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Cross‑reactive antibodies 
elicited to conserved epitopes 
on SARS‑CoV‑2 spike protein 
after infection and vaccination
Eric S. Geanes1, Cas LeMaster1, Elizabeth R. Fraley1, Santosh Khanal1, Rebecca McLennan1, 
Elin Grundberg1,2,3,4, Rangaraj Selvarangan2,5 & Todd Bradley1,2,3,4*

SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in 
millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more 
common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-
reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics 
with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection 
or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-
reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a 
conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody 
binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared 
sequence homology to proteins in commensal gut microbiota and could prime immune responses in 
humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related 
coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics 
and vaccines.

Coronaviruses are large, enveloped, positive-stranded RNA viruses with the defining feature of corona-like spike 
proteins across the cell surface1. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel 
coronavirus shown to be the cause of Coronavirus Disease 2019 (COVID-19)2,3. A large focus of SARS-CoV-2 
research has been on the spike protein, which binds to the host cell receptor and mediates entry into host cells4. 
The spike protein consists of two functional subunits: the S1 subunit containing the receptor binding domain 
(RBD) for binding to the Angiotensin Converting Enzyme 2 (ACE2) receptor, and the S2 subunit responsible 
for fusion of viral and host cell membranes4,5. Neutralizing antibodies in immune responses to SARS-CoV-2 fre-
quently bind to these subunits of the coronavirus and could prevent infection6–13. Importantly, the spike protein 
and its functions have been evolutionarily conserved between other coronaviruses9,14–17.

Prior to the SARS-CoV-2 outbreak in 2019, there had been outbreaks of coronaviruses such as Severe Acute 
Respiratory Syndrome Coronavirus (SARS-CoV-1) that infected individuals in 2003 and Middle East Respira-
tory Syndrome coronavirus (MERS-CoV) in 201218–22. SARS-CoV-2 is a member of the betacoronavirus family 
and shares genetic similarities with prior coronaviruses that have caused outbreaks in humans as well as other 
emergent betacoronaviruses that have been identified in nonhuman hosts such as bats and pangolins, which 
are common sources of animal to human transmissions (Bat Coronavirus RaTG13 and Pangolin Coronavirus 
identifier QIQ54048.1)23,24. In addition to coronaviruses with pandemic potential that could cause severe disease, 
there are seasonal coronaviruses that readily circulate and cause mild disease each year. The first two identified 
were seasonal alphacoronavirus Human CoV 229E and betacoronavirus Human CoV OC4325,26. Betacorona-
virus Human CoV HKU1 and alphacoronavirus Human CoV NL63 have since become part of the common 
seasonal coronavirus strains regularly circulating with Human CoV 229E and Human CoV OC4327–30. Due to 
the increased frequency of novel coronaviruses that could infect humans, there is an urgent need to develop 
more broad coronavirus therapeutics and vaccines.

OPEN

1Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA. 2Department of Pediatrics, 
University of Missouri- Kansas City, Kansas City, MO, USA. 3Department of Pediatrics, University of Kansas Medical 
Center, Kansas City, MO, USA. 4Department of Pathology and Laboratory Medicine, University of Kansas Medical 
Center, Kansas City, KS, USA. 5Department of Pathology and Laboratory Medicine, Children’s Mercy, Kansas City, 
MO, USA. *email: tcbradley@cmh.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10230-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6496  | https://doi.org/10.1038/s41598-022-10230-y

www.nature.com/scientificreports/

There are currently three SARS-CoV-2 vaccines in the United States (U.S.) that are either approved by or 
authorized for emergency use by the U.S. Food and Drug Administration (FDA); Pfizer-BioNTech’s BNT162b2, 
Moderna’s mRNA-1273, and Johnson & Johnson’s Janssen JNJ-7843673531–33. These vaccines utilize messen-
ger ribonucleic acid (mRNA) or adenovirus platforms to deliver genetic information for the expression of the 
SARS-CoV-2 spike protein for presentation to the host immune system34. All three vaccines have been shown 
to elicit robust humoral and cellular immune responses and have demonstrated efficacy at preventing severe 
COVID-1910,31–33,35–39.

Multiple studies have identified that individuals without previous SARS-CoV-2 infection had varying levels 
of pre-existing antibodies that could cross-react with SARS-CoV-2 and may influence SARS-CoV-2 immunity 
and disease severity40–44. Furthermore, other groups have identified regions on the SARS-CoV-2 spike that are 
highly conserved and could serve as targets to generate more broad cross-reactive immunity to many types of 
coronaviruses45,46. These naturally occurring or elicited poly-reactive antibodies could recognize phylogenetically 
closely related viruses and could potentially provide immunity against emerging viral variants or related strains. 
With an increase in novel coronaviruses infecting humans in recent history, pan-coronavirus vaccines targeting 
a multitude of related viruses would be an effective, possibly necessary, tool against future viral threats. Previous 
studies with other viral targets have exemplified that immunization to a virus or antigen could provide a broad 
antibody response and cross-reactivity against similarly structured antigens regardless of viral origin47,48. It will 
be critical to identify and characterize epitopes on SARS-CoV-2 that are the source of cross-reactive immune 
responses.

In humans, there is considerable variability in the immune responses to both infections and vaccinations 
within the population. Several genetic and environmental factors have been identified that could help explain the 
mechanisms of this variation. One potential source of cross-reactive immunity, apart from viruses with similar 
protein sequence or structure, could be exposure to commensal bacteria that contain proteins with sequence 
homology to infecting viruses. Components of the host gut microbiome have been shown to prime or alter the 
immune system response to vaccination prior to exposure to antigens49,50. Recently, epitopes within the SARS-
CoV-2 receptor binding domain and S2 subunits of the spike protein have been shown to share epitopes with 
commensal bacteria51,52. These shared epitopes may have primed immune responses to individuals naïve to the 
viral components. However, the origins of the SARS-CoV-2 cross-reactive antibodies and their potential impacts 
on vaccines and infection have not been fully elucidated.

In this study, we determined cross-reactive antibody responses elicited to related alpha- and betacoronaviruses 
after SARS-CoV-2 infection or COVID-19 BNT162b2 vaccination. Moreover, we identified immunodominant 
peptide epitopes within the SARS-CoV-2 spike protein with high sequence conservation amongst betacoronavi-
ruses that could serve as platforms for future vaccine designs. Additionally, we identified that antibody responses 
to SARS-CoV-2 spike S2 subunit epitopes could cross-react with commensal gut bacteria proteins that may prime 
SARS-CoV-2 antibody responses51,52.

