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Decoding the protein–ligand 
interactions using parallel graph 
neural networks
Carter Knutson, Mridula Bontha, Jenna A. Bilbrey & Neeraj Kumar*

Protein–ligand interactions (PLIs) are essential for biochemical functionality and their identification is 
crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental 
characterization of these properties is the most accurate method, however, this is very time-
consuming and labor-intensive. A number of computational methods have been developed in this 
context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, 
we present a novel parallel graph neural network (GNN) to integrate knowledge representation and 
reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 
3D structural data. We develop two distinct GNN architectures: GNNF is the base implementation that 
employs distinct featurization to enhance domain-awareness, while GNNP is a novel implementation 
that can predict with no prior knowledge of the intermolecular interactions. The comprehensive 
evaluation demonstrated that GNN can successfully capture the binary interactions between ligand 
and protein’s 3D structure with 0.979 test accuracy for GNNF and 0.958 for GNNP for predicting 
activity of a protein–ligand complex. These models are further adapted for regression tasks to predict 
experimental binding affinities and pIC

50
 crucial for compound’s potency and efficacy. We achieve a 

Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC
50

 
with GNNF and GNNP , respectively, outperforming similar 2D sequence based models. Our method 
can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, 
potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP on 
SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with 
the experimentally measured data.

Accurate prediction of protein–ligand interactions (PLI) is a critical step in therapeutic design and discovery. 
These interactions influence various molecular-level properties, such as substrate binding, product release, 
regio-selectivity, target protein function, and ability to facilitate potential hit identification, which is the first 
step in finding novel candidates for drug discovery1. With increases in computing power, code scalability, and 
advancement of theoretical methods, physics-based computational tools such as molecular dynamics and 
molecular/quantum mechanics can be used for the reliable representation of PLI and prediction of accurate 
binding free energies2–4. However, these methods are computationally expensive and are limited to a number of 
protein–ligand complexes5. This limits their routine use in high-throughput virtual screening3,4 for the discovery 
of novel hit candidates and lead optimization6 for a given protein target7. Molecular docking has been used to 
predict binding affinity and estimate interactions with reasonable computational cost2,8–15; however, its accuracy 
is relatively low as it uses heuristic rules to evaluate the scoring function.

The use of deep learning has revolutionized the healthcare system in recent years16. There has been significant 
effort to develop deep learning models that predict PLI17,18, and other biophysical properties19,20 that are critical 
for therapeutic design but cannot be predicted through physics based modeling21. The greater understanding 
of PLI enabled by deep learning can help in the estimation of properties such as activity, potency and binding 
affinity22. However, several technical challenges limit the use of deep learning for modeling protein–ligand 
complexes and accurate prediction of properties. The first challenge relates to the limited availability of 
protein–ligand 3D data and the second challenge focuses on the appropriate representation of the data (domain 
knowledge), specifically in terms of the comprehensive 3D geometry representation. Structure-based methods 
have the advantage of producing results that can be interpreted but are limited by the number of available 
samples21. Circular fingerprints, generated by encoding localized structural and geometric information, have long 
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been a cornerstone of cheminformatics23. The flexibility of fingerprints has created new avenues for molecular 
computational research, including the increased implementation of graph-based representations to include 
domain awareness24,25. Molecular graph representations provide a way to model and simulate the 3D chemical 
space while retaining a wider range of structural information. In that context, Ragoza et al. implemented a deep 
convolutional neural network (CNN) that operates directly on 3D molecular graph input, similar to the AtomNet 
model previously implemented by Walloch et al.26,27. Other approaches such as Graph-CNN developed by Torng 
et al. use unsupervised autoencoders to leverage sequence-based data that is more abundant but also costly in 
terms of structural accuracy28.

Graph-based representations extend the learning of chemical data to graph neural networks (GNNs). Monti 
et al. designed a mixture model network (MoNet) that enables non-Euclidean data, such as graphs, to be learned 
by CNNs29. That approach has been generalized and improved through the formulation of graph attention (GAT) 
networks30. GAT architectures operate on the importance of a given node, leading to improved computational 
efficiency and accuracy31. Lim et al. showed the implementation of such an architecture to capture PLI, which 
provides a baseline for the development of more robust models32. Chen et al. proposed a bidirectional attention-
driven, end-to-end GNN to predict PLI and enable biochemical insights through attention weight visualization1. 
Predicting the activity of a protein–ligand complex is a binary classification problem. Reshaping the problem 
to focus on affinity creates a regression problem of heightened complexity. The existing deep learning models 
that predict the binding affinity or other biophysical and biochemical properties such as IC50 , Ki , Kd , and EC50
222133. However, most of the methods use sequence-based data for proteins and SMILES representations for 
interacting ligands. For example, DeepDTA22 and DeepAffinity21 use SMILES strings of the ligands and amino-
acid sequences of the target proteins to predict the affinity. MONN33 is a multi-objective sequence-based neural 
network model that first predicts the non-covalent interaction between the ligand and the residues of the 
interacting target and then the binding affinities in terms of IC50 , Ki , and Kd . Such methods are accessible due 
to the abundant availability of sequence-based data, but do not capture 3D structural information in the PLI 
and predicting regression properties. Binding is best understood when the 3D pocket of the target is known, 
and in situ, the protein–ligand complex is formed due to changes in the conformation of the 3D structure of the 
protein and ligand post-translation.

In this contribution, we formulated two GNNs based on the GAT architecture by incorporating domain-
specific featurization of the protein and ligand atoms ( GNNF ) and by implementing parallel GAT layers such 
that GNNP uniquely learns the interaction with limited prior knowledge. The inclusion of different features 
on the protein and ligand atoms enables our models to be more physics informed. The implementation of 
GAT layers combined with our featurization enables the model to learn the representation and the chemical 
space of the training data. We further use these models to predict experimental binding affinity and pIC50 of 
the protein–ligand complex. This allows us to leverage the 3D structures of the target protein, ligands, and the 
interaction between them which is crucial both for the activity and affinity prediction.

