y

www.nature.com/scientificreports/

(N2N) technique have been developed for denoising, which uses noise/noise image pairs, and we adapted this 
technique for phase retrieval in grating  interferometry30,31. Grating interferometry uses phase stepping of a 
moiré pattern and subsequent fitting to obtain the transmission, DPCI and dark-field images, with about 10 raw 
phase step images typically acquired. We used these phase stepping images to obtain a lot of noisy DPCIs by 
combination. The proposed N2N network consists of a dual stream. The base stream uses the transmission and 
the dark-field images as an input and the detail stream uses the DPCIs as an input. This architecture produces a 
phase contrast image with reduced noise and artifacts and reduces spatial blurring.

Results
The schematic of the proposed method is shown in Fig. 2. We obtained a set of phase stepping images with and 
without samples using a grating interferometer with a sinusoidal model of the signal shape. The numerical phan-
tom was created for simulation, and we obtained phase stepping images, using the same signal model. Training 
of the N2N model requires many noisy images with the same expected values. We obtained the noisy DPCIs 
using a combination of the phase stepping images, and these images were used as network inputs and targets. The 
results of the Shepp-Logan phantom obtained from MATLAB are shown in Fig. 3. We compared the resulting 
image to the results obtained by direct integration, wavelet-Fourier (WF)  filtering14, and an iterative  method32. 
The peak-to-noise ratio (PSNR) and the structure similarity (SSIM) index are displayed in the results. There are 
several types of noises and artifacts in the DPCIs, including background noise and a moiré artifact due to inter-
ferometer alignment error. The direct integration result shows that these noise sources accumulate and produce 
very poor image quality. WF filtering can remove the horizontally accumulated artifacts, however, it is limited 
to removing only one directional noise, and hence the result is also of poor visual image quality. The iterative 
method minimizes a cost function to retrieve phase information, and it yields high quality of the retrieved phase 

Figure 1.  The phase images from grating interferometer. (a) The differential phase contrast image, (b) the 
retrieved phase image using direct integration.

Figure 2.  Schematic of deep learning-based phase retrieval in grating interferometer.
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information except from horizontally blurry regions. This is because the DPCI we obtain is a one-directionally 
differentiated image. Therefore, the horizontal line was not retrieved well. The proposed method achieved better 
results compared to other methods, with even preserving the horizontal features. The network used in this study 
leveraged not only DPCIs, but also transmission and dark-field images. The transmission and dark-field images 
can help to preserve shapes of the phase information. The quantitative analysis showed that the result using the 
deep learning method is of the highest visual quality. We also used the “peppers image” from USC-SIPI image 
database which is known for many high frequency features and more complex shapes than the Shepp-Logan 
phantom. The results presented in Fig. 4 show that the phase information is well retrieved even in the case of a 
complex scene. The area in the blue box has features shown only in the transmission image, and that in the red 
box only in the PCI. The results show that the feature in the red box uniquely exiting in the PCI is well preserved 
in the proposed method while that in the blue box uniquely existing the transmission image has little effect the 
retrieved PCI. In these results, the N2N network can be employed on any grating interferometry dataset.

For measured data, we employed images acquired from two separate X-ray grating interferometers and one 
neutron grating interferometer. The first X-ray grating interferometer is a conventional Talbot-Lau interferometer 
(TLI) in which  G1 is close to  G2 rather than  G0

3,15. The second X-ray TLI employed the symmetric geometry in 
which  G1 is positioned to middle of the  system8,10,33. A conventional TLI has the advantage to obtain high spatial 
resolution images, and symmetric TLI has the advantage to obtain highly sensitivity  DPCI34. Training datasets 
were created through random combinations of half of the phase step images for each sample. Figure 5 shows 
the X-ray TLI results of a flower, a cicada, a leaf, with the first and second row obtained using the conventional 
geometry, and the third row is obtained from the symmetric geometry. Direct integration method results in very 
poor image quality, with no discernable detail in the PCI. The WF filtering technique also results in very low 
PCI quality. The iterative method yields a better PCI than the direct integration and WF filtering, where there 
are many more discernable features. However, the proposed method can provide significantly better estimates 
of the phase information compared to other retrieving methods. The resulting PCI has a similar shape as the 
transmission image, but it has different contrast and details. Therefore, it helps to obtain various information 
about the objects.

