
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4652  | https://doi.org/10.1038/s41598-022-08725-9

www.nature.com/scientificreports

Penetration ability 
and microhardness of infiltrant 
resin and two pit and fissure 
sealants in primary teeth with early 
enamel lesions
Mahtab Memarpour1, Arefe Abedinzade2, Azade Rafiee1* & Atieh Hashemian3

To determine the penetration depth and enamel microhardness (EMH) of an infiltrant resin and two 
fissure sealants in primary teeth with early enamel lesions. We randomly divided 174 sound teeth 
into six groups (n = 29): (1) phosphoric acid (PA) + Clinpro, (2) PA + Aegis, (3) Icon, (4) hydrochloric acid 
(HCl) + Clinpro, (5) HCl + Aegis, and (6) control. Percentage penetration (%PP) was analyzed by confocal 
laser scanning microscopy (n = 15). EMH was measured (n = 12), and the percentage of EMH recovery 
(%REMH) was calculated. Twelve samples were examined under a scanning electron microscope 
(SEM). All data were analyzed with the Kruskal–Wallis and one-way ANOVA tests (p < 0.05). Groups 
3 and 4 showed the highest %PP (all, p < 0.05). Icon application led to significantly higher %REMH 
compared to the others (p < 0.05). Groups 2 and 5 showed the lowest reduction in %REMH after 
pH-cycling. Application of Icon and Clinpro with HCl pretreatment showed the greatest %PP. 
pH-cycling led to a decrease in %REMH for all of the materials, although this effect was lower in teeth 
treated with Aegis.

Early childhood caries (ECC) begin on smooth buccal surfaces in primary anterior teeth. Although the lesion is 
initially non-cavitated, it can progress to a cavity. Micro-invasive methods are proposed to stop progression to 
a cavity. Overall, these techniques include sealing the lesion and resin penetration into enamel, which is porous 
because of demineralization1, 2.

Fissure sealant (FS) is a common method to arrest incipient caries by pretreatment with phosphoric acid 
and application of a resin-based sealant material2. The use of infiltrant resin (IR) is another approach where a 
low viscosity resin penetrates by capillary force into the subsurface lesion and occludes the porous area. Both 
approaches can halt caries progression3–5. The results of some studies have revealed that the superficial surface of 
the enamel reduced resin impregnation because of a decrease in “pore volume”. Pretreatment with a 15% hydro-
chloric acid gel for 2 min compared to 37% phosphoric acid more effectively removed the highly mineralized 
superficial barrier and eroded the enamel surface, which improved resin penetration into the subsurface area4, 6.

Some studies on permanent teeth showed the advantages of pretreatment with 15% hydrochloric acid rather 
than 37% phosphoric acid to increase resin-based material penetration into non-cavitated early caries lesions4, 7, 

8. Also IR can penetrate to the body of the lesion and increase enamel microhardness (EMH) more than conven-
tional sealant materials8. However, it is still unclear whether IR is effective in primary teeth. Stereomicroscope 
observation showed increased penetration of IR in primary teeth compared to permanent teeth9. In addition, 
Swamy et al. assessed the extent of IR penetration into white spot lesions of primary teeth enamel. They concluded 
that IR is a predictable material, which can deeply seal porosities in white spot lesions of primary teeth enamel10. 
IR can mask the appearance of white spot lesions from light reflection, which is similar to sound enamel9, 11.

We designed this research by taking into consideration the importance and benefits of minimal intervention 
dentistry, especially in children, and the availability of FS compared to IR in pediatric dentistry. We hypothesized 
that FS combined with phosphoric acid or hydrochloric acid would be similar or superior for deeper penetration 
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or increasing microhardness compared to IR for early caries lesions because of the pretreatment methods and the 
effect on enamel. The null hypothesis was tested against an alternative hypothesis that differences in penetration 
or microhardness would be found between the materials. To date, no studies have assessed these microinvasive 
methods and compared them in primary teeth. The aim of this study was to evaluate microinvasive techniques 
(i.e., sealing and infiltration) as treatment for early caries lesions in primary teeth. We compared the efficacy of 
IR and two resin-based FS that contained fluoride or amorphous calcium phosphate (ACP) to penetrate into 
subsurface lesions and alter microhardness. Confocal laser scanning microscopy (CLSM), EMH, and scanning 
electron microscope (SEM) evaluations were compared after the intervention.

