
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3833  | https://doi.org/10.1038/s41598-022-07652-z

www.nature.com/scientificreports

Near‑infrared spectroscopy 
and machine learning‑based 
technique to predict quality‑related 
parameters in instant tea
Xiaoli Bai1,2,4, Lei Zhang3,4, Chaoyan Kang1, Bingyan Quan1, Yu Zheng1, Xianglong Zhang1, 
Jia Song1, Ting Xia1* & Min Wang1*

The traditional method for analyzing the content of instant tea has disadvantages such as complicated 
operation and being time‑consuming. In this study, a method for the rapid determination of instant 
tea components by near‑infrared (NIR) spectroscopy was established and optimized. The NIR spectra 
of 118 instant tea samples were used to evaluate the modeling and prediction performance of a 
combination of binary particle swarm optimization (BPSO) with support vector regression (SVR), 
BPSO with partial least squares (PLS), and SVR and PLS without BPSO. Under optimal conditions, 
Rp for moisture, caffeine, tea polyphenols, and tea polysaccharides were 0.9678, 0.9757, 0.7569, 
and 0.8185, respectively. The values of SEP were less than 0.9302, and absolute values of Bias were 
less than 0.3667. These findings indicate that machine learning can be used to optimize the detection 
model of instant tea components based on NIR methods to improve prediction accuracy.

Instant tea utilizes the highest quantity of tea raw materials worldwide, and its consumption has increased rapidly 
in recent  years1. The manufacturing process of instant tea primarily comprises extraction, filtration, vacuum 
concentration, and  drying2. Instant tea maintains the nutritional characteristics and flavor of traditional tea. In 
addition, instant tea offers drinking convenience, has low amounts of pesticide residues, and is easy to transport. 
Consequently, it is popular among consumers and has a broad market  prospect3. As consumers pay increasing 
attention to the quality of instant tea, its quality control has also become increasingly  important4.

The quality of instant tea is determined by several main compounds, specifically moisture, caffeine, tea 
polyphenols, and tea  polysaccharides5. These compounds not only give the tea a unique taste, but also provide 
a variety of health  benefits6. If the moisture content is too high, the instant tea can produce mildew, and conse-
quently, its nutrition and flavor may change. Therefore, a specific moisture content limit should be maintained 
during the processing and storage of instant tea to ensure the stability of its  quality7. Caffeine is an alkaloid with 
therapeutic effects on many diseases, including metabolic syndrome, type 2 diabetes, liver diseases, and car-
diovascular and cerebrovascular  diseases8,9. Additionally, caffeine contributes a bitter taste to instant  tea10. Tea 
polyphenols consist of four major groups: catechins, phenolic acids, flavonoids, and  anthocyanins11. They have a 
variety of physiological effects, such as antioxidation, antiradiation, antiaging, hypoglycemic, and bacteriostatic 
 effects12. The astringent and bitter taste of tea mainly results from tea  polyphenols13. Tea polysaccharides, which 
are acidic, have health benefits, such as lowering blood sugar, blood lipids, and blood pressure; they also enhance 
the immune system and resistance to  hypoxia14. Tea polysaccharides can weaken the bitter taste and astringency 
and alleviate the stimulating effect of  tea15.

Currently, the conventional physical and chemical methods for determining the levels of moisture, caffeine, 
tea polyphenols, and tea polysaccharides in instant tea mainly involve oven drying, spectrophotometry, and 
high-performance liquid chromatography (HPLC)16–19. Although techniques based on sizable equipment pro-
vide various reliable protocols with good accuracy and sensitivity, they usually suffer from shortcomings such 
as complicated pretreatment procedures, time-consuming operations, high cost, and a need for professional 
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 operators20. Therefore, optical spectroscopic techniques are increasingly used for the rapid, nondestructive assess-
ment of food  products21. Near-infrared (NIR) spectroscopy is particularly attractive for this purpose. The NIR 
spectral region is mainly the frequency-doubled and combined-frequency absorption regions of the hydrogen-
containing group X–H (X being an element such as O, N, S, or C). Because various organic substances contain 
different groups, and various groups have different absorption wavelengths for NIR light in different chemical 
environments, the NIR spectrum can be utilized to perform qualitative and quantitative analyses in food com-
ponent  analysis22. Since recent years, NIR spectroscopy is being applied in the prediction of tea  composition23. 
It has been used to discriminate the roast green tea from different origins, estimate the fermentation degree of 
Pu’er tea in processing, quantitatively determine the contents of total polyphenols, caffeine, and catechins in tea 
leaves, and classify special-grade green tea. However, studies performing nondestructive quantitative analysis 
of biochemical components in instant tea are  scant24.