We also analyzed data from a neutron grating interferometer setup. The samples were coins and a step sample 
composed of brass and copper as shown in Figs. 6h and 7h. Usually, neutron images are noisier than X-ray images 
due to the low flux of neutron. Figures 6 and 7 compare the results of the various phase retrieval methods. Similar 
to the X-ray TLI results, the proposed method produces superior image quality and PCI estimates.

Lastly, we analyze X-ray TLI images of a circuit board. In this case, the circuit board is larger than the field-of-
view (FOV). When analyzing an object that is larger than the TLI FOV, it is not possible to obtain the boundary 
condition of zero phase, and we don’t set the air region, and the PCI may have low image quality. Figure 8 shows 
the retrieved PCI of the circuit board by the proposed method. The retrieved phase is of good quality even though 
mask images don’t exist. The good quality is attributed to the fact that transmission and the dark-field images 
used as the inputs of the network have similar shapes to the phase image.

Figure 3.  Comparison results for numerical phantom image. (a) Reference, (b) direct integration, (c) Wavelet-
Fourier filtering, (d) iterative method, (e) The proposed method, (f) transmission. The display window for (f) is 
[0, 0.1], the others is [0, 1], respectively. The PSNR and SSIM values are displayed in the images.
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Discussion
The phase retrieval in grating interferometer is one of the important parts for material analysis. However, its use 
is limited for many reasons, such as motor control error, non-uniform phase coefficient, etc. which often generate 
severe image artifacts. In this study, we implemented the deep learning method to retrieve the phase contrast 
image produced by grating interferometers. We showed that this method has several advantages compared other 

Figure 4.  Comparison results for peppers image from USC-SIPI image database. (a) Reference, (b) direct 
integration, (c) Wavelet-Fourier filtering, (d) iterative method, (e) The proposed method, (f) transmission. The 
display window for (f) is [0, 0.1], the others is [0, 1], respectively. The PSNR and SSIM values are displayed in 
the images. The blue and red area show the points in the transmission image and the phase contrast image, 
respectively.

Figure 5.  The X-ray grating interferometer comparison results. (a) DPCI, (b) direct integration, (c) WF 
filtering, (d) iterative method, (e) the proposed method, (f), transmission. The display windows are same for (b–
e), and the display window of the first and third images of (f) are [0, 0.1], and the second is [0, 1], respectively. 
The variable M denotes the total phase stepping number. The red rectangle regions are selected ROIs.
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commonly employed phase retrieval methods. First, one can obtain a high-quality PCI with fast acquisition time 
if the network is previously trained. Second, the N2N deep learning network does not require pseudo-images 
for training since the N2N does not require clean images and can operate on real data directly. The proposed 
method can use noisy DPCIs using combination of the phase stepping images, and it is possible to train networks 
which are fitted for real data. However, there are some limitations to this method. First, the noise and artifacts 
in the images are not perfectly removed, and some percentage of them still remain in the images. In the pub-
lished  paper31, the condition of using N2N is that the dataset is sufficiently large and the conditional expectation 
between paired noisy images is zero. It means that the noises between each image pair should be zero-mean and 
independent of each other. In practice, the images used in this paper do not satisfy this condition. However, this 
condition can be approximately satisfied when the phase stepping number is very large. But due to the radia-
tion dose problem, the value of “very large” and the amount of allowed radiation form a trade-off relationship. 
Second, we should set mask image before training. The mask images in this paper were obtained manually using 
threshold to the images. Nonetheless, the manual threshold method can be replaced by advanced and automatic 
methods for creating mask images.

Conclusion
The grating interferometer can obtain the information about the objects through various types of the images, and 
it is important to analyze the information in the images using proper methods. In this study, we implemented 
a deep learning-based phase retrieval method for grating interferometry. This method can be used both with 
simulation and measured data; it produces better image quality than conventional methods and has the advan-
tage of being applicable to any grating interferometer employing the phase stepping method regardless of the 
radiation sources such as X-ray and neutron. We believe that this method will be an effective tool to retrieve the 
PCI from the DPCI, and it will improve the analysis of complex objects.