Methods
Network architecture.  The goal in this work is to define a GNN architecture that predicts characteristics 
of a protein–ligand pair by learning features of the protein and ligand that may not be obvious to the human 
observer. Our molecular graph structure is defined as G{V,E,A}, where V is the atomic node set, E is the 
corresponding edge set, and A is the adjacency matrix. Given the diverse structural properties of protein–ligand 
complexes, we include additional biomolecular domain-aware features to previous GAT architectures30,32 by 
defining distinct featurizations for the protein and ligand components, as shown in Table 1, denoted GNNF , and 
by removing the dependency on prior knowledge of the protein–ligand interaction through the implementation 
of parallel GAT layers, denoted GNNP.

The GNNF and GNNP models differ in the architecture of the attention head as seen in Fig. 1, a schematic 
of the prediction logic implemented in our models. In GNNF , the protein and ligand adjacency matrices are 
combined into a single matrix, and edges are added between protein and ligand nodes based on the distance 
matrix obtained from docking simulations. The GNNF attention head uses a joined feature matrix for the ligand 
and target protein, which is passed into one GAT layer that learns attention based on the PLI adjacency matrix 
and a second GAT layer that learns attention based on the ligand adjacency matrix. The output of these two GAT 
layers are subtracted in the final step of each attention head.

In the absence of a co-crystal structure of a protein–ligand complex, docking simulations are typically 
performed to model the PLI. In GNNP , the 3D structures of the protein and ligand are initially embedded 
separately based on their adjacency matrices, which represent internal bonding interactions. The GNNP attention 
head passes separate features for the protein and ligand to individual GAT layers that learn attention based on 
the respective adjacency matrix. The outputs of the GAT layers are concatenated in the final step of the attention 
head. Separation of the ligand and protein in parallel GAT layers preformed by GNNP removes prior information 
about the interactions, providing a foundation to remove the need for docked structural information. This 
discrete representation enables us to enter the protein and ligand directly into the GNN without knowing the 
prior protein–ligand interaction, which otherwise needed to be computed using physics-based simulations.

In both models, each node is given a set of features F, described in Table 1, which are engineered with an 
emphasis toward biochemical information, using the molecular Python package RDKit. When input into a GAT 
layer along with the corresponding adjacency matrix, each node feature is transformed by a learned weight matrix 
W ∈ R

F×F , where F is the dimensions of the node features attributed to input represented by h = {ĥ1, ĥ2, . . . , ĥN} 
where ĥi ∈ R

F and N is the number of atoms. The attention coefficient eij for interacting atoms i and j is calculated 
as a summation of the importance of the i-th node interaction with the j-th node and vice versa. For node i given 
an input feature matrix ĥi at convolution layer l, the attention coefficient eij is given as:
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Table 1.   Features associated with each atom in the protein and ligand for the Graph-CNN model described by 
Torng et al.28, the GNN described by Lim et al.32, and GNNF and GNNP described in this contribution. Features 
are associated with the atom unless otherwise noted. a Bond feature; bbond feature is indirectly considered by a 
corresponding atom-level feature that captures the same physical property.

Feature

Graph-CNN GNN GNNF & GNNP

Torng and 
Altman28 Lim et al.32 (Current work)

Protein Ligand Protein Ligand Protein Ligand

Atom type x x x x x x

Atom degree x x x x x

N hydrogen atoms x x x x x

Implicit valence x x x x x

Aromaticity x x x x x

Atom in ring x

Residue type x

Hybridization x

Formal charge x

Single bonda x xb

Double bonda x xb

Triple bonda x xb

Bond aromaticitya x xb

Conjugationa x xb

Bond in ringa x xb
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Figure 1.   Schematic showing the prediction logic implemented in our GNN models. The two models differ 
based on the applied attention head. GNNF uses the PLI obtained from docking simulations to create a 
combined feature and adjacency matrix. In GNNP , the features for the ligand and target protein are coded 
separately alongside their corresponding adjacency matrices. The output from the attention head is passed 
through a series of MLP that can be tuned for activity classification through application of the sigmoid 
activation function and binary cross-entropy loss function or property regression through application of the 
linear activation function and mean squared error loss function.
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Using the softmax activation function, the attention coefficients are normalized across neighbors and mul-
tiplied by the adjacency matrix Aij , which gives higher importance to node pairs closer in distance, reflecting 
the physical principle that the strength of an intermolecular bond decreases as the bond distance increases. The 
normalized attention coefficient aij is given by:

Each feature is then updated as a linear combination of neighboring node features ĥ′′i  . Finally, the gated atten-
tion mechanism is employed to give the transformed set of node features: ĥ′i:

where U ∈ R
2F×1 is a learned vector, b is a learned scalar, and φ is the activation function. These features are 

passed through a multilayer perceptron (MLP). For binary classification of the activity of the protein–ligand 
complex, the sigmoid activation function is applied, and the binary cross-entropy loss function is used. For 
regression, the ReLU activation function is applied, and the mean squared error loss function is used.

The distinct featurization of our GNNs reduces the feature size of the protein, which can contain a large 
number of atoms, and enhances the feature size of the ligand, which is typically a small molecule. This shift 
reduces redundancy in the protein representation and focuses computational resources on the improved atomic 
representation of the ligand. While the Graph-CNN developed by Torng et al. also involved a large number of 
ligand features, more than half were at the bond level28. Because our GNNs include only atom-level features, 
we examined the physical properties behind the chosen bond-level features and chose atom-level features that 
impart the same physical information. For example, Torng et al. included an encoding for whether a bond was in 
a ring; similarly, we included an encoding for whether an atom was in a ring. Torng et al. also had three different 
features corresponding to bond type (single bond, double bond, and triple bond); we consolidated these features 
into a single atom-level feature, hybridization, which describes the bonding properties of an atom.