Materials and methods
This research protocol was conducted in accordance with the principles stated by the Human Ethics Review 
Committee of the School of Dentistry, Shiraz University of Medical Sciences. In this study, we used extracted, 
sound primary anterior teeth (n = 185). All parents provided their written informed consent for the use of their 
children’s teeth. The roots of the teeth were removed and the specimens were cleaned by a rotating brush and 
disinfected by immersion in 0.1% chloramine T solution for one month. The samples were kept in distilled water 
at 37 °C. Prior to beginning the experiment, the enamel of each tooth was observed under a stereomicroscope 
in order to exclude teeth with any defective enamel, microcracks or staining. The EMH values for the incisal, 
middle, and cervical thirds of the teeth were measured to ensure acceptable baseline microhardness. Totally, 11 
teeth did not fulfill the inclusion criteria. Then, we randomly divided 174 teeth into six groups (n = 29). The teeth 
were allocated to three treatment groups (IR, resin-based FS containing fluoride, and ACP with different pretreat-
ments [37% phosphoric acid or 15% hydrochloric acid]). Then, the teeth were mounted in polyester (Pooyesh 
Sanat, Qazvin, Iran). The labial surface was placed on a parallel surface with the mold. Each tooth surface was 
polished with 600-, 800-, and 2400-grit waterproof silicon carbide paper and 0.5–3 μm aluminum oxide in order 
to generate a flat, glossy and smooth surface. Next, the teeth were washed for 20 s in distilled water. Then, the 
specimens in each group were randomly divided into three sub-groups to assess CLSM (n = 15), EMH (n = 12) 
and SEM (n = 2). The samples also underwent demineralization.

Sample preparation before enamel microhardness (EMH).  We measured EMH in four steps: base-
line (before demineralization), after demineralization, after intervention, and seven days after pH-cycling. A 
3 × 4.5 mm window was created on the labial surface of the tooth with a paper label. Two layers of nail polish 
were applied to cover the rest of the tooth’s surface. The exposed area was divided into three similar size sec-
tions, where 1/3 of the incisal side was used to measure EMH at baseline, 1/3 of the middle to assess EMH after 
intervention and pH-cycling, and 1/3 of the cervical area was used to measure EMH after demineralization. In 
order to avoid any interference between each step and to accurately calculate EMH of these parts, we covered the 
area with nail polish before each step. First, the 1/3 incisal area was covered with a different color nail polish and 
then the samples were demineralized.

Early caries lesions.  Each tooth was soaked in 30 mL demineralization solution at 37 °C for 96 h. The solu-
tion contained 0.1 mM lactic acid solution, 3 mM CaCl2, 3 mM KH2PO4, and 0.2% guar gum. The final pH was 
adjusted to 4.5 with 50% sodium hydroxide. The solution was replaced by fresh solution after 48 h. After 96 h, we 
washed each sample with deionized water for 20 s and allowed them to air dry12.

Next, the 1/3 cervical area of each EMH specimen was covered by nail polish and the following interventions 
were performed on all the teeth.

Experimental groups.  Group 1 (phosphoric acid + fluoride containing FS) The enamel was etched with a 
37% phosphoric acid gel (3M ESPE, St. Paul, MN, USA) for 30 s, rinsed for 30 s, and dried for 30 s. Sealant 
(Clinpro™, 3M ESPE, St. Paul, MN, USA) was applied according to the manufacturer’s instructions on the treated 
surface and an explorer was used to prevent void formation. Next, a halogen light cure unit (Coltolux, Coltene, 
Whaledent, Altstätten, Switzerland) at a power density of 550 mW/cm2 was used for 40 s to polymerize the FS 
at a 1 mm distance to the surface.