In the multivariate data analysis step, the partial least squares (PLS) model is the most widely used model 
for the quantitative analysis of NIR spectroscopy. Support vector regression (SVR) is also a crucial quantitative 
analysis algorithm. In recent years, metaheuristic algorithms have been widely adopted as global optimizer 
 methods25. The particle swarm optimization (PSO) algorithm is one of these methods; it selects the feature sub-
set, optimizes the model parameters, represents less overhead in operation, and has easier implementation and 
faster convergence during optimization than other metaheuristic  algorithms26. Kennedy proposed PSO in 1995 
and binary particle swarm optimization (BPSO) of discrete space in  199727. Combined with other classification 
algorithms, BPSO can obtain improved results.

In this study, we used BPSO respectively with SVR (BPSO–SVR) and PLS (BPSO–PLS) to enhance the ran-
domness of the mutation after the reset mechanism and to keep the particle active in continuous optimization. 
In addition, a fast experiment for determining moisture, caffeine, tea polyphenols, and tea polysaccharides in 
instant tea was carried out using different models. This study provides a reference for NIR spectroscopy combined 
with multivariate statistical analysis to determine food components.

Methods
Materials and instruments. A total of 118 varieties of instant tea were provided by Yunnan Tasly Deepure 
Tea Group Co., Ltd (Yunnan, China). All methods were performed in accordance with the relevant guidelines 
and regulations. These instant tea is a kind of fine powder solid tea product, which is processed by extracting 
and drying the tea as raw material. A caffeine standard was purchased from China Institute for Food and Drug 
Control; acetonitrile and ethanol were purchased from Merck Co., Ltd; phenol and concentrated sulfuric acid 
were purchased from Chinese Medicines Holdings Co., Ltd; and glucose was purchased from Sigma-Aldrich 
Chemical Co., Ltd. Unless otherwise specified, all chemicals used were of analytical grade.

A U-3010 UV–Vis Hitachi spectrophotometer (Tokyo) was used to determine absorbance. An Agilent 1260 
Infinity HPLC system was used to determine caffeine content. NIR spectrometry was carried out using a Thermo 
Fisher Antaris II (USA).

Determination of main components. The moisture content of the instant tea was determined accord-
ing to ISO 7513:1990. The caffeine content was determined according to ISO 10727:2002 and the tea polyphenol 
content was determined according to ISO 14502-1:2005. The tea polysaccharide content was determined using 
a modified phenol–sulfuric acid  method19.

Spectral data acquisition. NIR spectra were collected in reflectance mode. Each spectrum consisted of an 
average of 78 scans, in the range of 10,000–4000  cm−1. Before scanning, the instrument was fully preheated for 
more than half an hour. Three spectra were collected from each sample, and the average spectrum of the three 
spectra was taken as the original analytical spectrum of that sample. In this study, the spectral pretreatment 
method used was the standard normal variate transformation (SNV) method. This method removes physical 
spectral information resulting from particle size.

Correction set sample division. The acquired spectral data and the reference chemical data were sepa-
rated into two sets: a calibration set and a prediction set. It has been reported that the tenfold cross-validation 
method, also called Rotation Estimation, is a practical method to statistically cut the data sample into smaller 
subsets. The advantage of this method is making full use of small sample data  sets28. In this study, tenfold cross-
validation was used to randomly select the prediction set, and the remaining samples were selected for the cali-
bration set. In each execution, the model was trained using 90% of the data points and tested using the remaining 
10%. Therefore, every data point was taken nine times for training and once for testing the model.

Chemometrics method. SVR. The SVR model is mainly used to realize linear regression by map-
ping spectral data to high-dimensional space and constructing a linear decision function in high-dimensional 
 space29. A linear SVR classifier was trained based on the fitcsvm function in the Statistics and Machine Learning 
Toolbox™. Usually, a model selection procedure is required to determine the adjusting parameter C to improve 
the classification accuracy. Because the purpose of this study is to evaluate the search algorithm for spectral data 
selection, rather than the parameter selection for SVR classifiers, we adopted the default parameter value, i.e., 
C = 1.

