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Alteration of cortical 
functional networks in mood 
disorders with resting‑state 
electroencephalography
Sungkean Kim1, Ji Hyun Baek2, Se‑hoon Shim3, Young Joon Kwon3, Hwa Young Lee3, 
Jae Hyun Yoo4 & Ji Sun Kim3*

Studies comparing bipolar disorder (BD) and major depressive disorder (MDD) are scarce, and the 
neuropathology of these disorders is poorly understood. This study investigated source-level cortical 
functional networks using resting-state electroencephalography (EEG) in patients with BD and MDD. 
EEG was recorded in 35 patients with BD, 39 patients with MDD, and 42 healthy controls (HCs). Graph 
theory-based source-level weighted functional networks were assessed via strength, clustering 
coefficient (CC), and path length (PL) in six frequency bands. At the global level, patients with BD and 
MDD showed higher strength and CC, and lower PL in the high beta band, compared to HCs. At the 
nodal level, compared to HCs, patients with BD showed higher high beta band nodal CCs in the right 
precuneus, left isthmus cingulate, bilateral paracentral, and left superior frontal; however, patients 
with MDD showed higher nodal CC only in the right precuneus compared to HCs. Although both MDD 
and BD patients had similar global level network changes, they had different nodal level network 
changes compared to HCs. Our findings might suggest more altered cortical functional network in 
patients with BD than in those with MDD.

Bipolar disorder (BD) and major depressive disorder (MDD) are considered representative mood disorders. 
MDD is a debilitating disease that includes depressed mood, diminished interests, impaired cognition, vegetative 
symptoms, and changed psychomotor activity1. When MDD occurs with an individual who has also had a his-
tory of manic episode, this is called BD2. BD is a chronic and complex disorder of mood that is characterized by 
a combination of manic, hypomanic, and depressive episodes with subsyndromal symptoms extant between the 
mood episodes3. These two mood disorders were the leading causes of worldwide disability and morbidity3. These 
two psychiatric conditions exhibit similar severe depressive symptoms and show no difference in the duration of 
affective episodes during the course of illness4. These two mood disorders are very different, but they have simi-
larities. Therefore, the similarities and differences of the two mood conditions have been of interest to clinicians.

Previous neuroimaging studies demonstrated widespread brain structural and functional alterations in both 
BD and MDD, such as the prefrontal cortex, limbic system, ventral striatum, and thalamus5–8. A study investigat-
ing the volume of gray matter in affective disorders found decreased gray matter volume in the medial frontal 
cortex and anterior cingulate cortex, specifically in MDD9. Strakowsk et al.10 observed a significant difference 
between patients with BD and healthy volunteers in the volumes of amygdala, thalamus, pallidum, and striatum 
belonging to the structural network that putatively modulate human mood. For functional neuroimaging studies, 
one previous study showed that BD and MDD patients displayed significant decreased activity in the paracentral 
lobule, precuneus, and paracingulate gyrus within bilateral hemisphere, and the postcentral gyrus and precentral 
gyrus within right hemisphere11. However, studies on direct comparisons between BD and MDD, i.e. including 
and handling both diseases in one study, are sparse, with inconclusive results.

To date, most of the previous studies have been performed using fMRI, which is a suitable imaging tool to 
investigate regional brain information owing to its excellent spatial resolution. However, fMRI lacks temporal res-
olution to elucidate neural processes occurring over the course of milliseconds12. Electroencephalography (EEG) 
is an appropriate tool to address the limitations of fMRI with high temporal resolution13. In addition, EEG is 
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sensitive to alterations in neurotransmission secondary to pharmacological manipulations or brain dysfunction14. 
Resting-state brain activity reflects the baseline status of the brain and has been proposed for a means of exploring 
the underlying pathophysiology of mental disorders15. Thus, resting-state EEG analysis, which has been validated 
for utilization as a tool16, could help to better understand the pathophysiology of mental disorders.