Results
Comparative analysis of closely related coronavirus spike proteins.  We performed a Multiple 
Sequence Alignment (MSA) to determine the amino acid sequence similarities between the viral spike protein 
sequences of closely related coronaviruses to SARS-CoV-2 and generated a phylogenetic tree from the underlying 
alignment. Specifically, we compared the coronavirus spike protein sequences of SARS-CoV-1 and SARS-CoV-2 
with four SARS-like coronaviruses that infect animals and are not yet zoonotic, as well as four human seasonal 
coronavirus spike protein sequences and MERS-CoV (Fig. 1A & Supplemental Fig. 1A). Newly emergent Bat 
CoV RaTG13 and Pangolin CoV QIQ54048.1 were closely related to SARS-CoV-2 while Bat CoV WIV1 and Bat 
CoV RsSHC014 were more closely related to SARS-CoV-1 (Fig. 1A). MERS-CoV was more distantly related to 
the SARS coronaviruses we compared (Fig. 1A). It is important to note that although MERS-CoV, SARS-CoV-1 
and SARS-CoV-2 all belong to the betacoronavirus genus, the phylogenetic origin of MERS-CoV is classified as 
clade II while SARS-CoV-1 and SARS-CoV-2 are clade I, clusters IIb and IIa respectively53,54. With regards to 
the four seasonal human coronaviruses that generally cause moderate or mild respiratory symptoms, Human 
CoV 229E and Human CoV NL63 clustered together (both alphacoronaviruses) and Human CoV OC43 clus-
tered with Human CoV HKU1 (both betacoronaviruses)55,56 (Fig. 1A). Thus, the spike proteins of SARS-CoV-1, 
SARS-CoV-2, and several emergent coronaviruses have high sequence similarity within the spike protein that is 
critical for host cell attachment and infectivity.

Next, we collected plasma from 24 individuals of diverse age, sex, and race/ethnicity who had laboratory con-
firmed SARS-CoV-2 infection 12–42 days prior to collection (Supplementary Table 1). Using an enzyme-linked 
immunosorbent assay (ELISA) that measured immunoglobulin (Ig) G antibody responses to the SARS-CoV-2 
spike protein, we found that 20 of 24 individuals (83%) had detectable antibodies to SARS-CoV-2 (Fig. 1B). We 
then investigated whether the previously infected SARS-CoV-2 individuals (seropositive) had cross-reactive 
antibody responses to the related coronaviruses using ELISA to the spike proteins for SARS-CoV-1, the emergent 
Bat CoV RaTG13, and the more distantly related MERS-CoV. We found that 23 of 24 samples (96%) demon-
strated detectable antibody response to SARS-CoV-1 and Bat CoV RaTG13 (Fig. 1C, D). Surprisingly, 21 of 24 
samples (88%) also demonstrated an antibody response to the more distantly related MERS-CoV spike protein 
(Fig. 1C, D). These results suggested that infection with SARS-CoV-2 elicited antibody responses in recovered 
individuals that cross-reacted with other coronaviruses, even those belonging to different betacoronavirus clades.

The Pfizer‑BioNTech BNT162b2 vaccine elicited cross‑reactive antibodies to related coronavi‑
ruses.  We next investigated whether vaccination with SARS-CoV-2 spike could elicit cross-reactive antibod-
ies against different coronaviruses, similar to what was observed after natural infection. We collected plasma 
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from individuals with no history of SARS-CoV-2 infection at two time points: 1) baseline before vaccine was 
administered (Week 0), and 2) four weeks after the two-dose immunization regimen with the Pfizer BNT162b2 
mRNA COVID-19 vaccine was completed (Week 7) (Supplementary Table 2). We found that most individu-
als did not have detectable antibody levels, as measured by ELISA for SARS-CoV-2, SARS-CoV-1, Bat CoV 
RaTG13, or MERS-CoV spike proteins at week 0 (Fig. 2A–D). We did detect low levels of reactivity at week 0 
in one individual against SARS-CoV-2 and three individuals against MERS-CoV, but only at the lowest plasma 
dilution (Fig. 2A, D). After both immunizations with the COVID-19 vaccine at Week 7, all individuals (16 of 
16) had high levels of antibodies against SARS-CoV-2 spike protein (Fig. 2A). Moreover, all individuals also had 
detectable levels of cross-reactive antibodies against SARS-CoV-1 spike protein and to the emergent Bat CoV 
RaTG13 spike protein (Fig. 2B, C). Albeit detected at lower levels than SARS-CoV-1 and Bat CoV RaTG13, 15 
of the 16 individuals had increased antibodies against the more distantly related MERS-CoV spike protein after 
vaccination with SARS-CoV-2 mRNA vaccine (Fig. 2D). These results suggested that 2 doses of the Pfizer-BioN-

Figure 1.   SARS-CoV-2 infection elicited cross-reactive antibodies towards other related viruses. (A) Phylogram 
of viral spike protein sequences of different alpha and betacoronaviruses. (B) Bar graph of OD450 absorbance 
values obtained by ELISA for determining SARS-CoV-2 IgG antibody responses using serum from convalescent 
individuals with recent SARS-CoV-2 infection. Each dot represents a distinct individual, n = 24. (C, D) Bar (C) 
and line graphs (D) of antibody responses obtained by ELISA at different serum dilutions to SARS-CoV-1, Bat 
CoV RaTG13 and MERS-CoV spike proteins using serum from individuals with recent SARS-CoV-2 infection. 
Endpoint titers are designated by the most dilute plasma concentration detected above the minimum threshold 
of the background OD450 multiplied by 3. Each dot or line represents a distinct individual, n = 24. Bars are 
representative of the mean of all samples.
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Tech BNT162b2 vaccine against SARS-CoV-2 was also effective at eliciting cross-reactive antibodies against 
other related coronaviruses.