Group 2 (phosphoric acid + ACP-containing FS) The tooth surface was etched, washed, and dried as previously 
mentioned. Then, ACP-containing FS (Aegis®, Bosworth, Keystone Industries, Gibbstown, NJ, USA) was applied 
onto the treated surface according to the manufacturer’s instructions and then light-cured for 40 s.

Group 3 (hydrochloric acid + IR) The enamel was etched with a 15% hydrochloric acid gel (Icon etch®, DMG, 
Hamburg, Germany) for 2 min, washed for 30 s, and dried. The samples were dehydrated with 99% ethanol 
(Icon Dry®, DMG, Hamburg, Germany) for 30 s and gently dried. Next, IR (Icon®, DMG, Hamburg, Germany) 
was applied over the treated surface for 3 min, and the excess was removed, then light-cured for 60 s. Icon was 
reapplied for 1 min and light-cured for 60 s. All the procedures were performed according to the manufacturer’s 
instructions.

Group 4 (hydrochloric acid + fluoride containing FS) The enamel surface was etched with 15% hydrochloric 
acid for 2 min, then the surface was washed for 30 s and dried. A Clinpro™ sealant was applied over the surface 
for 3 min and the surface was light-cured for 60 s.

Group 5 (hydrochloric acid + ACP-containing FS) The procedure performed was similar to group 4; however, 
Aegis was used as the sealant material.

Group 6 (control) No intervention was used and the teeth only underwent pH-cycling.

Confocal laser scanning microscopy (CLSM) assessment.  The samples were prepared prior the 
CLSM assessment. First, the enamel surface was etched with phosphoric acid or hydrochloric acid as previ-



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4652  | https://doi.org/10.1038/s41598-022-08725-9

www.nature.com/scientificreports/

ously described. Then, the tooth was washed in deionized water for 30 s and dried for 30 s. Each specimen was 
immersed in 0.1% ethanolic tetramethyl-rhodamine isothiocyanate (Merck, Darmstadt, Germany) for 12 h and 
dried for 10 s. Next, the materials were applied onto the treated surface as previously described. In order to 
obtain a 1 mm section, each sample was sectioned in the buccolingual direction across the center of the lesion 
with a diamond saw (Mecatome, Presi, Eybens, France) and continuous water irrigation. The slice was fixed on 
a slide and polished to 0.5 ± 0.2 mm thickness by 1000-, 2400-, 3000-, and 4000-grit waterproof silicon carbide 
paper. The samples were then immersed in 30% hydrogen peroxide for 12 h to remove any unbound red fluoro-
phore, and then washed for 10 s. Next, the section was dried for 20 s and subsequently placed in a 50% ethanol 
solution of 100 μM fluorescein sodium (Merck, Darmstadt, Germany) for 3 min in order to identify any porous 
parts that were not filled by the materials. Each sample was washed with deionized water for 10 s and dried13, 14.

Image analysis.  A 10 × objective in a dual-fluorescence mode was used to assess the samples. Z-stack images 
(3D) at 100–150 µm thicknesses were examined in order to select the most suitable single-plane image that was 
a 1024 × 1024-pixel with 1100 × 1100 µm field of view according to LAS X 3D Visualization (Leica Microsystems 
GmbH, Wetzlar, Germany). ImageJ software (National Institute of Health, Bethesda, MD, USA) was used for 
quantitative analyses of the selected 2D CLSM images (Fig. 1). For each image, the lesion depth (LD) and the 
sealant/infiltrant penetration depth (PD) were measured from the enamel surface at nine selected points that 
were located 20 µm apart and the average was recorded. The vertical distance from the enamel surface to the 
deepest front of the porous enamel (green area) was defined as the LD. The maximum vertical distance from the 

Figure 1.   Examination of Z-stack images (3D) to select the most suitable single-plane according to LAS X 3D 
Visualization (Leica Microsystems GmbH, Wetzlar, Germany).
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enamel surface to the deepest penetrated area (red color) was considered to be the PD. Percentage of penetration 
(%PP) of materials into the lesion was calculated as PP = PD/LD × 100.