Recently, an increasing number of researchers have studied cortical functional networks based on graph 
theory17,18. Graph theory-based brain network analysis could assist to comprehend the brain mechanisms of 
psychiatric disorders, such as mood disorders. However, to date, only a few studies have examined the resting-
state cortical functional network in patients with BD19,20 or MDD21–23 using graph theory. Furthermore, limited 
studies have included both BD and MDD and compared their networks. One of the studies comparing BD and 
MDD demonstrated that both disorders showed similar network changes with decreased CC and efficiency, and 
increased PL within the default-mode network (DMN) and limbic system network24. Particularly, no study has 
investigated and compared their networks using EEG. Although BD and MDD are distinct mood disorders, they 
exhibit similar severe depressive symptoms and have similar depressive courses4. Despite the clinical charac-
teristics, the similarities and differences in brain functional networks between BD and MDD have been poorly 
understood. Therefore, further studies are needed to explore and compare their networks.

EEG has been known to lack spatial resolution coming from volume conduction25,26 and poor signal-to-noise 
ratio27,28. However, source imaging methods, advantageous alternatives to prevent the issue, can considerably 
enhance the spatial resolution of EEG. The objective of the current study was to investigate and compare cortical 
functional networks from resting-state EEG in patients with BD and MDD via source-level weighted network 
analysis. We also explored the associations between cortical network properties and psychological measures in 
patients with BD and MDD. We hypothesized that patients with BD and MDD would display altered cortical 
functional networks compared to healthy controls (HCs) and that two patient groups would show different 
degrees of alteration in their networks.

Results
Demographic and psychological characteristics.  Table 1 presents the comparisons of demographic 
and psychological characteristics among the patients with BD and MDD and HCs. There was a significant dif-
ference in education years (p < 0.001). HCs showed significantly higher education years than patients with BD 
and MDD. In addition, there were significant differences in STAI state, STAI trait, and BDI (STAI state: p < 0.001; 
STAI trait: p < 0.001; BDI: p < 0.001). HC presented significantly lower STAI state, STAI trait, and BDI scores than 
patients with BD and MDD.

Global level differences in cortical functional networks.  Table 2 presents the comparisons of global 
level indices among the BD, MDD, and HC groups. There were significant differences in the three global level 
indices of the high beta band. The strength (p = 0.001, η2 = 0.112) and CC (p = 0.001, η2 = 0.114) of the high beta 
band were significantly higher in patients with BD and MDD than in HCs. In contrast, the PL of the high beta 
band was significantly lower in patients with BD and MDD than in HCs (p < 0.001, η2 = 0.129). There was no 
significant difference between the patient groups for the three network indices of the high beta band. Further-
more, there was no significant difference among the three groups in the other frequency bands. Mean weighted 
matrices from phase-locking values (PLVs) for the high beta band in each group and pair-wise comparisons 
were presented in the supplementary results.

Nodal level differences in cortical functional networks.  On the basis of the significant difference in 
the global high beta band CC among the three groups, we decided to explore possible differences at the nodal 
level in the high beta band. Figure 1 shows the violin plots of the significant nodal CCs in five regions among 
the three groups. The nodal CCs of the BD and MDD groups were significantly higher than that of HCs in one 
region (right precuneus, p < 0.001, η2 = 0.126). The nodal CCs of the BD were significantly higher than those of 
HCs in four regions (left isthmus cingulate: p < 0.001, η2 = 0.144; left paracentral: p < 0.001, η2 = 0.131; right para-
central: p < 0.001, η2 = 0.125; left superior frontal: p < 0.001, η2 = 0.132).

Table 1.   Demographic characteristics of all study participants. BD, bipolar disorder; MDD, major depressive 
disorder; HC, healthy control; STAI, State-Trait Anxiety Inventory; BDI, Beck Depression Inventory.