Pre‑existing antibody levels targeting seasonal coronaviruses were largely not significantly 
affected by the Pfizer‑BioNTech BNT162b2 vaccine.  Seasonal coronaviruses are more divergent in 
viral sequence to SARS-CoV-2 and are reasonably common, first infecting humans in childhood, and contribute 
to up to 30% of illnesses that are categorized as the common cold57. There are currently four major seasonal coro-
naviruses that infect humans, Human CoV 229E, Human CoV OC43, Human CoV HKU1 and Human CoV 
NL63. The amino acid sequence homology of spike proteins of the endemic coronaviruses to SARS-CoV-2 are 
less than 30% (Supplemental Fig. 1A). We measured antibody levels against the spike proteins from all four sea-
sonal coronaviruses in the individuals with no history of SARS-CoV-2 infection at the two COVID-19 mRNA 
vaccine time points (week 0 and week 7 described above) from our hospital workers based in the United States. 
We found that all individuals (16 of 16) had detectable antibodies by ELISA to the spike proteins from all four 
seasonal coronaviruses prior to immunization at baseline (week 0), reflecting the high prevalence of pre-existing 
immunity to these four seasonal coronaviruses (Fig. 3A–D). After immunization with the COVID-19 mRNA 
vaccine (week 7), there was a modest but statistically significant increase in antibody magnitude in individu-
als against the Human CoV OC43 spike protein (Paired Wilcoxon p < 0.0001; Fig. 3A). However, there was no 
significant increase from baseline in antibody levels to the other three seasonal coronavirus spike proteins after 
SARS-CoV-2 mRNA vaccination (Fig. 3B–D). We did observe that Human CoV NL63 had a statistically signifi-
cant decrease in antibody response (Paired Wilcoxon p < 0.0001; Fig. 3D), but the mechanism of this decrease is 
unclear. These data demonstrated that individuals had high levels of preexisting antibody levels against the four 
seasonal coronaviruses prior to COVID-19 vaccination and that the Pfizer-BioNTech BNT162b2 vaccine did not 
significantly boost the antibody responses to these coronavirus spike proteins, apart from the modest increase 
observed for Human CoV OC43.

Figure 2.   Vaccination targeting SARS-CoV-2 also elevated antibody responses to other related viruses. (A) 
Bar and line graph of antibody responses obtained by ELISA at different plasma dilutions to SARS-CoV-2 spike 
protein, before the Pfizer-BioNTech BNT162b2 vaccine was administered (Week 0) and after both doses (Week 
7), using plasma from patients with no history of SARS-CoV-2 infection, n = 16 individuals. (B) Bar and line 
graph of antibody responses obtained by ELISA at different plasma dilutions to SARS-CoV-1 spike protein, 
before the Pfizer-BioNTech BNT162b2 vaccine was administered (Week 0) and after both doses (Week 7), using 
plasma from patients with no history of SARS-CoV-2 infection, n = 16 individuals. (C) Bar and line graph of 
antibody responses obtained by ELISA at different plasma dilutions to Bat CoV RaTG13 spike protein, before 
the Pfizer-BioNTech BNT162b2 vaccine was administered (Week 0) and after both doses (Week 7), using 
plasma from patients with no history of SARS-CoV-2 infection, n = 16 individuals. (D) Bar and line graph of 
antibody responses obtained by ELISA at different plasma dilutions to MERS-CoV spike protein, before the 
Pfizer-BioNTech BNT162b2 vaccine was administered (Week 0) and after both doses (Week 7), using plasma 
from patients with no history of SARS-CoV-2 infection, n = 16 individuals. Endpoint titers are designated by the 
most dilute plasma concentration detected above the minimum threshold of the background OD450 multiplied 
by 3. Dots are representative of individual samples. Bars are representative of the mean of all samples.
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Identification of immunodominant regions with high sequence conservation on the 
SARS‑CoV‑2 spike protein.  Since we observed the elicitation of cross-reactive antibody responses against 
related coronaviruses after exposure to the SARS-CoV-2 spike protein, we next determined the precise antibody 
epitopes targeted after SARS-CoV-2 infection using a peptide microarray. Specifically, we performed a SARS-
CoV-2 peptide array that included overlapping peptides across the S1 and S2 subunits of the SARS-CoV-2 spike 
protein using convalescent blood samples from 14 individuals previously infected with SARS-CoV-2 (Fig. 4A, 
B). We calculated z-scores across the group of individuals for each specific peptide and identified peptide regions 
in both the spike S1 and S2 subunits that were immunodominant among the 14 individuals. We considered 
a z-score greater than one as “immunodominant” as the levels would be one standard deviation higher than 
binding to the other peptides on the spike protein. These immunodominant regions were present in the RBD of 
the spike protein that is critical for recognizing the host cell receptor ACE2, but also outside of the RBD, in the 
N-terminal domain (NTD) of the S1, near the fusion peptide and the C-terminal of the S2 subunit (Fig. 4A, B). In 
order to measure sequence conservation among related coronaviruses for each peptide, we generated a Bitscore 
for each peptide from a BLAST sequence alignment using SARS-CoV-2, SARS-CoV-1, Bat CoV RaTG13, and 
MERS-CoV spike protein amino acid sequences (Fig. 4A, B). To identify immunodominant peptides that also 
had high sequence conservation among related coronaviruses, z-scores and Bitscores were compared in both the 
S1 and S2 regions of the SARS-CoV-2 spike protein (Fig. 4C, D). We identified four peptides in the S1 region 
(S1-76, S1-94, S1-105, S1-111) and three peptides in the S2 region (S2-78, S2-97, S2-96) that were all immuno-
dominant (z-score ≥ 1) and had high sequence conservation with Bitscores one standard deviation above the 
mean (Fig. 4C, D). These results demonstrated that there are regions within the S1 and S2 subunit that are con-
served at the amino acid level between multiple coronaviruses and are also frequently targeted by antibodies in 
individuals after infection with SARS-CoV-2.