Microhardness test.  After intervention, we removed the nail polish from the 1/3 incisal and cervical areas, 
and these samples were sectioned in the buccolingual direction across the center of the lesion to obtain two 
halves of each tooth. Cross-sectional EMH was measured at the interface of the material enamel and 50 µm 
above and below this area. The deep EMH in all teeth were measured with a Vickers diamond indenter (MHV-
1000Z, SCTMC, China) at a 50 g load for 10 s at three points per sample. Teeth that had a baseline EMH between 
223.49 and 243.03 Vickers hardness number (VHN) were selected for this study. Then, the cross-sections of the 
samples were covered with nail polish and pH-cycling was performed. The demineralization-remineralization 
solutions only contacted the buccal surface of the teeth. After the acidic challenge, we removed the nail polish 
and deep EMH was measured at the 1/3 middle of each tooth. The percentage of EMH recovery (%REMH) in 
the remineralized enamel was determined as follows:

pH‑cycling.  The following pH-cycling protocol was implemented to simulate daily pH changes in the oral 
cavity. The tooth samples were individually subjected to a daily series of six, one-hour immersion periods in 
demineralization solution and six, two-hour intervals in remineralizing solution. For the remainder of the day, 
the samples were left in the remineralizing solution. This cycle was repeated daily for 28 days. Both solutions 
were refreshed at the beginning of each daily cycle15.

The demineralization solution contained 0.1 mM lactic acid solution, 3 mM CaCl2, 3 mM KH2PO4, and 0.2% 
guar gum. The final pH was adjusted to 4.5 with 50% sodium hydroxide.

Remineralizing solution.  The solution consisted of 2.200 g/L gastric mucin, 0.381 g/L sodium chloride 
(NaCl), 0.213 g/L calcium chloride (CaCl2·2H2O), 0.738 g/L potassium hydrogen phosphate (K2HPO4·3H2O), 
and 1.114 g/L potassium chloride (KCl). The final pH was adjusted to 7.00 at 37 °C with 85% lactic acid. The 
solution was changed every 48 h.

Scanning electron microscope (SEM) observation.  We examined 12 samples (n = 2 per group) with 
SEM. The teeth were prepared for SEM assessment in order to observe penetration by the material and the 
enamel-material interface. The samples were sectioned in the buccolingual direction across the center of these 
materials and prepared for SEM. All SEM data were obtained with a SEM (VEGA, Tescan, Brno, Czech Repub-
lic) at 2500 × and 1000 × magnifications.

Statistical analysis.  SPSS version 22 (IBM Corp, Armonk, NY, USA) was used for data analysis. The Sha-
piro–Wilk test was used to assess the normality of the data distribution for CLSM. The differences between 
percentage of materials that penetrated were assessed by the Kruskal–Wallis H and Dunn’s post hoc tests. The 
depth of penetration and EMH values were analyzed with one-way ANOVA and the Tukey HSD post hoc test. 
The paired t-test was used to compare the %REMH after the interventions and pH-cycling. Significance was set 
at p < 0.05.

Ethics approval.  The study was approved by the Ethics Review Committee of the School of Dentistry, Shiraz 
University of Medical Sciences (IR.SUMS.DENTAL.REC.1399.152).

Results
Totally, 7 teeth were destroyed during the preparation before CLSM assessment. The data for CLSM did not follow 
any normal distribution. Table 1 shows the median and interquartile range (IQR) values for LD, PD, and %PP. 
Group 3 had a significantly greater %PP compared to groups 1, 2 (both, p < 0.001), and 5 (p = 0.002). Although 
CLSM images showed additional deep penetration in group 3, there was no significant difference between 
groups 3 and 4 (p = 0.922). The %PP was significantly greater in group 4 compared with groups 1 (p = 0.008) and 
2 (p < 0.001), but was not statistically different compared to group 5 (p = 0.468). Group 5 had a greater %PP in 
comparison with group 2 (p = 0.049). However, no statistically significant difference was found between groups 
1 and 2 (p = 0.999). There were no significant differences found between groups 4 and 5 (p = 0.468).