BD (N = 35) MDD (N = 39) HC (N = 42) P Post-hoc (Bonferroni)

Age (years) 32.57 ± 11.61 31.62 ± 12.28 29.43 ± 5.95 0.380

Sex 0.412

 Male 14 (40.0) 20 (51.3) 23 (54.8)

 Female 21 (60.0) 19 (48.7) 19 (45.2)

Education (years) 12.97 ± 2.53 11.87 ± 1.94 15.33 ± 2.19  < 0.001 BD < HC, MDD < HC

Onset age (years) 25.34 ± 9.79 29.44 ± 11.83 0.112

Duration of illness (years) 7.26 ± 7.71 2.56 ± 2.73 0.001

STAI state 60.69 ± 9.54 64.85 ± 7.60 31.07 ± 6.85  < 0.001 BD > HC, MDD > HC

STAI trait 62.06 ± 9.91 64.95 ± 5.61 33.76 ± 7.20  < 0.001 BD > HC, MDD > HC

BDI 47.66 ± 9.88 47.74 ± 10.80 23.38 ± 3.93  < 0.001 BD > HC, MDD > HC
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Correlation between network indices and psychological characteristics.  The correlations 
between the network indices and psychological measures were evaluated in the high beta band. Following the 
5000 bootstrap resampling technique, the two patient groups only showed a significantly different association 
between the nodal CC in the left superior frontal region and the STAI state. A post-hoc analysis of the significant 
interaction term (R2 = 0.134, F = 2.660, df = 69, p = 0.040) showed an association between the nodal CC in the 
left superior frontal region and the STAI state in patients with BD (β = 0.394, p = 0.022) but not in patients with 
MDD (β = -0.150, p = 0.363), a pattern observed after considering duration of illness (Fig. 2).

Discussion
This study investigated cortical functional networks during resting-state EEG in patients with BD and MDD and 
HCs. We observed significant differences among these groups in the high beta band. First, at the global level, 
strength and CC were significantly higher, while PL was lower in both patient groups compared with HCs. Sec-
ond, at the nodal level, the CC in the right precuneus was significantly higher in both patient groups than that in 
HCs. Additionally, patients with BD showed higher CCs in the left isthmus cingulate, bilateral paracentral, and 
left superior frontal, compared with HCs. Third, the nodal level high beta band CCs of the left superior frontal 
region correlated with the STAI state in patients with BD.

Although only few studies have explored graph theory-based network properties in BD and MDD, they have 
been documented to have abnormal brain connectivity at the network-level. Structural brain networks from dif-
fusion tensor imaging exhibited lower CC and efficiency, and longer PL in BD29,30. Kim et al.19 showed decreased 
CC and efficiency, and increased PL in the alpha band during resting-state EEG in patients with BD. Another 
resting-state EEG study demonstrated that BD showed higher strength and CC, and lower PL in the theta band20. 
Furthermore, several neuroimaging studies have shown altered functional brain networks in MDD patients. 
fMRI studies observed greater efficiency and lower PL and CC in MDD patients21,31,32. Guo et al.33 reported that 
patients with MDD had stronger efficiency and shorter PL than HCs, but no difference was found at the local 
level between the MDD and HC groups. In addition, a resting-state EEG study23 indicated increased beta band 
global efficiency in patients with MDD, while nodal level efficiency in patients with MDD was almost the same 
as that in HCs. One resting-state fMRI study24 comparing BD and MDD patients demonstrated similar network 
changes in both patients with decreased CC and efficiency, and increased PL compared to HCs within the DMN 

Table 2.   Mean and standard deviation values of global network indices including strength, clustering 
coefficient (CC), and path length (PL) in each frequency band among the bipolar disorder, major 
depressive disorder, and healthy control groups. *The p value was adjusted via Bonferroni correction with 
0.05/18 = 0.002778. BD, bipolar disorder; MDD, major depressive disorder; HC, healthy control.