PLS. PLS is an extensively used class of statistical methods that includes regression, classification, and dimen-
sion reduction  techniques30. It uses latent variables, which are also called score vectors, to model the relationship 
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between input and response variables. In the case of regression problems, PLS first generates the latent variables 
from the given data and uses them as new predictor variables. There are different types of PLS based on the 
techniques employed to extract the latent variables.

BPSO. The BPSO algorithm transforms the trajectories from a continuous space into discrete space and main-
tains a swarm of particles and a global best solution simultaneously. In BPSO, each bit only takes a value of “0” 
or “1,” and the velocities that affect particle positions are transformed into [0, 1] and a stochastic construction 
process is added to confirm the  locations31.

Model evaluation. The performance of the final models was evaluated according to the root mean square 
error of calibration (RMSEC) and the root mean square error of the verification set (RMSEP). The optimal 
model method was chosen based on RMSEC and RMSEP as the index which were lower and close to each other. 
At the same time, the correlation coefficient of validation set (Rp), bias-corrected standard error of prediction 
(SEP) and Bias were used as auxiliary reference indexes for model  evaluation32,33.

Software. Data processing and modeling analysis was carried out using MATLAB 2014a.

Results and discussion
Spectra investigation. The original NIR spectra of the 118 instant tea samples are shown in Fig. 1. These 
spectra can reflect the intrinsic quality of the instant tea samples. The instant tea samples were similar in their 
type and place of production, and their NIR spectra were understandably similar as well. The first frequency-
doubling peak of the N–H bond stretching vibration was at 6860  cm−1. The second frequency-doubling peak of 
the C=O stretching vibration was at 5180  cm−1, and the combined-frequency peak of the primary amine and 
tertiary amine stretching vibration was at 4660  cm−1 (Fig. 1). The spectral characteristics depend on the sample 
composition and provide a theoretical basis for the rapid prediction of moisture, caffeine, tea polyphenols, and 
tea polysaccharide contents.

Classification of sample sets and distribution of measured values. A quantitative analysis of mois-
ture, caffeine, tea polyphenols, and tea polysaccharides was carried out on the 118 samples. The results in Table 1 
show that the ranges of moisture, caffeine, tea polyphenols, and tea polysaccharide content in the samples are 
3.76–6.29%, 0.48–2.80%, 18.70–22.40%, and 18.00–24.50%, respectively. The tenfold cross-validation method 
was used to randomly select the prediction set, and the remaining samples were selected for the calibration set.

Modeling Results. It has been reported that BPSO algorithm based on the traditional machine learning 
algorithm have a positive impact on the results of the model  prediction34.The BPSO method was used to opti-

Figure 1.  Original near-infrared spectra of 118 instant tea samples.

Table 1.  Sample composition content statistics.

Index Min% Max% Mean% Standard deviation%

Moisture 3.76 6.29 4.79 0.60

Caffeine 0.48 2.80 1.69 1.65

Tea polyphenols 18.70 22.40 20.93 0.89

Tea polysaccharides 18.00 24.50 21.18 2.17
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mize the parameter combination, obtain the best tenfold cross-validation accuracy, and establish the model with 
the strongest prediction ability. In the BPSO process, the relevant parameters were set as follows: the swarm 
size was 20, the learning factors  C1 and  C2 were 2, the maximum evolutionary algebra was 100, and the weight 
parameter |Vmax| = 6. The results in Table 2 show that the SVR, BPSO–SVR, PLS, and BPSO–PLS models could 
predict the moisture, caffeine, tea polyphenols, and tea polysaccharides of instant tea. The results showed that 
RMSEC and RMSEP presented a lower value by BPSO algorithm than those by SVR and PLS alone, which indi-
cate that the addition of BPSO algorithm can improve the accuracy of model prediction. In addition, based on 
RMSEC and RMSEP, most of algorithm values between the calibration set and the prediction set in BPSO-PLS 
model were lower than those in BPSO-SVR model, and the range of SEP and Bias values were reasonable, which 
showed that BPSO-PLS model was stable.