Figure 2 shows that the sealant associated with phosphoric acid resulted in superficial penetration of the 
materials, which, in general, was less than those pretreated with hydrochloric acid.

Table 2 shows the mean ± SD for EMH in each group at the four time periods. At baseline, EMH ranged from 
223.49 to 243.03 VHN (mean: 237.073 ± 5.25 VHN) with no significant differences among the groups (p = 0.16). 
The demineralizing solution significantly decreased EMH in all of the groups (all, p < 0.001). EMH values was 
not significantly different among groups after demineralization (p = 0.869). All intervention groups (Group 1–4) 
showed a significant increase in %REMH values compared to demineralization (all, p < 0.001). Group 3 had 
the highest recovery in EMH values of all the intervention groups (p < 0.05). pH-cycling caused a decrease in 
%REMH for all of the groups compared to after intervention. Groups 2 and 5 had the lowest %REMH reduction 
after pH-cycling; however, this difference between groups 2 and 5 was not significant (p = 0.993).

%REMHIntervention = (VHNIntervention− VHNDemineralization) / (VHNBaseline− VHNDemineralization)×100

%REMHpH-cycling =
(

VHNpH-cycling− VHNDemineralization

)

/ (VHNBaseline− VHNDemineralization)×100
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Table 1.   Comparison of LD, PD, and %PD/LD in the study groups. LD Lesion depth, PD Sealant/infiltrant 
penetration depth, %PD/LD Percentage of PD to LD, IQR interquartile range. Values with the same 
superscript capital letter were not significantly different. Statistical significance: p < 0.05. Group 1: Phosphoric 
acid + Clinpro™; group 2: Phosphoric acid + Aegis®; group 3: Icon®; group 4: Hydrochloric acid + Clinpro™; 
group 5: Hydrochloric acid + Aegis®; group 6: Control.

Group

LD PD PD/LD%

Median IQR Median IQR Median IQR

1 (n = 15) 174.00 34.25 78.00 11.43 44.83AB 4.10

2 (n = 14) 182.48 47.93 70.40 12.76 37.82A 8.67

3 (n = 14) 303.76 28.96 232.12 16.11 75.74C 8.20

4 (n = 13) 307.33 15.33 191.33 14.66 61.80CD 1.24

5 (n = 13) 331.10 7.00 192 9.00 58.02BD 1.27

6 (n = 14) 181.53 4.2 0 0 0E 0

Figure 2.   Confocal laser scanning microscopy image the enamel after: (A) Demineralization (control group), 
(B) Fissure sealant penetration into demineralized enamel treated with 37% phosphoric acid, (C) Infiltrant 
resin that penetrated into demineralized enamel, (D) Fissure sealant that penetrated into demineralized enamel 
treated with 15% hydrochloric acid. Red: Penetration zone of methyl-rhodamine isocyanate (diffusion zone). 
Green: Penetration zone of sodium fluorescein (demineralized zone).
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The SEM findings revealed that demineralization resulted in dissolution of the enamel core and peripheral 
enamel rod, all of which led to the generation of spaces in the enamel. IR penetrated into deeper areas compared 
to the sealants. Penetration of FS on the surface treated with hydrochloric acid was greater than in the phosphoric 
acid groups. However, there were some unfilled spaces observed in groups 4 and 5 (Fig. 3).

Discussion
The aim of the current study was to compare the effectiveness of two microinvasive methods to infiltrate and 
change the EMH of non-cavitated early caries lesions. We observed that all materials used on the treated enamel 
surfaces penetrated the demineralized enamel and increased %REMH, which supported the findings of previous 
studies4, 8, 16.