Dataset preparation
Classification model datasets.  Machine learning models for training PLI prediction require data on 
target proteins, ligands/compounds, and interactions between them. In this work, our goal is to improve the 
degree to which the graph-based model can be generalized while also maintaining accuracy. We accomplish this 
by enlarging the dataset used to train our model and including a variety of targets. We collected and curated 
protein–ligand complexes from two public datasets, DUD-E34 and PDBbind35,36, which are described in further 
detail below. The datasets consist of protein–ligand complexes and their docking affinities, while some samples 
include experimentally derived binding affinities. Prediction is based on accessing ligands as active (active-
interact molecules or positive) or inactive (set of decoys or negative) depending on whether the ligand is able to 
bind with the protein, as described in more detail below. Table 2 shows counts of the targets, ligands, and their 
various complexes for both datasets.

To confirm that these two datasets offer diversity in terms of both target protein and different functionality of 
the ligand, we computed pair similarities between the targets and ligands, which can be found in the supporting 
information Figure SS1. Target similarities were determined by computing the homology between each pair, 
while ligand similarities were taken as the Dice similarity coefficient of the Morgan fingerprints (diameter = 6) 
of each pair. In both datasets, the target similarity is centered around 40%, with DUD-E having a more diverse 
target set than PDBbind. The opposite is true for ligand similarity. While both datasets have mainly dissimilar 
ligands, the PDBbind dataset offers more diversity in ligand structure. Combining these datasets for training 
leads to a highly diverse training set in terms of both target proteins and ligand molecules.

DUD‑E.  The DUD-E dataset consists of pairs of experimentally verified active complexes and property-
matched inactive pairs, called decoys34. The dataset was originally designed to test benchmark molecular docking 
programs by providing challenging decoys, but some have noted that the dataset suffers from limited chemical 
space and biases37,38. In their analysis of the DUD-E dataset, Chen et al. generated a docked subset38, which 
we use here. Ligands from the experimentally verified ChEMBL dataset were designated as positive, while the 
generated decoys and their docked structures were considered negative. These files were parsed into individual 
standard database formats (SDF) files for each ligand and corresponding docking pose.

(1)eij = ĥ′iW ĥ′j + ĥ′jW ĥ′i

(2)aij = softmax(eij) ∗ Aij

(3)ĥ′i = φ(U(ĥi||ĥ
′′
i )+ b)ĥi + (1− φ(U(ĥi||ĥ

′′
i )+ b))ĥ′′i

Table 2.   Number of active complexes, inactive complexes, and protein targets in the PDBbind, DUD-E, IBS, 
and SARS-CoV-2 datasets used to create the training and test sets in this work.

Dataset Targets Total actives Total in-actives

PDBbind2018 991 1418 4804

DUD-E 96 46,145 16,996,568

SARS-CoV-2 7 56,191 56,191
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Ligands with a molecular weight above 500 Da were removed, and the docked structures were converted to a 
machine-readable format using RDKit39. The target proteins were pulled from the original DUD-E set, cleaned 
of water molecules, and matched with their designated ligands. Targets were screened with a homology test 
to understand the diversity of targets present in the dataset, and none had a similarity greater than 90%. Each 
complex was processed to crop the target protein and retain atoms within a distance of 8 Å from the ligand. 
Because the DUD-E dataset is biased towards inactive complexes due to the large number of decoys, equal counts 
of active and inactive samples were collected in regards of a target with no consideration of a specific complex. A 
complete 1:1 active-to-inactive ratio was not always achieved; however, the imbalance was found to be minimal 
and to have no affect on performance. Samples from the experimentally verified ChEMBL dataset were labeled 
as active, while decoy samples were denoted with the key word ZINC.

PDBbind.  The PDBbind dataset contains experimentally verified protein–ligand complexes from the Protein 
Data Bank35,36. Binding poses for a refined set of the protein–ligand complexes were generated by docking 
calculations40. A 90% homology test was run on this set, which resulted in a small number of proteins being 
removed because of a high level of similarity. As with the DUD-E dataset, the docked structures were converted 
to a machine-readable format using RDKit. The root-mean-square distance (RMSD) was used to label ligands 
as positive if they maintained an RMSD less than or equal to 2Åcompared to the original crystal structure, 
and negative if the RMSD was greater than or equal to 4Å. Molecules with RMSDs between these thresholds 
were removed. The viable molecules and their target proteins were processed into a dataset of protein atoms 
cropped within a distance of 8Å. As PDBbind data were significantly limited, all available samples were used. 
This resulted in a greater inclusion of negative samples than positive samples.

SARS‑CoV‑2 dataset.  The SARS-CoV-2 dataset is composed of seven protein targets: M Pro_6WQF, 
NSP15_6XDH, M Pro_6LU7, PLPro_6W9C,PLPro_6WRH, ADRPNSP3_6W02, and NSP10-16_6W61 with three 
main protease (MPro , two papain-like cysteine protease, one open reading frame, and three non-structural 
proteins. Large ligand libraries composed from FDA41 and manually curated antiviral data were used to generate 
the docked complexes with each target. Ten docking poses were calculated for each complex with the qvina 
docking program42 through a custom non-covalent pipeline. The docking data was parsed and cropped to the 8 
Å threshold in the same manner as the DUD-E and PBBind datasets. Similar to PDBbind, positive and negative 
samples are determined with RMSD. Protease data were largely directed into the training set while the other 
targets, with the exception of on non-structural protein, were directed to the test set. This variety allows the 
inclusion of the critical targets of SARS-CoV-2 viral life cycle in both the training and the test sets.