Figure 2 shows the convergence curve of the BPSO algorithm with the best results during the 100 runs. The 
model shows a large fluctuation at the beginning of the iteration, after which it decays with a small trend.

The BPSO–PLS model showed the most stable comprehensive performance and the most accurate predic-
tion results for moisture. The values obtained for  Rc, RMSEC,  Rp, and RMSEP were 0.9983, 0.4128, 0.9678, and 
0.6293, respectively. Comparing the four models and convergence curves for caffeine, the BPSO–PLS model 
had the most stable comprehensive performance and the most accurate prediction results; the  Rc, RMSEC,  Rp, 
and RMSEP were 0.9981, 0.4145, 0.9757, and 0.5114, respectively. For tea polyphenols, using the BPSO feature 
selection algorithm, R showed a significant improvement.The  Rc, RMSEC,  Rp, and RMSEP were 0.9960, 0.8191, 
0.7569, and 2.1082, respectively. For tea polysaccharides models, using the BPSO feature selection algorithm, R 
also showed a significant improvement. The BPSO–PLS model had the most stable comprehensive performance 
and the most accurate prediction results for tea polysaccharides, and the  Rc, RMSEC,  Rp, and RMSEP were 0.9954, 
2.0187, 0.8185, and 4.3109, respectively.

A spectral range was set, such that if it was selected more than 50 times, then this range was the final selected 
result. The process of selecting the wavenumber of the four components, resulting from 100 iterations, is shown 
in Fig. 3. We divided the spectral range into 20 segments with the same width of 311, and the last segment with 
a width of 319. From the wavenumber, we found that the spectral ranges selected for moisture and caffeine were 
relatively concentrated, while those for tea polyphenols and tea polysaccharides were relatively scattered.

Table 3 shows the results of selecting the wavenumber of the four components: moisture, caffeine, tea polyphe-
nols, and tea polysaccharides. The characteristic bands of water in instant tea were mainly concentrated in the two 
wavebands of 6694–7293 and 7892–8193  cm−1. The first-order frequency doubling of O–H stretching vibration 
in pure water is about 7143  cm−1, and the combined frequency absorption was 8197  cm−1,35. The characteristic 
band of the moisture in instant tea associated with compounds containing O–H group through hydrogen bond 
in various forms, and further make a shift of the absorption peak in the direction of long and short wavelengths. 
The characteristic bands of caffeine were concentrated in 4000–4894 and 6994–7293  cm−1. Near 4610  cm−1 was 
the combined frequency peak of stretching vibration from primary amine and tertiary  amine36. In addition, the 
characteristic bands of instant tea polyphenols were concentrated in 4295–5494, 6694–6994, 7293–7593, and 
7893–8193  cm−1. 4662  cm−1 was the second-order frequency doubling caused by C–C stretching vibration. Near 
5000  cm−1 was the combined frequency of free O–H stretching vibration in  phenols37. 6782–6894  cm−1 was the 
first-order frequency doubling of O–H. The characteristic bands of tea polysaccharides in instant tea were mainly 
concentrated in 4595–4894, 5794–6394, 7001–7293, 7893–8212, 8793–9393, 9692–10,000  cm−1. Near 4631  cm−1 
was the combined frequency absorption peak of the primary amine group, and 4779  cm-1 indicated the presence 
of acyl group. 5333–6154  cm−1 was the third-order frequency doubling generated by C–C stretching vibration. 

Table 2.  Comparison of quantitative models for moisture, caffeine, tea polyphenols, and tea polysaccharides 
in instant tea.