High resolution images and CLSM contrast allow researchers to analyze the ability of various materials to 
penetrate biological samples17. We used this accurate technique based on the findings from earlier reports4, 7, 18, 19. 
Image analysis obtained with CLSM demonstrated higher %PP after IR and fluoride FS along with hydrochloric 
acid pretreatment. Our result showed that IR had higher penetration than the FS associated with phosphoric 
acid surface preparation, which agreed with previously reported results4, 8, 20, 21. This might be related to the 
characteristics of the materials such as penetration coefficient and the surface pretreatment methods4, 7.

The penetration coefficient includes viscosity of the material, enamel surface tension, and “contact angle” 
between the liquid and tooth surface22. Enamel pretreatment with hydrochloric acid might lead to greater pen-
etration by IR and sealant. During the early stages of caries formation, the remineralization process leads to a 
thick highly mineralized enamel surface layer, which creates a resistant barrier to material penetration. Hydro-
chloric acid (15%) more efficiently erodes the superficial enamel surface compared to 37% phosphoric acid4, 6. 
This might explain the deeper penetration by IR or fluoride FS along with hydrochloric acid, given that both 
materials mainly consist of resin. In addition, phosphoric acid more readily reduces enamel permeability than 
hydrochloric acid23. Other factors that influence penetration include surface dryness and the application time24, 25. 
The presence of water within the body of the lesion might interact with resin penetration. For this purpose, we 
applied ethanol before IR to remove excess moisture. In addition, IR consists of triethylene glycol dimethacrylate 
which increases resin penetration4.

In the present study, the ACP sealant had more superficial infiltration compared to IR, even after the surface 
was etched with hydrochloric acid. This might be related to the higher molecular weight of the resin (urethane 
dimethacrylate) and high filler content of the ACP sealant compared to the IR and fluoride sealants. Clinpro™ is 
a resin-based fluoride FS that consists of bisphenol A glycidyl methacrylate and it has a low viscosity, high flow, 
and wettability and is filler-free26, 27. The sealant did not show any significant difference with IR after enamel 
pretreatment with hydrochloric acid.

SEM images revealed the presence of enamel demineralization and etching, which led to dissolution of the 
organic materials, increased surface roughness, and the creation of voids and spaces due to loss of prism and 
interprism of the enamel. IR penetrated into deeper areas compared to the sealants, especially in samples where 
their surfaces were treated with phosphoric acid. IR disperses across a larger area and it produces a homogenous 
layer. The results confirmed our CLSM images. Some researchers reported the penetration of IR in demineralized 
early caries lesion, which supported the current study results3, 28.

The microhardness test is a simple laboratory test used to assess tooth microstructure changes after interven-
tions. We followed the cross-sectional EMH test protocols, which were used by previous studies18, 29 instead of 
surface EMH and the designed method was based on a pilot study. FS cannot deeply penetrate enamel, as seen 
with IR. This hard layer of FS over the enamel did not permit the indenter of the microhardness device to reach 
the demineralized enamel located beneath the FS. Like others, we also observed that the interventions had higher 
%REMH compared to the control group, which indicated the effectiveness of the microinvasive methods to 
improve EMH. This finding supported the results of other studies7, 8, 16, 30. Our results showed a higher %REMH 

Table 2.   Comparison of enamel surface microhardness in experimental groups. %REMH Percentage of 
enamel microhardness (EMH) recovery, %REMH pH-cycling Percentage of EMH recovery after pH-cycling 
(n = 12), SD Standard deviation. In each row, means with the same lowercase letter are not significantly 
different (within-group analysis). In each column, means with the same capital letter are not significantly 
different (between-group analysis). Statistical significance: p < 0.05. Group 1: Phosphoric acid + Clinpro™; group 
2: Phosphoric acid + Aegis®; group 3: Icon®; group 4: Hydrochloric acid + Clinpro™; group 5: Hydrochloric 
acid + Aegis®; group 6: Control.