IBS dataset.  The IBS dataset is created using 486,232 synthetic compounds from the IB screening database (www.​
ibscr​een.​com). All ligands were fed as an input to the our GNN models paired against M Pro and NSP15 target. 
Because the IBS dataset only contains ligands and we did not dock the IBS molecules with their corresponding 
receptors, we used our GNNP model to evaluate these complexes. We chose SARS-CoV-2 (MPro ) and SARS-
CoV-2 non-structural protein endoribonuclease (NSP15) as target proteins to study the performance of our 
model. These are exactly the same targets we have used for our creating our SARS-CoV-2 dataset. Our team 
has been actively workin1g on the development of covalent electrophiles and non-covalent inhibitor candidates 
against the viral proteases, this gave us ready access to the protein pockets and active compounds that were 
binding with these targets. In addition, we performed homology tests on M Pro and NSP15 against the targets 
in the DUD-E and PDBbind training sets to quantify the similarity of these new targets to our larger dataset. 
M Pro showed an average similarity of 40% with the DUD-E training targets and 48% with the PDBbind training 
targets. NSP15 showed an average similarity of 55.72% with DUD-E targets and 52.26% with PDBbind targets.

Regression model datasets.  In this section, we discuss the datasets used for the regression models noting 
that part of these datasets are created from the same sources used for the classification models. Our regression 
models are composed of the same attention heads as in the classification models and, therefore, include the 
same domain-level information from the protein and ligand atoms. The main difference in our classification 
and regression models is the final activation layer, as shown in Fig. 1. We perform two regression experiments 
referred as Experimental Binding Affinity (EBA)and pIC50 prediction. It is important to highlight that some of 
these properties such as pIC50 cannot be accurately modeled through physics based modeling methods. Table 3 
and 4 gives a summary of the target and ligands distribution in various regression datasets.

For Experimental Affinity experiments, we consider three data sources: (1) PDBbind2016, (2) PDBbind2018, 
and (3) PDBbind201936. We consider just crystal poses from the PDBbind2016 general, refined, and core data-
sets. A PDBbind general set refers to the main body set of samples provided. Refined refers to the higher quality 
samples extracted from the general set, and the core set is a small sample set of the highest quality complexes. 
For the PDBbind2018 dataset, we used both the docked and crystal structures as two independent datasets for 
two independent experiments. For the docked dataset, we used the same targets and split as used for classifica-
tion experiments. For the crystal-only dataset, we used all the available targets without any homology-similarity 
screening. For the PDBbind2019 dataset, we considered just a handful of crystal structures as a part of inde-
pendent test set. The PDBbind2019 dataset is a structure-based evaluation set comprises targets that have been 
added to PDBbind2019 after the year 2016 and thus are not a part of PDBbind2016 and have a GDC similarity 
less than 65% to the training targets.

For the PDBbind2016 dataset, we prepared various train-test splits, which are summarized in Table SS5. 
The experimental binding affinity is estimated in terms of Ki and Kd , which refer to the inhibition and 
dissociation constants, respectively. These properties collectively determine the binding affinity of a molecule 

http://www.ibscreen.com
http://www.ibscreen.com
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towards a receptor. The PDBbind repository provides a database of protein–ligand complexes along with their 
experimentally measured data. Here, we define the experimental binding affinity as −log( Ki

Kd
) , which is used as 

the label in the regression model. All decoys from the PDBbind2018 dataset were labeled with the experimental 
affinity of the corresponding crystal structure.

We focus on the pIC50(the inverse log of the half maxi-mal inhibitory concentration, IC50 ), which is an 
experimentally measured property that captures the potency of a therapeutic candidate towards a protein target 
where higher values indicate exponentially more potent inhibitors. For the pIC50 data, we used a combination 
of the DUD-E and PDBbind2016 datasets. From DUD-E, we included active ligands for 65 of the DUD-E tar-
gets, as only active protein–ligand pairs have an associated experimental affinity in the ChEMBL repository. We 
considered the top-scoring docked pose for each protein–ligand complex in the DUD-E dataset because there 
were no crystal structures available.

For the PDBbind2016 data, all crystal poses with an experimentally measured IC50 were used. We retained the 
same 80:20 split for the PDBbind2016 dataset as used for the experimental affinity dataset. Table 4 gives details 
of the dataset used for pIC50 regression.

We also considered an independent dataset associated with SARS-CoV-2 targets. To prepare this dataset, 
we used crystal structures of SARS-CoV-2 main protease (MPro ) bound to non-covalent inhibitors that have an 
associated experimental IC50 . The complex 7LTJ2 is obtained as a result of non-covalent inhibition of MCULE-
5948770040 compound with M Pro (PDB-ID: 7JUN) discovered using our previous high throughput virtual 
screening as a part of the U.S. Department of Energy National Virtual Biotechnology Laboratory (NVBL) project2. 
When a protein–ligand complex had multiple measured IC50 , we used an average of the values as the label. The 
PDB-IDs of the other targets with the constituting protein and ligand are listed in Table 5.

Hyperparameter optimization.  Hyperparameters such as network depth, layer dimension, and learning 
rate can have a large effect on model training and the weights in the final realized model. Therefore, we performed 
a number of trainings to examine combinations of learning rate, number of attention heads, and layer dimension. 
The hyperparameters that performed best were a learning rate of 0.0001, two attention heads, and a dimension 
of 70. These parameters resulted in an average test AUROC of 0.864. The combinations of these parameters are 

Table 3.   Summary of data used for training and testing EBA regression models. a Refer to Table SS5 in the 
supporting information for detailed dataset splits.

Dataset Total targets Total ligands Train targets Test targets Train samples Test samples Total samples

PDBbind2018-EBA 
(with docked poses) 1278 1278 1023 255 6485 1557 8042

PDBbind2018-EBA 
(crystal only) 10,375 10,375 8300 2075 8300 2075 10,375

PDBbind2016-EBA 
(crystal only) 11,674 11,674 a a a a 11,654

PDBbind2019-EBA 
(crystal only) 190 190 – – – – 190

Table 4.   Table summarizing the dataset used for pIC50 regression models.

Dataset Total samples Train samples Test samples

PDBbind2016-pIC
50

4576 3676 900

DUD-E-pIC
50

-only-top-docked-pose 3706 3105 601

Table 5.   SARS-CoV-2 targets with experimentally assessed non-covalent inhibitors used for testing pIC50 
models. a As defined by Zhang et al.45.