BD (N = 35) MDD (N = 39) HC (N = 42) Effect size (η2) P* Post-hoc (Bonferroni)

Delta band

 Strength 28.02 ± 1.26 27.99 ± 1.12 27.67 ± 0.89 0.006 0.702

 CC 0.41 ± 0.02 0.41 ± 0.02 0.41 ± 0.01 0.006 0.728

 PL 2.57 ± 0.10 2.57 ± 0.09 2.59 ± 0.07 0.004 0.802

Theta band

 Strength 24.51 ± 1.40 24.28 ± 1.09 23.91 ± 0.87 0.023 0.274

 CC 0.36 ± 0.02 0.35 ± 0.02 0.35 ± 0.01 0.022 0.282

 PL 3.02 ± 0.15 3.04 ± 0.12 3.07 ± 0.10 0.019 0.344

Alpha band

 Strength 26.02 ± 2.27 26.97 ± 2.99 25.06 ± 2.00 0.037 0.124

 CC 0.38 ± 0.03 0.39 ± 0.04 0.36 ± 0.03 0.036 0.127

 PL 2.84 ± 0.24 2.75 ± 0.29 2.94 ± 0.21 0.031 0.173

Low beta band

 Strength 21.22 ± 1.08 21.03 ± 0.91 20.40 ± 0.93 0.077 0.012

 CC 0.30 ± 0.02 0.30 ± 0.01 0.29 ± 0.01 0.077 0.011

 PL 3.55 ± 0.17 3.59 ± 0.14 3.68 ± 0.15 0.080 0.009

High beta band

 Strength 17.54 ± 1.14 17.31 ± 1.02 16.54 ± 0.85 0.112 0.001 BD > HC,
MDD > HC

 CC 0.25 ± 0.02 0.24 ± 0.01 0.23 ± 0.01 0.114 0.001 BD > HC,
MDD > HC

 PL 4.38 ± 0.30 4.44 ± 0.25 4.67 ± 0.24 0.129  < 0.001 BD < HC,
MDD < HC

Gamma band

 Strength 14.18 ± 1.34 14.29 ± 1.28 13.96 ± 1.02 0.017 0.383

 CC 0.19 ± 0.02 0.19 ± 0.02 0.19 ± 0.01 0.017 0.386

 PL 5.29 ± 0.55 5.24 ± 0.46 5.38 ± 0.43 0.015 0.429
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Figure. 1.   Violin plots of significant nodal clustering coefficients in high beta band for bipolar disorder, major 
depressive disorder, and healthy controls. The p value was adjusted via Bonferroni correction. CC, clustering 
coefficient; BD, bipolar disorder; MDD, major depressive disorder; HC, healthy control. *p < 0.05 (corrected), 
**p < 0.01 (corrected).

Figure. 2.   Correlations between nodal clustering coefficients (CC) and psychological measures in high beta 
band for patient groups. BD, bipolar disorder; MDD, major depressive disorder; STAI, State-Trait Anxiety 
Inventory.
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and limbic system network. Although the previous results tend to be inconsistent regarding the direction of 
altered network properties in the disorders, these findings support our results that patients with BD and MDD 
displayed similar abnormal cortical functional networks at the global level.

Although previous studies did not show a consensus of abnormality in a specific frequency band in patients 
with BD and MDD, various studies have reported that the beta band is closely related to the patients. Several 
EEG studies have concluded that beta power positively correlates with the DMN activity in BD34–36. A recent 
magnetoencephalographic (MEG) study37 revealed that the limbic network connectivity in the beta band could 
be a good objective biomarker for BD. In terms of MDD, one EEG study38 revealed that patients with MDD 
showed greater beta band functional connectivity within the DMN. In addition, MEG studies have reported the 
association of altered connectivity in the beta band with MDD39,40. Excessive beta band synchronization, which 
is associated with maintaining the brain’s status quo, might be a mechanism driving brain inflexibility in BD and 
MDD patients. Previous studies back up our findings that excessive neural processing in the beta band might be 
associated with the pathophysiology in depressive states in mood disorders.