Component Modeling method Rc RMSEC RP RMSEP SEP Bias

Moisture

SVR 0.9852 1.3512 0.9028 1.0117 0.3297  − 0.4412

BPSO–SVR 0.9884 1.189 0.9710 0.6670 0.3350  − 0.1934

PLS 0.9552 2.0706 0.9419 0.8123 0.1880  − 0.1264

BPSO–PLS 0.9983 0.4128 0.9678 0.6293 0.2230  − 0.2272

Caffeine

SVR 0.9909 1.105 0.8514 1.2096 0.3076 0.0619

BPSO–SVR 0.9916 1.0792 0.9610 0.6728 0.1548 0.0056

PLS 0.9661 1.714 0.9596 0.6205 0.2484 0.1017

BPSO–PLS 0.9981 0.4145 0.9757 0.5114 0.2647 0.1027

Tea polyphenols

SVR 0.9579 2.8418 0.6482 2.3088 1.0408  − 0.9307

BPSO–SVR 0.9594 2.8273 0.7948 2.0272 0.7084  − 0.5186

PLS 0.7391 6.1777 0.7022 2.1779 0.6531  − 0.4879

BPSO–PLS 0.9960 0.8191 0.7569 2.1082 0.7233  − 0.3667

Tea polysaccharides

SVR 0.9438 7.2186 0.6621 4.8339 0.8461 0.1784

BPSO–SVR 0.9465 7.1464 0.8040 4.1831 0.8090  − 0.0615

PLS 0.7804 13.0553 0.7558 4.5883 0.8207  − 0.3354

BPSO–PLS 0.9954 2.0187 0.8185 4.3109 0.9302  − 0.0980



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3833  | https://doi.org/10.1038/s41598-022-07652-z

www.nature.com/scientificreports/

Figure 2.  (A–D) Parameter optimization results of the SVR model based on BPSO with fitness value versus 
number of iterations: (A) moisture, (B) caffeine, (C) tea polyphenols, and (D) tea polysaccharides. (E–H) 
Parameter optimization results of the PLS model based on BPSO with fitness value versus number of iterations: 
(E) moisture, (F) caffeine, (G) tea polyphenols, and (H) tea polysaccharides.
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The 5714–6667  cm−1 range was the vibration region of the amide and carbonyl groups. 6667–8333  cm−1 range 
was the absorption region of protein. The mixed vibration absorption region of fatty acids and polysaccharides 
was in the range of 8333–10,000  cm−1,38.

The scatter plots of 4 components between actual and NIR predicted values were shown in Fig. 4. It is well 
known that scatter plots present the relationship between two variables in two-dimensional coordinates, which 
can be used to evaluate the predictive ability of the model. In this study, the scatter points of moisture and caf-
feine between actual and predicted NIR values were concentrated and close to the diagonal. few scatter points of 
tea polyphenols and tea polysaccharides are relatively departed from the diagonal due to the complex structure. 
Taken together, the results indicate that the model exhibits a high prediction accuracy.

Conclusions
In this study, a rapid NIR method to estimate the moisture, caffeine, tea polyphenols, and tea polysaccharide 
contents of instant tea was developed using different model calibrations. The tenfold cross-validation method 
was used to randomly select the prediction set, and BPSO was employed as the optimization algorithm for SVR 
and PLS. The results show that the  Rp is above 0.9 for moisture and caffeine, and the  Rp is approximately 0.8 for 
tea polyphenols and tea polysaccharides. Therefore, these models exhibited high precision and accuracy. This 
approach provides, for the first time, a fast, specific, and easily automatable method for the quantitative detec-
tion of moisture, caffeine, tea polyphenols, and tea polysaccharides in instant tea samples. This will enable the 

Figure 3.  Wavenumber selection results of the four components: (A) moisture, (B) caffeine, (C) tea 
polyphenols, (D) tea polysaccharides.

Table 3.  Results of selected NIR wavenumber of the four components: moisture, caffeine, tea polyphenols, and 
tea polysaccharides.

Component Wavenumber  (cm−1)

Moisture 6694–7293, 7892–8193

Caffeine 4000–4894, 6994–7293

Tea polyphenols 4295–5494, 6694–6994, 7293–7593, 7893–8193

Tea polysaccharides 4595–4894, 5794–6394, 7001–7293, 7893–8212, 8793–9393, 9692–10,000
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development of online compositional analysis techniques for more effective process management and quality 
control.