PDB-ID Target Inhibitor

7LTJ2 MPro MCULE-5948770040

7L0D43 MPro ML188

7LME44 MPro ML300

7L1145 MPro Compound 5aa

7L1245 MPro Compound 14a

7L1345 MPro Compound 21a

7L1445 MPro Compound 26a
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summarized in Table SS1, and all successfully completed hyperparameter experiments can be found in Table SS2 
along with further explanation of the trials.

Results and discussion
GNN classification models.  Our primary goal in this work is to develop a model that has high accuracy 
and that can be generally applied for predicting PLI and activity using distinct atom- and bond-level features 
(domain awareness) for the protein and ligand. To this end, we would like to understand the effects of the 
number of protein targets and the number of protein–ligand complexes per target; therefore, we train the GNNF 
and GNNP models on a variety of datasets. The datasets consisted of either 17, 79, or 96 targets from the DUD-E 
dataset and all available data from the PDBbind dataset, which are summarized in Figure SS3 in the SI. In all 
cases, the accuracy greatly increases from 0.723 to 0.879 when the number of targets is increased from 17 to 
79, and then decreases to 0.842 when the number of targets is further increased to 96. The accuracy of each 
experiment is shown in Table SS3. In each training set, we examined the effects of having 1000 complexes per 
target or 2000 complexes per target. When using 17 DUD-E targets, including more complexes per target did 
not improve the accuracy, while in both the 79 and 96 DUD-E target sets, the accuracy was improved to over 
90% when the dataset consisted of 2000 complexes per target. Notably, the improvement was greater for the 96 
DUD-E target set. It is important to note that all training sets had an equal distribution of positive and negative 
samples and complexes were randomly divided into training and test sets with an 80:20 split.

In addition to making sure the model can be generally applied, we are interested in developing a model that 
does not require the docked structure to be known before inferences can be made. We performed the same 
experiment using varying numbers of DUD-E targets and complexes on our GNNP model, which does not require 
advance knowledge of the protein–ligand interaction to predict activity. The same overall trends were observed 
for GNNP as for GNNF but with reduced accuracy, as shown in Table SS3. The highest scoring GNNP model was 
that trained on 79 DUD-E targets with 2000 complexes per target with an accuracy of 0.880%, which is only 
3.2% lower than the GNNF model trained on the same dataset. Though decreased accuracy was observed with 
GNNP , its advantage relies on knowledge of only the separated protein and ligand structures, greatly reducing 
required preprocessing steps and increasing the throughput of the trained model.

To assess the ability of our GNN models to be generally applied, we produced three test sets of varying 
similarity to the training set (Table 6). Our base dataset consists of 79 targets from DUD-E and 991 targets from 
PDBbind randomly distributed into the training and test sets, with roughly 2000 samples per target and equal 
distribution of positive and negative samples. We also considered a dataset with overlapping targets but with 
novel complexes distributed into the training and test sets. Approximately 2000 additional samples that were 
withheld from the initial training were collected for each training target to show the effect of target overlap 
between training and test samples. Furthermore, we created a distinct dataset comprised of samples not used for 
training for the same target distribution in the base set. Table 6 shows the results of these tests in terms of test 
set accuracy, sensitivity, and specificity, along with some representative examples from the literature. The best 
performance is attained for the GNNF model for the overlapping target dataset with an accuracy of 0.979, followed 
by the GNNP model on the same dataset with an accuracy of 0.958. Additionally, the models show improved 
performance on the distinct sample set as compared with the base sample set. The accuracy increases from 0.934 
to 0.951 for the GNNF model and from 0.845 to 0.855 for the GNNP model. The close similarity of the base, 
distinct, and overlap test set accuracies of the GNNF model indicates that this model could be generally applied. 
GNNP , however, showed reduced accuracy for the base and distinct test sets as compared with the overlap test 
set, indicating decreased capability to be generally applied. Overall, each implementation shows significantly 
improved performance in terms of prediction compared to docking. We can see that the overlap set produces a 
slight increase in AUROC, decrease in specificity, and significant increase in sensitivity.

Table 6.   Comparison of test dataset results for our GNNF and GNNP models on the various test sets described 
in the text, along with representative examples from the literature. The top scores are shown in bold.

Method Test accuracy Sensitivity Specificity References

GNNF Overlap 0.979 0.840 0.970 Current work

GNNP Overlap 0.958 0.870 0.910 Current work

GNNP Distinct 0.855 0.590 0.910 Current work

GNNF Distinct 0.951 0.690 0.970 Current work

GNNF Base 0.934 0.660 0.970 Current work

GNNP Base 0.845 0.580 0.900 Current work

Docking 0.591 Current work

GNN 0.968 0.830 0.970 Lim et al.32

CNN 0.904 Gonczarek et al.46

CNN 0.868 Ragoza et al.26

CNN 0.855 Wallach et al.27

Graph-CNN 0.886 Torng and Altman28
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Top‑N ranks.  We then assessed the model’s ability to identify top-scoring 3D poses in each protein–ligand 
complex from our PDBbind repository described in the dataset preparation section. The ’best’ docked pose is 
quantified as having an RMSD of less than 2 Å with respect to the crystal structure. In this analysis, we measure 
not only the ability of the model to identify an active protein–ligand pose but also its ability to identify the best 
pose among multiple docked poses. Figure 2 shows the percent of complexes found in the top-N ranks.

In each rank, both the GNNF and GNNP models outperformed or matched the performance of docking 
when using complexes from the training data. However, on the test data, docking showed better performance 
for certain ranks, while both docking and GNNF identified 100% of the protein–ligand complexes. For the top 
rank, all three methods showed 100% identification. If we consider the percent targets with at least one pose in 
the top-N ranks, all three models show equivalent performance (see Fig. SS4).