Group

Condition (mean ± SD)

Baseline DEM Intervention pH-cycling %REMH intervention %REMH pH-cycling

1 236.51 ± 6.52A,a 132.78 ± 5.93A,b 177.74 ± 5.67c 117.69 ± 5.91d 43.27 ± 3.57A − 15.04 ± 9.01A

2 235.64 ± 3.2A,a 131.15 ± 4.49A,b 178.55 ± 6.64c 133.03 ± 6.26d 45.34 ± 4.79A 1.76 ± 6.22B

3 234.48 ± 4.77A,a 130.78 ± 4.20A,b 185.65 ± 5.23c 118.85 ± 5.70d 52.86 ± 4.79B − 11.91 ± 9.11A

4 234.27 ± 5.57A,a 130.35 ± 5.77A,b 176.89 ± 6.72c 117.71 ± 9.46d 44.81 ± 4.25A − 12.38 ± 11.23A

5 233.31 ± 5.47A,a 130.25 ± 6.19A,b 177.23 ± 4.56c 129.82 ± 7.59d 45.62 ± 3.85A − 0.49 ± 7.39B

6 230.12 ± 6.83A,a 130.12 ± 4.14A,b 130.09 ± 3.84c 76.08 ± 6.18d − 0.1 ± 5.4C − 54.17 ± 6.23C

p-value 0.1689 0.8690 < 0.001 < 0.001 < 0.001 < 0.001
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after IR compared to the sealants, which was in accordance with previous study8. These results may be related 
to the features of IR.

In the present study, we simulated in vivo conditions by performing pH-cycling. Overall, there was a reduc-
tion in %REMH after pH-cycling. The change in %REMH value after pH-cycling in the ACP sealant was lower 
than the other groups. This might be related to the composition of FS because it contains ACP, as smart materials 
that release ions under acidic conditions30. Clinpro™ FS releases a limited amount of fluoride ions and these ions 
cannot penetrate deeply. ACP has a higher mineral content than the fluoride sealant and leads to hydroxyapatite 
formation16,31–34. These factors might decrease %REMH in the ACP sealant groups after pH-cycling. IR did not 
contain remineralizing agents; after carrying out the acidic challenge, it absorbed water and was deleterious3. 
These factors might reduce the %REMH of IR, which supported the findings of one study35.

Our study had some limitations. The in vitro analysis did not provide the same conditions as a clinical setting; 
our sample size was limited; and there was no similar study on primary teeth to compare our results. Therefore, 
we compared our results with reports on permanent teeth. Primary teeth have higher porosity than permanent 
teeth, and this may lead to faster progression of caries lesions in these teeth. We also followed the manufacturer’s 
instructions and used accurate methods of assessment with one operator. The results of the present study showed 
the effectiveness of IR and fluoride resin-based sealant in early caries lesions. Therefore, we suggest that more 

Figure 3.   Scanning electron microscope image of the enamel after: (a) Demineralization (control group) 
(arrows), (b) Fissure sealant penetration and interface with the enamel treated with 37% phosphoric acid (group 
1) (arrows), (c) Infiltrant resin penetrated into deeper areas and disperses across a larger area (arrows) (group 
3), (d) Fissure sealant penetration and interface with the enamel treated with 15% hydrochloric acid (group 
4). White arrow shows infiltrated area and black arrow shows non-infiltrated area. Magnification: 2500 × and 
1000 ×.
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in vitro and in vivo studies should be performed to assess the capability of these materials to prevent ECC in 
primary teeth.

Conclusion
Microinvasive interventional methods that use sealants and infiltrated resin on early lesions led to penetration 
of the materials into the subsurface layer and varying degrees of increased EMH. The infiltrated resin, followed 
by the fluoride resin-based sealant along with surface treatment with hydrochloric acid had a higher percentage 
of penetration. Although this criterion in the ACP sealant was less than the other two materials, the ACP sealant 
had the lowest %REMH reduction after the pH-cycling process. Due to the limited availability and high price of 
IR, the use of FSs to treat non-cavitated primary teeth along with surface pretreatment with hydrochloric acid 
should be considered.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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