At the nodal level, our results showed that compared to HCs, patients with BD showed higher nodal CCs of 
the high beta band in the right precuneus, left isthmus cingulate, bilateral paracentral, and left superior frontal. 
In contrast, compared to HCs, patients with MDD showed higher nodal CC only in the right precuneus. These 
findings might imply that patients with BD could be associated with a more severely altered network. Our results 
are in line with some previous studies where MDD patients showed altered global network properties, while they 
presented almost the same nodal level network as that of HCs23,33. However, these studies only included patients 
with MDD. To verify our findings, further studies with both patient groups are necessary.

Previous studies have repeatedly shown an abnormality in the precuneus in both BD and MDD patients, 
which is in line with our results. BD patients showed a lack of precuneus activation during emotion related 
paradigms41,42. A resting-state fMRI study43 found increased neuronal synchronization in the right precuneus, 
left superior frontal gyrus, and right paracentral lobule, indicating that these areas might play an important role 
in the pathophysiology of BD. In terms of MDD, lower activity in the right precuneus was observed relative to 
the HCs44,45. Zhu et al.46 found decreased connectivity of the precuneus in patients with MDD compared to HCs. 
In addition, a recent fMRI study found that reduced strength of the right precuneus was associated with higher 
maladaptive rumination levels in patients with MDD47. Among the few studies directly comparing both BD and 
MDD patients, Liang et al.48 found that the regional homogeneity value of the precuneus was increased in BD 
and MDD patients. Another fMRI study24 found similar network changes between BD and MDD, but abnormal 
nodal efficiency in the right precuneus was specific to BD patients.

Moreover, evidence of abnormalities in other regions besides the precuneus has been accumulated in BD. For 
example, a diffusion-weighted MRI study29 revealed abnormalities of nodal network measures in the bilateral 
isthmus cingulate in BD. Another structural brain network study49 identified alterations in community structure 
containing the paracentral gyrus and posterior cingulate in BD. They also found that the left isthmus cingulate 
alteration was associated with the number of depressive episodes in patients with BD. With regard to the supe-
rior frontal region, cortical thinning or volume reduction in the left superior frontal cortex, a key emotional 
processing region, has been observed in BD patients50,51. A diffusion tensor imaging study reported reduced 
fractional anisotropy in the superior frontal white matter in BD patients52. Regarding the paracentral region, 
patients with BD showed increased gray matter volume in the bilateral paracentral lobule53. An fMRI study54 
reported reduced nodal degree and increased participation coefficient in the paracentral lobule in BD. These 
studies support our findings that the regions could play a crucial role in comprehending the pathophysiology of 
BD patients. Furthermore, our findings might imply that the network of BD patients could be more functionally 
altered than that of patients with MDD.

Our findings showed the significant differences of nodal CCs in five regions among the three groups; right 
precuneus, left isthmus cingulate, left paracentral, right paracentral, and left superior frontal. For nodal CCs 
of the contralateral regions including left precuneus, right isthmus cingulate, and right superior frontal, they 
showed the similar trend with p values lower than 0.01. However, after applying Bonferroni corrections for mul-
tiple comparisons, they were not considered significant with an adjusted p value. Our findings are warranted to 
be further replicated from a larger number of patients considering various characteristics to verify if there are 
hemispheric differences in the changes of the nodal CCs.