Immunization with conserved SARS‑CoV‑2 peptide epitope in mice elicited cross‑reactive 
antibodies to multiple coronaviruses.  One of the SARS-CoV-2 spike peptides that was both immuno-
dominant after infection and displayed high sequence conservation was not in the RBD but instead was located 

Figure 3.   Vaccination targeting SARS-CoV-2 did not significantly affect antibody responses against most 
seasonal coronaviruses. (A) Bar and line graph of antibody responses obtained by ELISA at different plasma 
dilutions to Human CoV OC43 spike protein, before the Pfizer-BioNTech BNT162b2 vaccine was administered 
(Week 0) and after both doses (Week 7), using plasma from patients with no history of SARS-CoV-2 infection, 
n = 24 individuals, p ≤ 0.0001. (B) Bar and line graph of antibody responses obtained by ELISA at different 
plasma dilutions to Human CoV HKU1 spike protein, before the Pfizer-BioNTech BNT162b2 vaccine was 
administered (Week 0) and after both doses (Week 7), using plasma from patients with no history of SARS-
CoV-2 infection, n = 24 individuals, p ≥ 0.99. (C) Bar and line graph of antibody responses obtained by ELISA at 
different plasma dilutions to Human CoV 229E spike protein, before the Pfizer-BioNTech BNT162b2 vaccine 
was administered (Week 0) and after both doses (Week 7), using plasma from patients with no history of 
SARS-CoV-2 infection, n = 24 individuals, p = 0.75. (D) Bar and line graph of antibody responses obtained by 
ELISA at different plasma dilutions to Human CoV NL63 spike protein, before the Pfizer-BioNTech BNT162b2 
vaccine was administered (Week 0) and after both doses (Week 7), using plasma from patients with no history of 
SARS-CoV-2 infection, n = 24 individuals, p ≤ 0.0001. Endpoint titers are designated by the most dilute plasma 
concentration detected above the minimum threshold of the background OD450 multiplied by 3. Dots are 
representative of individual samples. Bars are representative of the mean of all samples. Statistical analysis was 
performed using Wilcoxon matched-pairs signed rank test with two-tailed P values reported.
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Figure 4.   SARS-CoV-2 peptide array identified conserved immunodominant regions. (A, B) S1 (A) and S2 (B) 
subunits; 12-mer overlapping peptides). Seropositive (top) represents 14 individuals previously infected with 
SARS-CoV-2. Each peptide was printed in triplicate, and the Log2 of the mean fluorescent intensity (F635) for 
each peptide was graphed. The row color corresponds to the minimum and maximum intensity for all peptides 
for each individual. Known regions of the spike protein are annotated above the heatmaps. Line graphs display 
the mean group Z-score and mean Bitscore for each peptide. (C, D) Scatter plot of mean group Z-score versus 
mean Bitscore to identify putative immunodominant peptides for S1 (C) and S2 (D) subunits. NTD, N-terminal 
domain; RBD, receptor-binding domain; HR1, heptad repeat 1; HR2; heptad repeat 2; TM, transmembrane 
domain; CP, cytoplasmic domain.
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at the C-terminal of the S2 (S2-78) (Fig. 4D). This region has been shown to have the potential for neutralization 
by antibodies after infection and antibodies targeting this region correlated with disease outcomes after SARS-
CoV-2 infection58–60. Multiple sequence alignment of the S2-78 peptide sequence from SARS-CoV-2 with the 
closely related SARS-CoV-1, the three emergent bat coronaviruses (Bat CoV RsSHC014, Bat CoV WIV1, and 
Bat CoV RaTG13), and the emergent pangolin coronavirus with the identifier QIQ54048.1 revealed 100% amino 
acid sequence identity (Fig. 5A). The more distantly related MERS-CoV did not have identical conservation in 
the S2-78 peptide and differed in amino acids at 5 of the 12 positions (Fig. 5A). Similarly, there was little homol-
ogy of S2-78 amino acid sequences to the seasonal human coronaviruses 229E, NL63 and HKU1 (Supplemental 
Fig. 1B). Surprisingly, there was 75% amino acid identity of S2-78 to the Human CoV OC43 seasonal corona-
virus, despite the full spike protein of Human CoV OC43 having less than 30% amino acid sequence identity 
(Supplemental Fig. 1A and B).

Using ELISA, we found that 15 of the 24 seropositive individuals (63%), had high levels of antibody binding 
to the S2-78 peptide (Fig. 5B). None of the seronegative individuals that were vaccinated at week 0 demonstrated 
any antibody binding to the S2-78 peptide at baseline (Fig. 5B). However, after COVID-19 vaccination (week 7) 
all but a single individual (96%) had high levels of antibody binding to the S2-78 peptide (Fig. 5B). This confirmed 
the frequent targeting of this epitope after SARS-CoV-2 infection or vaccination.

We next sought to determine if immunization with the S2-78 peptide could elicit a cross-reactive antibody 
response to related coronaviruses. Since peptide antigens are often poorly immunogenic alone, we synthesized 
the S2-78 peptide and conjugated it with a diphtheria toxin carrier protein CRM197 to boost immunogenicity as 
a peptide-conjugate vaccine (Fig. 5C). We immunized five BALB/c mice with the S2-78 conjugate vaccine three 
times on days 0, 21 and 35 (Fig. 5D). We collected blood samples at baseline and seven days after each immu-
nization at days 0, 28, and 42 (Fig. 5D). After the second (day 28) or third (day 42) immunizations we detected 
antibody binding to the S2-78 peptide for all five animals (Fig. 5E). Most mice also had detectable antibodies 
against the full SARS-CoV-2 spike protein (day 28, 5 of 5; day 42, 4 of 5) as well as the SARS-CoV-1 (day 28, 4 of 