Received: 24 August 2021; Accepted: 23 February 2022

References
 1. Pelvan, E. & Ozilgen, M. Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea produc-

tion and waste valorization processes. Sustain. Prod. Consump. 12, 59–77 (2017).
 2. Du, L. P. et al. Characterization of the volatile and sensory profile of instant Pu-erh tea using GC x GC-TOFMS and descriptive 

sensory analysis. Microchem. J. 146, 986–996 (2019).
 3. Zhang, T. et al. Suppressive interaction approach for masking stale note of instant ripened Pu-Erh tea products. Molecules 24, 13 

(2019).
 4. Sun, Y. et al. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct. 10, 

3502–3513 (2019).
 5. Wang, Q. P. et al. Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using 

Aspergillus tubingensis. LWT-Food Sci. Technol. 90, 598–605 (2018).
 6. Zhu, M. Z., Li, N., Zhao, M., Yu, W. L. & Wu, J. L. Metabolomic profiling delineate taste qualities of tea leaf pubescence. Food Res. 

Int. 94, 36–44 (2017).
 7. Zhou, X. et al. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging. Spectroc. 

Acta Pt. A-Mol. Biomolec. Spectr. 206, 378–383 (2019).
 8. Platt, D. E. et al. Caffeine impact on metabolic syndrome components is modulated by a CYP1A2 variant. Ann. Nutr. Metab. 68, 

1–11 (2016).
 9. Beyer, L. A. & Hixon, M. L. Review of animal studies on the cardiovascular effects of caffeine. Food Chem. Toxicol. 118, 566–571 

(2018).
 10. Yang, C. et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white 

tea. Food Res. Int. 106, 909–919 (2018).
 11. Kerio, L. C., Wachira, F. N., Wanyoko, J. K. & Rotich, M. K. Total polyphenols, catechin profiles and antioxidant activity of tea 

products from purple leaf coloured tea cultivars. Food Chem. 136, 1405–1413 (2013).
 12. Shah, T., Shaikh, F. & Ansari, S. To determine the effects of green tea on blood pressure of healthy and type 2 diabetes mellitus 

(DM) individuals. J. Liaquat Univ. Med. Health 16, 200–204 (2017).
 13. Chowdhury, A., Sarkar, J., Chakraborti, T., Pramanik, P. K. & Chakraborti, S. Protective role of epigallocatechin-3-gallate in health 

and disease: A perspective. Biomed. Pharmacother. 78, 50–59 (2016).
 14. Du, L. L. et al. Tea polysaccharides and their bioactivities. Molecules 21, 18 (2016).
 15. Qu, F. F. et al. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT-Food 

Sci. Technol. 117, 7 (2020).
 16. Wei, Y. Z. et al. Visual detection of the moisture content of tea leaves with hyperspectral imaging technology. J. Food Eng. 248, 

89–96 (2019).
 17. Ren, G. X., Xue, P., Sun, X. Y. & Zhao, G. Determination of the volatile and polyphenol constituents and the antimicrobial, anti-

oxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena 
Regal tea. BMC Complement. Altern. Med. 18, 9 (2018).

 18. Bae, I. K., Ham, H. M., Jeong, M. H., Kim, D. H. & Kim, H. J. Simultaneous determination of 15 phenolic compounds and caffeine 
in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process. Food Chem. 172, 
469–475 (2015).

Figure 4.  Scatter plots of four components in instant tea samples between actual and predicted NIR values. 
Orange dots present caffeine, green dots present moisture, blue dots present tea polyphenols, and purple dots 
present tea polysaccharides.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3833  | https://doi.org/10.1038/s41598-022-07652-z

www.nature.com/scientificreports/

 19. Xi, X. G., Wei, X. L., Wang, Y. F., Chu, Q. J. & Xiao, J. B. determination of tea polysaccharides in Camellia sinensis by a modified 
Phenol-sulfuric acid method. Arch. Biol. Sci. 62, 671–678 (2010).

 20. Li, J. J. et al. Discrimination of Chinese teas according to major amino acid composition by a colorimetric IDA sensor. Sens. Actua-
tor B-Chem. 240, 770–778 (2017).

 21. Mishra, P. et al. Near-infrared hyperspectral imaging for non-destructive classification of commercial tea products. J. Food Eng. 
238, 70–77 (2018).

 22. Alishahi, A., Farahmand, H., Prieto, N. & Cozzolino, D. Identification of transgenic foods using NIR spectroscopy: A review. 
Spectroc. Acta Pt. A-Mol. Biomol. Spectr. 75, 1–7 (2010).