Interestingly, our findings revealed intermediate network measures of patients with MDD, between those in 
patients with BD and those in HCs, although the two patient groups did not show significantly different network 
measures. Our BD patient population was composed of more BD Type II patients than BD Type I patients (25 
patients with BD Type II and 10 patients with BD Type I). BD II is distinguished from BD I mainly by the absence 
of full-blown manic episodes, and a growing body of evidence suggests that there could be neurobiological differ-
ences between BD I and BD II patients55. Therefore, the higher proportion of patients with BD II in the present 
study might have affected our results that there were no significant differences in network measures between the 
two patient groups. Furthermore, the difference between BD and MDD patients might not be detected because 
the current study population did not include patients with psychotic symptoms. The comorbid psychotic fea-
tures are usually related to low functioning and disability56 and worse cognitive performance in BD57. Further 
research needs to be conducted with a large sample size of both BD subtypes and various symptom dimensions, 
such as psychotic features.

Moreover, our significant correlation result was found only in BD patients where the nodal level high beta 
band CC of the left superior frontal region was positively correlated with state anxiety. One possible explanation 
for the result could be the more altered network in BD than MDD. In other words, although both patient groups 
did not show differences in phenotypic anxiety levels through self-reports, more altered network in the left 
superior frontal region in the patients with BD could have been more affected by anxiety. Superior frontal region 
has been regarded to be related to the attention network and DMN58. Attention network is thought to mediate 
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goal directed top down processing which is associated with task control function. Brain regions belonging to 
attention network could play a role in emotional regulation and in the higher state of vigilance and awareness58. 
Considering the cognitive models of anxiety disorders, which emphasized the role of emotional hyperactivity59, 
a failure of emotional regulation is thought to be an essential cause of anxiety symptoms in mood disorder60. In 
addition, increased connectivity in the DMN is associated with ruminative thoughts and excessive worries dur-
ing self-referential processing61. Thus, the link between nodal CC in the DMN-related region and state anxiety 
suggests more negative internalized attention in patients with BD62. Furthermore, the high beta band frequency 
domain has been shown to be related to anxiety63,64. The altered attention network and DMN activity in the 
beta frequency band was repeatedly observed in patients with BD34–36. Taken together, the disrupted beta band 
network in superior frontal region in BD patients might contribute to affective functioning underlying clinical 
symptoms such as anxiety.

This study has a few limitations. First, some of the patients were taking medications at the time of testing. 
However, less than 30% of the patients were taking medications in each group (9 patients with BD and 11 patients 
with MDD). Further studies controlling for the medication effects would be needed. Second, the current study 
enrolled patients with depression but without psychotic symptoms. Thus, our findings may not be generalized 
to the entire population of individuals with BD and MDD. Third, we did not use individual head models for 
EEG source imaging. Source analysis of scalp-derived EEG might be inherently limited because of the preci-
sion of spatial localization. Despite these limitations, this study was the first attempt to investigate and compare 
source-level cortical functional networks in patients with BD and MDD during resting-state EEG. Our results 
suggest that both patients have similar network changes at the global level, but they have different network 
changes at the nodal level. Also, the higher nodal CCs in the high beta band might indicate the regions became 
more connected with their neighbors in accordance with the severity of depressive and anxious states. We also 
found a significant correlation between cortical network state and anxiety-related psychological measure in BD 
patients. Our source-level cortical network indices might contribute to the understanding of the neuropathologi-
cal mechanisms in these two disorders. Further studies with larger sample sizes are necessary to replicate and 
extend the generalizability of our findings.