Figure 5.   An immunodominant region of the S2 subunit elicited antibody responses against SARS-CoV-2 and 
other related viruses. (A) Amino acid sequence alignments of the S2-78 peptide across SARS-CoV-2, closely 
related SARS-CoV-1, three emergent bat coronaviruses (Bat CoV RsSHC014, Bat CoV WIV1, and Bat CoV 
RaTG13), an emergent pangolin coronavirus with the identifier QIQ54048.1 and MERS-CoV. Blue shading 
indicates amino acid conservation. (B) Bar graph of antibody responses (endpoint titers) obtained by ELISA 
at different plasma dilutions to S2-78 peptide in distinct vaccinated human seronegative week 0 and week 7 
plasma (n = 16) and human seropositive serum (n = 24). (C) Schematic representation of the S2-78 peptide 
with the addition of the conjugated diphtheria toxin carrier protein CRM197 for immunization studies. (D) 
Timeline of the mouse experiments. (E) Bar graph of antibody responses (endpoint titers) obtained by ELISA 
at different serum dilutions of mouse serum against the S2-78 peptide, SARS-CoV-2, SARS-C0V-1, Bat CoV 
RaTG13 and MERS-CoV (n = 5 mice per each time point). Endpoint titers are designated by the most dilute 
serum concentration detected above the minimum threshold of the background OD450 multiplied by 3. Dots 
are representative of individual samples. Bars are representative of the mean of all samples.
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5; day 42, 3 of 5) and Bat CoV RaTG13 (day 28, 5 of 5; day 42, 5 of 5) spike proteins (Fig. 5E). We did not detect 
any antibodies in the mice targeting the more divergent MERS-CoV spike protein after immunization with the 
S2-78 peptide conjugate vaccine. We tested a single concentration of serum from each of the mice (1:40) in a 
SARS-CoV-2 and SARS-CoV-1 pseudovirus neutralization assay and did not detect a significant reduction in 
infection or neutralization (Supplemental Fig. 2). This may indicate that higher levels are required to determine 
neutralization or the other conserved epitopes with stronger neutralization activity could be selected for future 
vaccine designs. Thus, immunization with a peptide conjugate vaccine in mice using a peptide that is conserved 
elicited cross-reactive antibodies against multiple coronaviruses.

Cross‑reactivity with commensal gut bacteria may prime antibody responses to the S2 subu‑
nit of SARS‑CoV‑2.  A recent report showed that a region in the SARS-CoV-2 S2 subunit that contained 
the S2-78 peptide sequence elicited pre-existing antibodies that cross-reacted with commensal gut bacteria51. 
Using the SARS-CoV-2 S2-78 sequence as reference, we performed a sequence alignment against the entire bac-
terial proteome to identify sequence homology between the viral and commensal bacterial proteins that could 
be targeted by the humoral immune response. We identified numerous bacterial proteins with similar sequences 
that existed across a broad range of bacteria, including proteins from many genera of bacteria that exist within 
the human microbiome. Specifically, the top 10 bacterial proteins had sequence homology with SARS-CoV-2 
S2-78 between 66.6 and 83.3%, which is more conserved than the 58.3% homology of distantly related MERS-
CoV (Fig. 6A).

Serum from the mice immunized with the S2-78 peptide conjugate vaccine at baseline (day 0) and after 
three immunizations (day 42) was used to determine antibody cross-reactivity to commensal gut bacteria that 
was collected from human feces. We found that 4 of the 5 mice had increased antibody reactivity compared to 
baseline against the human fecal protein lysate after immunization at day 42 at either 1:5 or 1:10 serum dilu-
tions (Fig. 6B). This data suggested that proteins contained in commensal gut bacteria shared protein sequence 
homology with the coronavirus S2-78 peptide and could provide preemptive exposure to cross-reactive epitopes 
without exposure to the coronavirus spike protein.

Interestingly, we observed heterogeneity in the magnitude of pre-existing cross-reactive antibodies targeting 
the S2 subunit in human individuals (n = 140) at baseline before COVID-19 vaccination. We hypothesized that 
this difference in pre-existing S2 antibody levels could be due to differences in priming by commensal bacteria 
or other microbes and resulted in differences in antibody responses after vaccination. We used the baseline 
S2-targeting antibody levels to stratify individuals into three groups, high (top 25% of binding, MFI > 1557), 
medium (middle 50% of binding, MFI 526-1557), and low (bottom 25% of binding, MFI < 526) antibody response 
(Fig. 6C). These grouped samples were then measured again for S2 subunit binding 3 weeks after the first 
immunization to the Pfizer-BioNTech’s BNT162b2 vaccine. Samples with low S2 binding before vaccination at 
week 0 had significantly lower levels of antibodies binding the S2 subunit after the first immunization at week 
3 compared to individuals with medium or high pre-existing S2 antibody levels (Fig. 6D). We did not observe 
any significant differences between the groups for antibody levels to the S1 or RBD subunits of the spike protein 
(Supplemental Fig. 3). We also did not observe any significant correlation of S2 binding levels with the antibody 
levels against the four seasonal coronaviruses measured in Fig. 3. This suggested that there may be preexisting 
antibodies elicited by reactivity with commensal gut bacterial that cross-reacted with the S2 subunit providing 
higher antibody response to the S2 subunit of SARS-CoV-2 without prior infection.

Discussion
In this study, we investigated the antibody responses of individuals with recent SARS-CoV-2 infection and 
determined if these antibodies could cross-react with other related strains of coronavirus. We identified that 
natural infection with SARS-CoV-2 produced cross-reactive antibody responses that could target other known 
and emerging coronaviruses. Moreover, we found that vaccination with two doses of the Pfizer-BioNTech 
BNT162b2 mRNA COVID-19 vaccine also elicited antibodies that could react with other SARS-like and MERS 
betacoronaviruses.

Consistent with previous studies, we observed that the SARS-CoV-2 spike protein shares high amino acid 
sequence similarity to other closely related infectious coronavirus spike proteins1,14,54,55. These spike protein 

Figure 6.   Immunodominant S2-78 peptide was cross-reactive with commensal gut bacteria. (A) Amino acid 
sequence alignments of the S2-78 peptide across 12 example bacterial sequences identified using sequence 
alignment of the bacteria proteome (Fig. 5A). Blue shading indicates amino acid conservation, dashes indicate 
gaps in sequence. Percentage of sequence homology shown on the right of the alignments. (B) Bar and line 
graph of antibody responses obtained by ELISA at different serum dilutions of mouse serum immunized with 
the S2-78 peptide against the commensal gut bacteria cell lysate (n = 5 mice per each time point). Endpoint 
titers are designated by the most dilute plasma concentration detected above the minimum threshold of the 
background OD450 multiplied by 3. Dots are representative of individual samples. Bars are representative of 
the mean of all samples. (C, D) Multiplex bead-based antibody binding assay that measured the IgG antibody 
response to SARS-CoV-2 spike subunit 2 (S2) in distinct healthy individuals (C) at baseline (n = 140) prior 
to receiving COVID-19 vaccine or (D) at week 3 after receiving the first COVID-19 vaccine immunization. 
Individual values of Median Fluorescent Intensity (MFI) are calculated; background subtraction has been used 
to remove nonspecific signal. Line indicates group median. Individuals at baseline with the top 75% MFI were 
grouped as high (green) and individuals with the lowest 25% MFI were grouped as low (blue) and individuals 
with 25–75% MFI were grouped as medium (red). P values were determined with a Wilcoxon–Mann–Whitney 
test.
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phylogenies include several emergent bat and pangolin originating coronaviruses (Bat CoV WIV1, Bat CoV 
RsSHC014, Bat CoV RaTG13, and Pangolin CoV identifier QIQ54048.1), that have yet to become pandemic in 
nature, but are being closely monitored due to their potential high-risk61. Due to the similarity of these afore-
mentioned spike proteins to SARS-CoV-2 spike protein, we speculated there would be cross-reactivity with 
antibody responses to these other coronaviruses for individuals exposed to SARS-CoV-2, especially for SARS-
CoV-1 and the bat and pangolin variants as they are all known to be classified as clade 1 betacoronaviruses53,54. 
The fact that we found cross-reactive antibodies to these related coronaviruses after infection with SARS-CoV-2 
raised the hypothesis that broadly neutralizing antibodies to multiple coronaviruses could be induced. Indeed, 
cross-reactive antibodies have been isolated to multiple coronavirus epitopes with diverse effector functions62. 
Further characterization of the most potent neutralizing antibodies with the broadest coverage of coronaviruses 
will identify the optimal epitopes to target in future vaccines and therapies.