Methods
Talbot–Lau interferometer. The regular TLI uses three gratings: a source grating  G0, a phase grating  G1, 
an analyzer grating  G2. The TLI uses diffraction that occurs when X-ray beam passes through the  G1, and this 
diffraction pattern is repeated with certain distance by Talbot effect. However, the intensity pattern is usually 
smaller than the detector pixel size, the  G2 grating is used to make moiré fringe. This pattern is periodically 

Figure 6.  Comparison of PCI retrieval from neutron TLI images of coins. (a) Transmission, (b) DPCI, (c) dark-
field, (d) direct integration, (e) WF filtering, (f) iterative method, (g) the proposed method, (h) visual image. 
The display windows are same for (d–g). The total phase stepping number is eight.
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changed with the  G1 is moving a its period, and these changes are recorded called phase stepping method. These 
phase stepping images which changes intensity periodically are represented as sine curve that are described by

(1)Iref = a0,ref + a1,ref sin

(
2π(k + ηk,ref )

M
+ θref

)

(2)Isam = a0,sam + a1,samsin

(
2π(k + ηk,sam)

M
+ θsam

)

Figure 7.  Comparison of PCI retrieval from neutron TLI images of brass and copper steps. (a) transmission, 
(b) DPCI, (c) dark-field, (d) direct integration, (e) WF filtering, (f) iterative method, (g) the proposed method, 
(h) visual image. The display window is [− 1, 1] for (d), (e), (f), and [0, 1] for (g). The total phase stepping 
number is eight.

Figure 8.  The grating interferometer results of the circuit sample. (a) Transmission, (b) The retrieved phase, (c) 
the dark-field. Red arrows denote missing information which cannot see in the transmission image. The phase 
information was retrieved with quite good quality even though there is no prior information of air region.
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where Iref , Isam denote the intensity without and with samples, and a0, a1, θ denote DC offset, amplitude, and the 
phase coefficient, respectively. M is a total phase stepping number, and k = 1, 2, …, M. ηk is a mechanical error 
term that occurs the grating is moved to perform phase stepping. And we used least-square  method35 for sine 
curve fitting shown as

where I and Î  denote the fitted images and the measured images, respectively. The transmission, DPCI, dark-field 
images can be calculated from the fitted parameters as follows:

Phase retrieval method. While the transmission image and the dark-field image can be obtained directly 
from the phase stepping images, however, the PCI we can obtain is one-dimensionally differentiated. The math-
ematical expression of phase retrieval is shown as

where φ and ϕ denote a PCI and a DPCI, respectively, and c is a constant given specification of grating interfer-
ometer system, n denotes the noise. If the DPCI is noise-free, the PCI is retrieved using simple one-dimensional 
integration and there are no noises in the PCI. However, in most cases, there are moiré artifacts due to the motion 
of the grating and noises in DPCIs, and these are accumulated during integration. Therefore, we do not use one-
dimensional integration directly, and need to optimize the images using other methods.

where D denotes a one-dimensional first-order derivative operator, and Dx is a derivative operator in horizontal 
direction. And w is the regularization term. This cost function can be reformulated as this unconstrained  form17.

where TV is total variation operator of the images, and M is a mask function that denotes prior information for 
air region. The first term of regularization term is total variation (TV) term, which is for denoising in PCIs, and 
the second term is binary term, which is for DC offset calibration. The selection of these parameters is critical 
for image quality. In this study, we manually set the mask images using threshold to the transmission, DPCI, 
dark-field images. And we used alternating direction method of multipliers (ADMM) for phase retrieval with 
�1 = 0.001 and �2 = 1, respectively.

In this paper, we changed the cost-function to the deep learning form:

where fθ
(
x̂i
)
 denotes the deep learning network outputs. We used the following cost-function for phase retrieval. 

We used the same parameters to Eq. (10).

Hardware setup. X‑ray grating interferometer. We installed two types X-ray TLI setups in a laboratory. 
In case of the first setup, we used an open-type rotating anode X-ray tube with mean energy 28.0 keV, and an 
energy-integrating flat-panel type detector with pixel size of 49.6 μm. And all gratings have period of 6.0 μm. The 
all distance between three gratings were set to 610.0 mm. The second X-ray grating interferometer setup includes 
a closed-type X-ray tube with mean energy 23.0 keV, and a flat-panel detector which has same specification as 
the first setup. The  G0,  G1,  G2 gratings have period of 10.0 μm, 3.2 μm, 4.8 μm, respectively. The distance between 
 G0 and  G1 is 300 mm and the distance between  G1 and  G2 is 144.0 mm.