Materials and methods
Participants.  Participants were recruited from the Department of Psychiatry at Soonchunhyang Univer-
sity Cheonan Hospital in Korea. The patients included 35 patients with BD (14 men and 21 women; mean 
age: 32.57 ± 11.61 years; range: 19–56 years) and 39 patients with MDD (20 men and 19 women; mean age: 
31.54 ± 12.32 years; range: 19–59 years). Patients with BD and MDD were diagnosed according to the Structured 
Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) Axis I Psy-
chiatric Disorders by a board-certified psychiatrist65. In addition, the board-certified psychiatrist confirmed that 
the patients with BD had one or more hypomanic/manic episodes in their lifetime mood disorders. Patients with 
any history of neurological or other severe medical diseases were excluded in the initial screening interviews. 
None of the patients had mental retardation, alcohol abuse, were undergoing electroconvulsive therapy, or had 
any head injuries. Among the 35 patients with BD, 10 patients were diagnosed with BD Type I and 25 patients 
with BD Type II. Nine of the 35 patients with BD were taking mood-stabilizing agents (lithium and valproate) 
with or without atypical antipsychotics (quetiapine, aripiprazole, and olanzapine). Eleven of the 39 patients with 
MDD were taking medications, such as selective serotonin reuptake inhibitors (fluoxetine and escitalopram), 
serotonin, norepinephrine reuptake inhibitors (duloxetine), or others (mirtazapine). Forty-two HCs (23 men 
and 19 women; mean age: 29.43 ± 5.95 years; range: 21–41 years) were recruited through posters in the hospi-
tal and advertisements in local newspapers. An initial screening interview was conducted by a board-certified 
psychiatrist to exclude any subjects with identifiable psychiatric disorders, neurological disorders, or histories 
of head injuries. All participants were right-handed. This study was approved by the Institutional Review Board 
and Ethics Committee of Soonchunhyang University Cheonan Hospital, and all experimental protocols were 
approved by the committee (2018-10-032-006). The study was performed in accordance with approved guide-
lines. Informed consent was acquired from all study participants.

Psychological measures.  The State-Trait Anxiety Inventory (STAI)66,67 and Beck Depression Inventory 
(BDI)68 were evaluated for anxiety and depression. The STAI is a self-rating scale for state and trait anxiety67. It 
consists of a state anxiety inventory and trait anxiety inventory; each inventory has 20 items66. The BDI is a self-
rating scale composed of 21 items to measure the severity of depression symptoms68.

Recording and preprocessing of electroencephalography (EEG).  Resting-state EEG data were 
recorded in a sound-attenuated room, while the participants opened their eyes for five minutes. EEG was 
recorded with a NeuroScan SynAmps2 amplifier (Compumedics USA, Charlotte, NC, USA) based on an 
extended 10–20 placement scheme via 62 Ag–AgCl electrodes mounted on a Quik-Cap. The reference electrode 
was Cz and the ground electrode was located on the forehead. Horizontal electrooculogram (EOG) electrodes 
were placed at the outer canthus of each eye while vertical EOG electrodes were located above and below the left 
eye. The impedance was kept below 5 kΩ. EEG signals were bandpass filtered from 0.1 to 100 Hz with a 1000-Hz 
sampling rate. The procedure for the EEG recording followed our previous study20.

All preprocessing procedures were performed using CURRY 8 (Compumedics USA, Charlotte, NC, USA) and 
MATLAB R2018b (MathWorks, Natick, MA, USA). The EEG data were re-referenced to an average reference. In 
order to remove DC components, a high pass filter with 1 Hz was applied to the EEG data. Visual inspection for 
movement artifacts was carried out by a skilled researcher without prior information regarding the data origin. 
Eye-movement related artifacts were corrected via a covariance- and regression-based mathematical procedure in 
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CURRY 869. Then, the preprocessed EEG data were divided into 2.048 s (2048 points) epochs, and all the epochs 
including significant physiological artifacts (amplitude exceeding ± 100 μV) at any of the 62 electrodes were 
rejected. After all the preprocessing procedures, the three groups did not show a significant difference regard-
ing the number of artifact-free epochs (patients with BD: 125.00 ± 31.99; patients with MDD: 119.56 ± 37.71; 
HCs: 108.62 ± 29.93; p = 0.091). Among the remaining artifact-free epochs, 30 epochs were randomly extracted 
for each participant considering the bias over time. Finally, each participant had 30 artifact-free epochs. It was 
determined by the different number of remaining epochs from each participant after rejecting artifacts. In addi-
tion, a previous study demonstrated acceptable reliability of resting-state EEG data longer than 40 s70.