The determination that both seropositive and vaccinated individuals had high antibody binding, not only 
to the targeted SARS-CoV-2, but to other coronaviruses with phylogenetically similar spike protein sequences 
(SARS-CoV-1, MERS-CoV, Bat CoV RaTG13) could provide a template to create more broad coronavirus thera-
peutics or a vaccine. These novel vaccines could elicit broadly neutralizing antibodies to protect against current 
and future viral threats. 21 of 24 SARS-CoV-2 seropositive samples and 3 seronegative samples had antibody 
responses to the distantly related MERS-CoV spike protein, indicating that previous exposure to similar coro-
navirus epitopes could elicit cross-reactive responses to the MERS spike protein, even though it is one of the 
least homologous of the coronaviruses we examined. Interestingly, we found that while the whole spike protein 
of Human CoV OC43 had low sequence homology to SARS-CoV-2 spike protein, the S2-78 peptide region of 
SARS-CoV-2 had 75% identify to the same region in Human CoV OC43. This indicated that specific epitopes 
in even more distantly related coronaviruses could impact the antibody response. This is supported with evi-
dence of increased antibody responses to both seasonal coronavirus Human CoV OC43 (Fig. 3A) and MERS-
CoV (Fig. 2D) after vaccination with the SARS-CoV-2 spike protein. Although still detectable, we did detect a 
significant decrease in cross-reactive antibodies to the seasonal coronavirus NL63 spike after vaccination. It is 
unclear what the reason for this shift and kinetics of these changes are over the course of COVID-19 vaccination. 
Previous studies have demonstrated that cross-reactive immune responses with chimeric spike protein mRNA 
vaccines elicited protection against a multitude of related coronaviruses and SARS-CoV-2 variants by inclusion 
of bivalent and trivalent epitopes from multiple locations of the spike protein sequence45,46,62,63. Future work 
characterizing the pan-coronavirus cross-reactivity of these antibodies, isolation and identification of the most 
immunodominant epitopes through binding, structural, functional, and sequence conservation analysis would 
be needed to provide strong vaccine target candidacy.

We used a SARS-CoV-2 spike peptide array and sequence homology analysis to identify epitopes on the spike 
protein that are both immunodominant and highly conserved among related coronaviruses. Using this approach, 
we identified one peptide in the S2 subunit and performed a proof-of-concept study of designing a conjugate 
vaccine and immunizing mice. This resulted in the induction of broadly cross-reactive antibodies in the immu-
nized mice and clearly demonstrates that peptide conjugate vaccines could induce cross-reactive coronavirus 
antibody responses. Although S2-78 represented the strongest candidate through binding and conservation of 
sequence, the antibodies produced from immunizing the mice did not result in neutralization of SAR-CoV-2 or 
related SARS-CoV-1 from binding to the ACE2 receptor58–60,64–66. Additionally, the importance of the sequence 
conservation can be exemplified by the lack of antibody binding to the least conserved MERS-CoV spike protein 
by all S2-78 peptide vaccinated mice. However, prior studies identified that antibodies targeting this epitope 
had neutralizing activity and correlated with disease outcomes after SARS-CoV-2 infection58–60. We did observe 
higher antibody titers to the peptide alone compared to the native spike proteins after immunization with our 
peptide vaccine. This suggested that the peptide vaccine could elicit a population of antibodies that did not rec-
ognize the spike protein as it is presented on the virion and would not neutralize the virus. Alternatively, serum 
neutralization after immunization may not have been detected because the neutralizing antibody levels were at 
too low at the dilution of mouse serum that was utilized. Future studies determining the specific properties of 
the antibodies elicited by this peptide vaccination, including other Fc-mediated functions beyond neutralization, 
and studies selecting other epitopes in the spike protein that may be more optimal for vaccine protection, such 
as those in the RBD, will be required.

There are two preliminary reports that found that antibodies elicited to SARS-CoV-2 could cross-react with 
proteins in the commensal gut microbiome51,52. One of these epitopes overlapped with the S2-78 peptide sequence 
we used for our immunization study. We also found high sequence similarity between S2-78 peptide and proteins 
found in bacteria. Moreover, we found that individuals with higher levels of pre-existing S2 antibodies before 
COVID-19 vaccination had significantly higher levels after immunization. Prior studies with influenza vaccines 
have shown that treatment with antibiotics and disruption of the microbiome may result in impairment of immu-
noglobulin neutralization49. These observations raised the hypothesis that the composition of the microbiome 
could influence antibody levels. Our findings identified high sequence conservation of SARS-like coronavirus 
spike proteins in viruses and bacteria and ascertained the possibility of the Pfizer-BioNTech BNT162b2 vaccine 
to boost immunity against more than just SARS-CoV-2. Future studies of components of both commensal gut 
bacteria and the virome should be carried out to determine how exposure to other bacteria and viruses impact 
the SARS-CoV-2 antibody response. A limitation of these findings is whether a neutralizing response occurs 
from gut bacteria exposure or if these antibodies recognize intact microbiome or if bacterial lysis must occur. 
Lastly, in the pursuit of generating cross-reactive antibody responses that could react with the microbiome, 
determinization of deleterious effects towards the microbiome or host proteins should be measured.