(3)min
a0,a1,θ

M∑

k=1

�Ik(a0, a1, θ)− Îk�
2

2

(4)Transmission =
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a0,ref

(5)DPCI = θsam − θref

(6)Dark − field =
a1,sam/a0,ref
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Neutron grating interferometer. Neutron Talbot–Lau grating interferometer was installed at the cold neu-
tron imaging beam line NG6 at NIST Center for Neutron Research (NCNR)36. The wavelength of the source is 
0.44 nm with polychromatic beam. The detector is an Andor, a scientific complementary metal-oxide semicon-
ductor (sCMOS) camera which has 50 mm lens, 2160 × 2560 pixels, cooling temperature of -30 °C, and 200 um 
LiF:ZnS scintillator with the effective pixel size of 51.35 μm (Certain trade names and company products are 
mentioned in the text or identified in an illustration in order to adequately specify the experimental procedure 
and equipment used. In no case does such identification imply recommendation or endorsement by the National 
Institute of Standards and Technology nor does it imply that the products are necessarily the best available for 
the purpose). The  G0 and  G1,  G2 gratings have same period of 50 μm. The distances between all gratings were set 
to 4260 mm. Each phase stepping image was obtained for 15 s.

Dataset preparation. We obtain a set of the phase stepping images to obtain information: phase con-
trast, transmission, dark-field images. The number of phase stepping can be varied and should be optimized for 
parameters such as image quality, data acquisition time, noise and so on. Given that we have a certain number of 
phase stepping, in conventional cases, all phase stepping images are utilized for generating the DPCI, but a DPCI 
can also be calculated by combination of the phase stepping images. In this way, we can generate a number of 
DPCIs that have statistical variations, and these images can be used for N2N. In this paper, the transmission and 
the dark-field images were generated in a conventional way, and the noisy DPCI image pairs were generated by 
using a combination of the phase stepping images per each iteration and used for training process.

Data. Simulation. We used a numerical phantom with pixel size of 256 × 256 and peppers image with pixel 
size of 512 × 512. Initially, we padded 32 pixels to the left and right of the images, and normalized to [0, 1]. And 
we obtained the phase stepping images with Eqs.  (1) and (2). We set the phase coefficient 

θphantom = mod{√
(x/10− 20)2 +

(
−y/5+ 70

)2
, 2π

}
 , θPeppers = mod

{√
(x/40+ 10)2 +

(
−y/15+ 20

)2
, 2π

}
 with 

horizontal and vertical direction x and y, respectively. And ηk were randomly selected in the range of [-0.05, 
0.05], and we set a0,ref , a1,ref  to 70,000, 30,000, respectively. The coefficients for the sample images were set using 
the following method:

where Image is the normalized images. And we added Poisson noise in the entire of the images. The phase step-
ping numbers are 8, 12, respectively. We used least-square method for data fitting. The obtained images were 
randomly flipped for data argumentation.

Network training. We designed a deep learning network in the form of a dual stream network shown in Fig. 9 
37. The dual steam network consists of base/detail layers for denoising. The role of the base layer is to prevent 
image quality degradation by making base of the result image. In this study, we used the transmission and the 
dark-field images as the base layer input because they can be obtained using grating interferometer, are not dif-
ferentiated images, and have a similar shape to the PCI. And we used the DPCI as an input of the detail layer. The 
role of the detail layer is to obtain detailed features in the result image. Each stream has U-net type network with 
depth 2, kernel size 3, and rectified linear unit (ReLU)23. The features have initially 64 features, and it is doubled 
as the network is deeper. The features from each stream are added and connected to three convolutional blocks. 
And the result image can be obtained from the last convolutional layer. The cost function in this study calculates 
combined losses which are  L2 loss between differentiated images shown and TV loss, mask image loss shown in 
Eq. (11). During the training process, the ADAM algorithm was used as an  optimizer38. The initial learning rate 
was set to 0.0001 and it decayed 

√
t times with t-th epochs. The network was trained for 100 epochs, and 100 

times iterated in one epoch. For every iteration, the reference and the sample images were randomly selected 
from the half of the total phase stepping number to the total phase stepping number and extracted 64 batches 
with pixel size of 64 × 64. Network training was performed on a Tensorflow deep learning  framework39.

Ethics declaration. The authors declare no humans were directly used in this study.

(12)a0,sam = a0,ref ×

(
1−

(
Image

4

)0.7
)

(13)a1,sam = a1,ref ×

(
1−

(
Image

1.5

)0.5
)

(14)θsam =
(
∂Image

∂x

)



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6739  | https://doi.org/10.1038/s41598-022-10551-y

www.nature.com/scientificreports/

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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