 23. Firmani, P., De Luca, S., Bucci, R., Marini, F. & Biancolillo, A. Near infrared (NIR) spectroscopy-based classification for the 
authentication of Darjeeling black tea. Food Control 100, 292–299 (2019).

 24. Sun, Y. et al. Quality assessment of instant green tea using portable NIR spectrometer. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 
240, 118576 (2020).

 25. Wei, J. X. et al. A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection. 
Appl. Soft. Comput. 58, 176–192 (2017).

 26. Huang, F. R. et al. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion. Spectroc. Acta Pt. 
A-Mol. Biomol. Spectr. 235, 8 (2020).

 27. Valdez, F., Vazquez, J. C., Melin, P. & Castillo, O. Comparative study of the use of fuzzy logic in improving particle swarm optimiza-
tion variants for mathematical functions using co-evolution. Appl. Soft. Comput. 52, 1070–1083 (2017).

 28. Rodríguez, J. D., Pérez, A. & Lozano, J. A. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE 
Trans. Pattern Anal. Mach. Intell. 32, 569–575 (2010).

 29. Santos, C. E. D., Sampaio, R. C., Coelho, L. D., Bestard, G. A. & Llanos, C. H. Multi-objective adaptive differential evolution for 
SVM/SVR hyperparameters selection. Pattern Recognit. 110, 10 (2021).

 30. Genisheva, Z. et al. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). 
Food Chem. 246, 172–178 (2018).

 31. Tan, K. Z., Wang, S. W., Song, Y. Z., Liu, Y. & Gong, Z. P. Estimating nitrogen status of rice canopy using hyperspectral reflectance 
combined with BPSO-SVR in cold region. Chemom. Intell. Lab. Syst. 172, 68–79 (2018).

 32. Wang, Y. G. et al. Rapid determination of lycium barbarum polysaccharide with effective wavelength selection using near-infrared 
diffuse reflectance spectroscopy. Food Anal. Methods 9, 131–138 (2016).

 33. Zhanga, C. H. et al. Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics. 
Int. J. Biol. Macromol. 79, 983–987 (2015).

 34. Cao, Y. et al. Remote sensing of water quality based on HJ-1A HSI imagery with modified discrete binary particle swarm optimi-
zation-partial least squares (MDBPSO-PLS) in inland waters: A case in Weishan Lake. Ecol. Inform. 44, 21–32 (2018).

 35. Cozzolino, D. et al. Effect of temperature variation on the visible and near infrared spectra of wine and the consequences on the 
partial least square calibrations developed to measure chemical composition. Anal. Chim. Acta 588, 224–230 (2007).

 36. Baykal, D. et al. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 
64(10), 1160 (2010).

 37. Takeuchi, M. et al. Near infrared study on the adsorption states of  NH3 and  NH4 + on hydrated ZSM-5 zeolites. J. Near Infrared 
Spec. 27(3), 096703351983662 (2019).

 38. Prasad, P. S. R. & Sarma, L. P. A near-infrared spectroscopic study of hydroxyl in natural chondrodite. Am. Mineral. 89(7), 
1056–1060 (2004).

Author contributions
X.B. was involved in conceptualization, methodology development, validation, data curation, and writing, review-
ing, and editing of the original draft. L.Z. assisted with formal analysis, methodology development, and software 
usage. C.K. and B.Q. contributed to data curation, formal analysis, and methodology development. Y.Z., X.Z. and 
J.S. involved in validation, supervision, and reviewing and editing of the manuscript. T.X and M.W. helped with 
acquiring resources, project administration, and supervision. All authors reviewed the manuscript.

Funding
This research was funded by the National Natural Science Foundation of China (32072203), Tianjin Synthetic 
Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-016), Tianjin Science and Technology 
Commission (S21JD1002), and Tianjin Municipal Education Commission (TD13-5013).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.X. or M.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Near-infrared spectroscopy and machine learning-based technique to predict quality-related parameters in instant tea
	Methods
	Materials and instruments. 
	Determination of main components. 
	Spectral data acquisition. 
	Correction set sample division. 
	Chemometrics method. 
	SVR. 
	PLS. 
	BPSO. 

	Model evaluation. 
	Software. 

	Results and discussion
	Spectra investigation. 
	Classification of sample sets and distribution of measured values. 
	Modeling Results. 

	Conclusions
	References