In summary, our data demonstrated that SARS-CoV-2 infection or vaccination elicited cross-reactive anti-
bodies that target not only SARS-CoV-2, but related coronaviruses. Moreover, we showed that immunization 
with conserved peptide regions of SARS-CoV-2 induce cross-reactive antibodies in mice. Lastly, we provided 
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evidence that suggested that the makeup of the gut microbiome could influence SARS-CoV-2 antibody levels. 
These data lay the groundwork for developing a pan-coronavirus vaccine that could elicit cross-reactive immu-
nity to a broad range of coronavirus species. Further research will be needed to optimize this process in order 
to identify epitopes and vaccine platforms that induce protective immunity.

Materials and methods
Phylogenetic construction.  Spike protein amino acid sequences, for the respective virus, were collected 
from the NCBI protein database (Supplemental Table 3). Multiple Sequence alignment (MSA) was done using 
MUSCLE (v3.8.1551)67.

RAXML (v2.0) was used for generating maximum likelihood phylogenetic tree with Blosum62 substitu-
tion model and 100 replicates68. Final visualization of phylogenetic tree was done using Environment for Tree 
Exploration (ETE) toolkit69.

Human subjects.  Informed consent was obtained from all subjects and/or their legal guardian(s). This 
study was reviewed and approved by the Children’s Mercy IRB (#00001670 and #00001317). Participants self-
enrolled after they had reviewed a study information letter and were given opportunity to ask questions. All 
methods were carried out in accordance with relevant guidelines and regulations as reviewed and approved by 
the IRB. Healthcare workers from our children’s hospital were enrolled prior to the administration of the Pfizer 
BNT162b2 SARS-CoV-2 vaccine. Plasma from peripheral blood was collected before vaccination as a base-
line (week 0), after primary immunization (week 3), and after second immunization (week 7) from individuals 
with no known history of infection (n = 140). Sample population consisted of mostly adult middle aged, white, 
females who did not identify as Hispanic or Latino (Supplementary Table 1). Pfizer-BioNTech BNT162b2 vac-
cine biospecimens were collected under a research study at Children’s Mercy Kansas City.

COVID-19 convalescent biospecimens were obtained through Precision for Medicine (ProMedDx, LLC, 
Notron, MA, USA) and were collected under a clinical study that has been reviewed by an Institutional/Inde-
pendent Review Board (IRB) and/or Independent Ethics Committee (IEC) in accordance with requirements 
of local governing regulatory agencies including the Department of Health and Human Services (DHHS) and 
Food and Drug Administration (FDA) Codes of Federal Regulations, on the Protection of Human Subjects (45 
CFR Part 46 and 2l CFR Part 56, respectively). 24 convalescent individuals that had PCR laboratory-confirmed 
SARS-CoV-2 infection were purchased from Precision for Medicine (Bethesda, MD, USA). Serum or plasma 
was isolated from venous whole blood collection and stored frozen in ultra-low temperature freezers until used 
to perform immunoassays.

Enzyme‑linked immunosorbent assays for spike antigens.  ELISAs were performed using the fol-
lowing antigens: SARS-CoV-1 (Cat# 10683-CV, Lot# DOXT0120121, R&D Systems, Minneapolis, MN, USA), 
SARS-CoV-2 (Cat# 10549-CV, Lot# DODR0221011, R&D Systems), Bat CoV RaTG13 (Cat# 10660-CV, Lot# 
DOWW0120121, R&D Systems), MERS-CoV spike protein (Cat# 40069-V08B, Lot# LC14AP2305, Sino Bio-
logical, Wayne, PA, USA), Human CoV NL63 spike protein (Cat# 40600-V08H, Lot#LC14NO2607, Sino Bio-
logical), Human CoV 229E spike protein (Cat# 40605-V08H, Lot# LC14AP2302, Sino Biological), Human CoV 
HKU1 spike protein (Cat# 40021-V08H, Lot# LC14AP2707, Sino Biological), Human CoV OC43 spike protein 
(Cat# 40607-V08H, Lot#LC14DE1609, Sino Biological) were all diluted to 1 ug/mL in 0.1 M sodium bicarbonate 
and incubated on high-binding plates (3369, Corning Inc, Corning, NY, USA) overnight at 4 degrees. Serum or 
plasma was diluted to 1:30 in superblock buffer with sodium azide followed by subsequent 1:3 dilutions until a 
final dilution of 1:21,870. Secondary antibodies were purchased from Jackson ImmunoResearch (West Grove, 
PA, USA) : Goat anti-mouse IgG (Cat# 115-035-003, Lot# 153294) and Goat anti-human IgG (Cat# 109-036-
098, Lot# 149163). Secondary antibody dilutions were done in superblock buffer without sodium azide within 
range of manufacturer’s recommendations at 1:50,000 dilution. SureBlue Reserve Microwell Substrate (95059-
294, VWR, Radnor, PA, USA) was added and incubated in the dark for 15 min. Absorbance was measured at 
450 nm immediately after 0.33 N HCl Acid Stop solution was added to the plate. Positivity threshold was deter-
mined using three times the OD450 of a negative control well without plasma.

Manufactured ELISA.  Detection and quantification of S1 IgG class antibodies was performed using the 
High-Sensitivity SARS-CoV-2 S1 IgG ELISA kit (41A232, Biovendor, Asheville, NC, USA) following standard 
protocol with serum or plasma diluted of 1:100.

SARS‑CoV‑2 spike peptide array.  Plasma samples were diluted 1:200 and used to probe a single SARS-
CoV-2 protein and peptide microarray (CDI Labs, Mayaguez, Puerto Rico). After probing arrays with serum 
antibodies, the arrays were washed, labeled with an Alexa 647 anti-human IgG Fc secondary antibody and 
scanned using a GenePix 4000B scanner (Molecular Devices, San Jose, CA, USA). Array data was collected 
using the MAGPIX software (Innopsys, Chicago, IL, USA). Each protein or peptide was represented in triplicate 
on the microarray. There were positive control proteins (human IgG, anti-human IgG, and ACE2_Fc) and blank 
wells served as negative controls. The signal intensity was measured in the detection channel 635 nm (F635). The 
average of the F635 for each peptide was calculated and log2 transformed for graphical presentation.