In addition, we tested our models on datasets that include molecules from ChEMBL for DUD-E targets and 
SARS-CoV-2-target-specific data. Additional ChEMBL data were collected for a small subset of DUD-E targets 
extracted from the initial test set and implemented without docking for the GNNP model. These molecules were 
prepared and matched with a pocket from the designated target. Roughly 2000 samples were prepared for two 
SARS-CoV-2 targets, M Pro and NSP15, in a relatively balanced split of positive and negative samples. The GNNF 
and GNNP models trained on DUD-E and PDBbind then were used for inference on this set. Among all the 
experiments, GNNP performed best with the ChEMBL data, showing an ROC of 0.596. The models performed 
relatively low on the SARS-CoV-2 targets, showing very low ROCs of 0.415 and 0.281 for the GNNP and GNNF 
models, respectively. This can be attributed to the fact that the SARS-CoV-2 target (MPro ) used in this dataset 
has an average similarity of 40% with DUD-E training targets and 48% similarity to the PDBbind training data 
and therefore represents extrapolation rather than interpolation. Notably, graph neural networks are known to 
perform poorly on nonlinear extrapolation tasks far from the training data47.

We next investigated the performance of the GNNP model on IBS molecules with M Pro and NSP15 protein 
targets. Their binding probability distributions are shown Fig. 3. The predicted activity distributions for NSP15 
actives and IBS molecules are similar, suggesting that GNNP can identify a majority of compounds from IBS with 
potential to bind to the NSP15 receptor. The predicted probability distribution of M Pro target actives shows that 
GNNP can identify a high percentage of molecules with potential binding affinity against the receptor, though 
it struggled to identify many of the IBS molecules. Theoretically, compounds with lower molecular weight 
(smaller size) possess a greater tendency to bind against a target. Most of the IBS compounds have a molecular 
weight between 250 and 700 Dalton (see Fig. SS6). For the M Pro target, our results indicate that the binding 
probability is centered near zero and the majority binding probability is under 0.5. For the NSP15 target, the 
binding probability is centered closer to 0.1 with a small number of compounds having probabilities greater than 
0.5. We observe that GNNP consistently performed better in relation to the NSP15 target. Contributing factors 
to this increased performance include a larger number of available active compound samples for the NSP15 
targets; that is, 2157 samples as opposed to 307 samples available for the M Pro target. The NSP15 target has a 
disproportionately larger binding pocket than that of M Pro , which also attributes to the improved performance.

GNN as a regression model.  Predicting the binding affinity of a protein–ligand complex plays a critical 
role in identifying a lead molecule that binds with the protein target; however, the experimental measurement 
of protein–ligand binding affinity is laborious and time-consuming, which is one of the greatest bottlenecks 
in drug discovery. On the other hand, half maximal inhibitory concentration ( IC50 ) provides a quantitative 
measure of the potency of a candidate to inhibit a protein target and is typically estimated from experiments. If 
we can predict affinity and potency of a specific ligand to a target protein quickly and predict their interactions 
accurately, the efficiency of in silico drug discovery would be significantly improved. To this end, we modified 
both GNN models to perform regression in order to predict the biophysical and biochemical properties (affinity 
and potency) of protein–ligand complexes. Our regression models are composed of the same attention heads as 
in the classification models and, therefore, include the same domain-level information for the protein and ligand 
atoms. We evaluated these models on each of the datasets discussed in the Methods section.

Experimental binding affinity (EBA) regression experiments.  To predict binding affinity and 
assess the performance of our model, we performed three experiments using three different datasets: (1) 
PDBbind2018-docked, (2) PDBbind2018 crystal, and (3) PDBbind2016 crystal structure dataset. Since most 
of the deep learning models that we compare in this section are trained on complexes from the PDBbind2016 

Figure 2.   Comparison of the GNNP and GNNF models with docking. Each bar corresponds to the percentage 
of protein–ligand complexes identified in top-N ranks which have an RMSD less than 2 Å from the crystal 
structure.
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database, training our models on the same dataset helps to obtain a comparison with the previous models48–50. 
We also tested our models on the PDBbind2016 core set, which is a refined subset filtered on the basis of protein-
sequence similarity.

First, we assessed the performance of the GNN models trained using PDBbind2018 data docked and crystal-
only data as shown in Table 7. Notably, the addition of more unique protein–ligand complexes improves the 
performance, while the addition of multiple docking poses for fewer complexes decreases performance, as the 
Pearson and Spearman correlations are low on the docked dataset as compared to the crystal-only dataset. We 
compared our methods with Pafnucy49, which is a 3D CNN for protein–ligand affinity prediction that combines 
the 3D voxelization with atom-level features. Among all the results, the best performance is achieved by the 
GNNP-EBA model, and overall, both GNNP and GNNF outperform Pafnucy on both the docking and crystal-
only datasets.

In addition, for non-docking experiments, we used the PDBbind2016 general and refined datasets for training 
and the PDBbind2016 core set for testing. We assessed the performance of our methods for predicting the affin-
ity through comparison with the KDEEP

50 and FAST48 models. Our analysis on the PDBbind2016 core set shows 
that the GNNP-EBA model performs similarly to the FAST model48, while KDEEP shows the highest performance 
(see Table SS4 for detailed comparison). We also report the performance of our model on the dataset used for 
training and evaluating the FAST model (see Table SS6 for details) using the same train-validation-test splits as 
provided by the authors over the PDBbind2016 general (G) and refined (R) sets48. Out of all the combinations of 
the general and refined sets, we achieved the best performance with the GNNP model trained on the general set.