Source localization.  The depth-weighted minimum L2 norm estimator from the Brainstorm toolbox 
(http://​neuro​image.​usc.​edu/​brain​storm) was used to approximate the time series of source activities71. A three-
layer boundary element model from the MNI/Colin 27 anatomy template was used to compute the lead-field 
matrix. Cortical current density of 15,002 cortical vertices was calculated at every time point of each epoch. 
Noise covariance was measured by the whole 30 epochs of each participant. The weight of each individual sensor 
was computed by the diagonal components of the noise covariance for the source reconstruction. After approxi-
mating the cortical current density at every time point, 68 nodes were extracted based on the Desikan–Killiany 
atlas containing 34 cortical regions in each hemisphere72. The Brainstorm toolbox provided the information 
about which cortical vertex belonged to which region for 15,002 cortical vertices based on the atlas. The repre-
sentative value in each region was assessed by the cortical source of the seed point in each region based on the 
Desikan–Killiany atlas, which information was provided in the Brainstorm toolbox. Then, the time series of the 
cortical sources at each of the 68 seed points were bandpass filtered and divided into six frequency bands: delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), low beta (12–18 Hz), high beta (18–30 Hz), and gamma (30–55 Hz). 
The procedure for the source localization followed that of our previous study20.

Connectivity and network analysis.  Functional connectivity between each pair of nodes was assessed 
via PLVs73. PLVs provide normalized synchronization values ranging from 0 to 1. Thus, no further modification 
was needed to apply them to the weighted network analysis. A higher PLV denotes stronger connection between 
two nodes than that between the other pairs. PLV showed fine performance with weighted minimum norm 
estimation74 and has been widely employed in network analysis75,76.

We performed a graph theory-based weighted network analysis17,18. The weighted network preserves the 
unique traits of the original network without distortion. A network is comprised of several nodes connecting to 
each other using edges. Widely used three representative global level weighted network measures were evaluated 
in this study. First, “strength” denotes the degree of connection strength in the network. A higher strength value 
indicates the strong connection in the whole brain. Second, “CC” refers to the degree to which a node clusters 
with its neighboring nodes. An increased CC denotes a well-segregated network between the relevant brain 
regions. Third, “PL” denotes the sum of lengths between two nodes within the network. It is associated with the 
information processing speed. The shortened PL refers to a well-integrated network. Furthermore, weighted 
nodal CC was assessed at each node. Network analyses were carried out via MATLAB R2018b.

Statistical analysis.  Chi-squared tests and one-way analysis of variance (ANOVA) were used to explore 
differences in demographic characteristics and psychological measures among the three groups. A multivariate 
ANOVA was conducted to compare the cortical network characteristics at the global level of each frequency 
band among the three groups, with education as a covariate. P values were adjusted by Bonferroni corrections 
(an adjusted p value of 0.05/18 = 0.002778; three global network measures with six frequency bands) to control 
multiple comparisons. The same analysis was conducted at the nodal level, followed by Bonferroni corrections 
with an adjusted p value of 0.05/68 = 0.000735 (nodal CCs at 68 nodes). When the variables presented signifi-
cant differences among the three groups, the post-hoc pair-wise comparisons with Bonferroni corrections were 
performed. Effect sizes were computed based on the partial eta squared (η2). The procedure for the statistical 
analysis followed our previous study20.

The relationship between network indices and psychological measures was analyzed using hierarchical regres-
sion analyses with a 5000 bootstrap resampling technique to correct for multiple comparisons. For the patient 
groups, the duration of illness was considered as a covariate. Although the bootstrap test is weaker than the 
Bonferroni test to resolve the multiple-comparison issue, the robustness and stability of the bootstrap test have 
been verified77,78. Furthermore, the bootstrap test has been widely used in EEG analysis79,80. Statistical analyses 
were performed using SPSS 21 with the significant level at p < 0.05 (two-tailed) (SPSS, Inc., Chicago, IL, USA).
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