Spike protein sequence from the seven different strains (Bat CoV RaTG13, Pangolin coronavirus, SARS-
CoV-2, SARS-CoV-1, MERS-CoV, Bat CoV RsSHC014, BAT CoV WIV1) of coronavirus were used as refer-
ence database. Amino acid sequences for Peptide ID (S1-1 to S2-97) were then blasted against this reference 
database. Blastp-task blastp-short (blast-v2.2.29+) was used to find sequence homology between viral sequences 
and peptide of interest70. Only the top hit for each peptide of interest were kept for down streaming analysis. If 
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there were two or more hits for a single peptide, within a coronavirus strain, the one with the highest length of 
alignment (12 base pairs) and lowest Expect value was kept. The reported E-value, percent identity and bitscore 
are mean scores across all seven coronavirus strains for each Peptide ID.

S2‑78 peptide synthesis.  Two versions of the S2-78 peptides were synthesized (Creative Biolabs, Shirley, 
NY, USA). A full length 12 amino acid S2-78 peptide was synthesized for immunoassays. Additionally, a S2-78 
peptide was synthesized with a conjugated CRM197 diphtheria toxin carrier protein for immunization studies 
to enhance the immunogenicity of the peptide vaccine.

Mouse immunization with SARS‑CoV‑2 peptide conjugate vaccine.  The following methods 
reported are in accordance with the ARRIVE guidelines (https://​arriv​eguid​elines.​org) for the reporting of ani-
mal experiments. The mouse study was performed at Hooke Laboratories, Lawrence, MA, USA. All methods 
were reviewed and approved by the Hooke and Children’s Mercy IACUC and performed in according to the 
relevant international laboratory animal welfare guidance and regulations. Mice were sourced from Taconic 
Biosciences, Rensselaer, NY, USA.

5 BALB/c female mice between 7 and 10 weeks of age were immunized subcutaneously with 0.1 ml/mouse 
at 37.5 ug/mL of the FKEELDKYFKNHC-CRM197 peptide (Creative Biolabs), mixed 1:1 with Addavax (VAC-
ADX-10, Invivogen, San Diego, CA, USA) on days 0, 21, and 35. Serum was collected on day 0, 28, and 42. 
Baseline sample (day 0) was used as the negative control for each mouse. No randomization or blinding was 
utilized in this study. Antibody level outcomes were performed across the timepoints during immunization and 
tested for statistical significance using nonparametric tests due to the exploratory sample size.

SARS‑CoV‑2 viral antigen multiplexed binding assay.  To measure antibody levels to SARS-CoV-2 
spike subunit proteins, spike subunit 1 (S1), spike subunit 2 (S2), and receptor-binding domain (RBD), were used 
on a bead-based multiplex assay based on the Luminex xMAP technology. Reagent kits with secondary antibod-
ies specific for immunoglobulin G (IgG) were used (HC19SERG1-85K, MilliporeSigma, Burlington, MA, USA) 
following manufacture protocol. The kit provided a set of SARS-CoV-2 antigen conjugated beads (S1, S2, RBD) 
along with 3 positive control beads and a negative control bead set. The positive control beads were beads coated 
with different concentrations of IgG. The negative control beads did not have antigen conjugated to determine 
nonspecific binding. The 3 antigen-conjugated beads, 3 positive control beads, and 1 negative control beads 
were mixed and incubated with each plasma sample at a dilution of 1:100 with assay buffer. Samples were run 
in duplicate. Each plate contained at least two wells with only buffer and no plasma to determine background 
activity. PE-anti-human IgG conjugate detection antibody was utilized to determine antibody response to each 
SARS-CoV-2 antigen. Using the positive control beads, inter-assay (plate-to-plate) co-efficient of variation (CV) 
was determined to be 5.16% for IgG. We utilized the Luminex analyzer (MAGPIX) and Luminex xPONENT 
acquisition software to acquire and analyze data. After acquisition net MFI was calculated by subtracting back-
ground MFI (no plasma).

After net MFI was determined for all samples, individuals before vaccination at week 0 were grouped based 
on their binding to S1, S2, and RBD and categorized into low (bottom 25% of binding), medium (middle 50% of 
binding), and high (top 25% of binding) for each antigen. These groupings were then tracked on their response 
at week 3 after vaccination to determine if initial binding to antigen determined future antibody response to 
each antigen.

Collection of commensal gut bacterial protein from human fecal sample.  A human fecal sample 
(D6323, Zymo Research, Irvine, CA, USA) was centrifuged at 200 g for 5 min twice to remove debris. Superna-
tant was collected and centrifuged at 9000 g for 10 min to collect bacterial pellet. Pellet was resuspended in PBS 
with 1X Halt protease and phosphatase inhibitor (78442, ThermoFisher, Waltham, MA, USA) and sonicated for 
30 s with a probe sonicator 3 times. Protein concentrations were measured using the Pierce BSA protein assay 
kit (23225, ThermoFisher).

Commensal gut bacteria ELISA.  ELISA was performed using bacteria lysate collected from human fecal 
samples diluted to 1 ug/mL in 0.1 M sodium bicarbonate and incubated on high-binding plates (3369, Corn-
ing) overnight at 4 degrees. Mouse serum was diluted to 1:5 in superblock buffer with sodium azide followed by 
subsequent dilutions at 1:10, 1:30, 1:90, and 1:270. Secondary antibodies were purchased from Jackson Immu-
noResearch: Goat anti-mouse IgG (Cat# 115-035-003, Lot# 153294). Secondary antibody dilutions were done in 
superblock buffer without sodium azide within range of manufacturer’s recommendations at 1:50,000 dilution. 
SureBlue Reserve Microwell Substrate (95059-294, VWR) was added and incubated in the dark for 15  min. 
Absorbance was measured at 450 nm immediately after 0.33 N HCl Acid Stop solution was added to the plate.

Statistical analysis.  The statistical analysis was performed using Graphpad Prism 9.1. For multiple com-
parison, the statistical significance was determined with a Wilcoxon–Mann–Whitney test with two-tailed p val-
ues.

Data availability
All relevant data are within the manuscript and supplementary information files. Any additional data is available 
from the corresponding author at reasonable request.

https://arriveguidelines.org
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