Our results on the PDBbind2018 and PDBbind2016 datasets suggests that with our proposed GNN 
frameworks, we achieve top performance compared with prior deep learning methods for binding affinity 
prediction while preserving the spatial orientation of the protein and ligand. While KDEEP is a purely 3D CNN-
based network for protein–ligand affinity predictions, the FAST model uses a graph-based network, but utilizes 
the 2D graph representation which does not include the non-covalent interactions. This structural information 
is critical for understanding PLI and its impact on estimating affinity. To tackle these issues, we devised our 

Figure 3.   Binding probability distribution for IBS molecules with M Pro and NSP15 as targets. (A,B) correspond 
to the predicted binding probability for NSP15 and M Pro targets against IBS molecules. (C,D) correspond to 
the predicted binding probability on active molecules for M Pro and NSP15 respectively (for each plot, the x-axis 
denotes the predicted probability and y-axis denotes the density of molecules).
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graph-based models to specifically include all the atom- and bond-level information while using the 3D structures 
of the protein and ligand. The graph representation not only encloses atom- and bond-level information, but 
also retains the spatial information associated with the protein–ligand complexes, thus enabling us to include 
all necessary information associated with the natural binding state of the protein and ligand. Our GNNF model 
accounts for intermolecular interactions between the protein and ligand, which are not captured in the FAST 
model.

To investigate the generalizability of our GNN models in predicting the binding affinity of unseen and novel 
targets, we compare the performance of our GNN and various models on the PDBbind2019 structure-based 
evaluation dataset (Table 8). The PDBbind2019 structure-based evaluation dataset is composed of targets that 
are novel from the PDBbind2016 in terms of their addition to the database as well as sequence similarity. The 
prediction results of the GNN models are better than those of previous models, as shown in Table 8, and most 
importantly, our GNNF-EBA model performs as accurate as Pafnucy. Our results demonstrate that even with 
limited 3D structural data in terms of the size typically needed to train deep learning models, we achieved rela-
tively more accurate generalization with the GNN model. In addition, our GNN outperforms FAST and KDEEP 
in terms of generalizability given the scarcity of available structural data.

Finally, to expand the scope of our experiment, we also trained our model on a physics-based docking affinity 
score. We refer to these models as Docking Binding Affinity (DBA) models. We compare our model’s performance 
against the physics-based docking on the two DBA datasets. Our results suggest that, with a correlation score of 
0.79, the GNNF model was able to reproduce some correlation between the actual and predicted affinity to an 
extent (see Tables SS7 and SS8 for detailed dataset description and results). This indicates that, with our GNN 
framework, we are not only capturing the details needed for predicting the binding affinity but also achieving 
the capability to differentiate between distinct docked poses of a protein–ligand complex and associate it with 
its docking score.

pIC
50

 regression experiments.  As a next step, we tailored our GNN models to predicting pIC50 . pIC50 provides 
a quantitative measure of the potency of a candidate to inhibit a protein target, which is typically estimated from 
experiments. A number of methods have been developed to approximate pIC50 , so we compared our pIC50 
prediction with existing deep-learning methods, such as DeepAffinity21, DeepDTA22 and MONN33. While these 
methods were trained purely on the protein sequence and 2D SMILES representation of the ligands, our model is 
novel in that it considers the 3D structures of the protein and ligand to predict pIC50 , which is key to defining the 
inhibition rate while identifying and optimizing hits in early-stage drug discovery. To the best of our knowledge, 
3D protein–ligand complexes have not been used to predict pIC50 before.

The overall performance of the GNN model is relatively low compared to the existing methods listed in the 
Table 9. This could be attributed to the smaller size of the dataset containing both pIC50 and the corresponding 
crystal structures. DeepAffinity21, DeepDTA22, and MONN33 were trained on BindingDB data, which has nearly 
10 times the amount of data than that available for our dataset. In addition, we observed improvement in the 
Pearson correlation coefficients in predicting pIC50 from 0.45 to 0.51 when using weights from the GNN-EBA 
model. The improvement from the baseline to the transfer learning model suggests that our model can achieve 

Table 8.   Performance comparison of our GNN models in predicting experimental affinity on the 
PDBbind2019 structure-based evaluation dataset. The results for the FAST method are reported for its 3D 
CNN model. The top scores are shown in bold.

MODEL RMSE MAE Pearson r Spearman r

GNNF-EBA 1.39 1.10 0.49 0.50

GNNP-EBA 1.52 1.22 0.42 0.46

Pafnucy49 1.38 1.11 0.52 0.52

FAST48 1.48 1.21 0.42 0.40

KDEEP
50 1.42 1.13 0.48 0.47

Table 7.   Performance comparison of our GNN models in predicting experimental affinity on the PDBbind 
dataset. The top scores are shown in bold. a 255 test targets from our PDBbind2018-EBA-docking dataset using 
all docked poses for evaluation; bPDBBind2018-EBA-crystal-only test dataset.

MODEL RMSE MAE Pearson r Spearman r r
2

GNNF-EBA-docking 1.74 1.41 0.40 0.39 0.16

GNNP-EBA-docking 1.61 1.32 0.49 0.49 0.24

GNNF-EBA-crystal-only 1.68 1.32 0.45 0.46 0.21

GNNP-EBA-crystal-only 1.48 1.16 0.59 0.59 0.35

Pafnucy49 (docking)a 1.60 1.34 0.52 0.50 0.27

Pafnucy49 (crystal-only)b 1.86 1.50 0.38 0.37 0.14
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better performance if a larger dataset is used, as the GNN-EBA models are trained on comparatively larger 
datasets.

To assess how critical the learned protein and ligand representations are for predicting pIC50 , we predicted 
pIC50 of a few inhibitors that were recently designed for SARS-CoV-2 Mpro, where the co-crystal structures 
have been solved and their IC50 have been experimentally measured. From the perspective of deep learning 
and 3D protein–ligand complex representation, this is a much more difficult regression problem compared to 
the classification problem above. Our ultimate goal was to quantify the error in IC50 prediction relative to the 
experimental measurement that could used for iterative design of potential inhibitors or lead optimization.

Our extensive analysis on the SARS-CoV-2 M Pro data demonstrates that both GNN models overestimate IC50 
by 0.92% as compared to experimental values, as shown in Table 10. The pIC50 of our recently designed MCULE-
5948770040 compound with M Pro 7TLJ complex with GNNP model predicted to be 6.20, which is comparable 
to the measured experimental value of 5.372. Interestingly, GNNP proved to be the best model with an average 
error of 0.42 Molar. It is important to highlight that GNNP gives an advantage in predicting pIC50 even when the 
experimentally bound structure is not known. This can help rank potent candidates while screening potential 
libraries against a protein target or possible protein targets of a given disease, which can then be utilized for 
experimental testing as summarized in Fig. 4.

Conclusion
In this work, we devised graph-based deep learning models, GNNP and GNNF , by integrating knowledge rep-
resentation, 3D structural information and reasoning for PLI prediction through classification and regression 
properties of protein–ligand complexes. The parallelization of the GNNP model provides a basis for novel imple-
mentation of structural analysis that requires no docking input but instead separate protein and ligand 3D struc-
tures. The basic strategy of GNNP is to learn embedding vectors of the ligand graph and protein graph separately 
and combine the two embedding vectors for prediction. The featurization of GNNF provided a baseline for our 
implementation of domain-aware capabilities enhanced through feature engineering to identify significant nodes 
and differentiate the contribution of each interaction to the affinity. In GNNF , the embedding vectors are learned 
simultaneously for the protein and ligand complex as an early embedding strategy.

These implementations enable us to leverage the vast amount of 3D structural data of both the target protein 
and ligands, and interactions between them which is crucial for activity, potency, and affinity prediction to accel-
erate in silico hit identification during early stages of drug design. The goal of our extensive study is to general-
ize the graph-based models by incorporating domain-aware information, features, and biophysical properties 
and by utilizing a large amount of data including a variety of targets. The test accuracy for GNNF reached 0.951 
on a distinct sample set. We achieved top GNNF performance with the target overlap sample set, resulting in a 
test accuracy of 0.979 (0.958 for GNNP ), providing a basis that further generalizing our model can produce top 
classification performance. In addition, we used the GNNP model to evaluate the performance on SARS-CoV-2 

Table 9.   Performance comparison of deep learning models in predicting pIC50. Our models were trained 
and tested on PDBbind2016 + DUD-E targets, whose IC50 was curated from the PDBbind and ChEMBL 
repositories, respectively. DeepAffinity, DeepDTA, and MONN were trained and tested on BindingDB data. 
The top scores are given in bold.

Model RMSE Pearson r

GNNP-pIC
50

1.24 0.45

GNNF-pIC50
1.26 0.44

GNNP-pIC
50

 best GNNF-EBA weights 1.21 0.51

GNNF-pIC50
 best GNNP-EBA weights 1.24 0.51

DeepAffinity21 0.74 0.84

DeepDTA22 0.78 0.85

MONN33 0.76 0.86

Table 10.   Performance of GNN on SARS-CoV-2 M Pro targets and some of the potential inhibitors whose IC50 
has been experimentally measured.

PDB-ID GNNP-pIC50

GNNP-pIC50
best EBA GNNF-pIC50

GNNF-pIC50
best EBA

Experimental
pIC50

7TLJ 6.20 7.12 6.51 6.90 5.37

7L0D 7.56 7.08 7.33 7.43 5.6

7LME 7.61 7.07 7.46 7.59 5.3

7L11 7.90 7.13 7.74 7.59 6.8

7L12 7.96 7.36 8.26 7.61 7.74

7L13 8.11 7.42 8.42 7.56 6.89

7L14 8.06 7.16 7.87 7.67 6.76
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(MPro ) and NSP15 as target proteins. The predicted probability distribution of target actives shows that GNNP 
can identify a high percentage of molecules with potential binding affinity against the receptor.

Our GNN models were further modified for regression tasks to predict binding affinities and pIC50 in com-
parison with experimentally measured values. Experimentation with regression problems such as pIC50 , experi-
mental affinity and docking binding affinity shows that our graph-based featurization of protein and ligands not 
only captures the binding probability but is efficient enough to learn other important factors associated with PLI. 
In terms of prediction, our GNN model outperform existing models48–50 with highest prediction correlation coef-
ficients. Using PDBbind2016 data, we achieved Pearson correlation coefficients of 0.66 and 0.65 on experimental 
affinity prediction and 0.50 and 0.51 on pIC50 prediction using GNNF and GNNP , respectively. Even with limited 
3D structural data for the pIC50 dataset, we achieved comparable performance to existing methods that were 
trained on relatively larger 2D sequence datasets. With the availability of pIC50 data and corresponding protein 
structure predicted from Alphafold51, the GNN model performance can be further improved.

Our model is unique and novel in that it considers the 3D structures of the protein and ligand to predict 
affinity and pIC50 , which is key to provide a quantitative measure of the potency and selectivity of a candidate 
to inhibit a specific protein target. To accelerate in silico hit identification and lead optimization in the early 
stage of drug design, our GNNP model can be used to screen a large ligand library to predict either biophysical 
properties or activities against a given protein target or set of targets for specific disease.

Supporting Information
The Supporting information is available with Table (S1–S8) and Figures (S1–S7)) detailing data, models, hyper-
parameter optimization, Performance Metrics for Classification and Regression GNN Models, IBS molecule 
properties, and Docking Binding affinity Data and Results used in this study. Description about hyper-parameters 
and the trained GNNP and GNNf  models and the code to reproduce this study is available at https://​github.​com/​
PNNL-​CompB​io/​pf-​gnn_​pli.

Data and code availability
We collected and curated protein–ligand complexes from two public datasets, DUD-E34 and PDBbind35,36 which 
are described in further detail in Dataset Preparation subsection. SARS-CoV-2 and other dataset is generated 
in using high throughput docking simulations and the IBS dataset is created using known synthetic compounds 
from the IB screening database (www.ibscreen.com). The trained GNNP and GNNf  models and the code to 
reproduce this study is available at https://​github.​com/​PNNL-​CompB​io/​pf-​gnn_​pli.
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