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Structural and electronic properties 
of Pt modified Au(100) surface
Artur Trembułowicz*, Agata Sabik & Leszek Jurczyszyn

Investigations on electronic and geometric structures of platinum adsorbed on monocrystalline 
gold surfaces are important for understanding the remarkable catalytic properties of bimetallic 
Pt–Au systems. Herein, the morphology of quasi-hexagonal (hex) Au(100) surface after deposition 
of platinum for coverage up to 0.5 monolayer (ML) has been investigated by scanning tunneling 
microscopy (STM). For coverage range 0.2–0.4 ML the creation of elongated islands with mono-atomic 
height is observed. The islands consist of flat phase of disordered Pt-Au alloy which coexists with 
nanowire-like features with a hex atom arrangement and quantized width. Annealing the Pt/Au(100) 
system at 100–150 °C changes the surface morphology. The islands disappear and the topmost layer 
of the surface consists of flat phase of Pt–Au alloy which coexists with the hex-stripes. Small domains 
of ordered c(2 × 2) structure of Pt–Au alloy are found. The electronic properties of this structure have 
been investigated by ab-initio calculations. The obtained results allow to distinguish the Pt from Au 
atoms by their appearance in the STM images. The calculated electronic structures indicate a bonding 
creation between Pt and Au atoms and an electron d-states redistribution of Pt in comparison to the 
bare Pt(100)-(1 × 1) surface.

Nowadays the surfaces of Pt-Au systems attract attention in the field of catalysis1–10. The bimetallic Au–Pt (nano)
alloys usually exhibit higher catalytic selectivity and activity than either metal alone1,4. For instance, in the case 
of vicinal Au(332) surface modified by adsorption of Pt, the activation of Au atoms by alloying was found. The 
Au atoms were essential for dissociative adsorption of CO molecules on Pt/Au(332) surface at room tempera-
ture (RT)9,11. In the case of nanoalloys it was shown that the formation of Pt nanostructures on the gold based 
nanoparticles (NPs) improved the Pt dispersion or utilization efficiency in electrocatalysis6,7.

Understanding the principles underlying the reactivity and selectivity changes in alloy surfaces is critical for 
designing efficient catalysts. One of the factors that influences the surface catalytic properties is the electronic 
structure. It is already well-documented that localized d-states of the transition metal surfaces can significantly 
affect their interaction with adsorbates8,12–15. Strong bonding can be formed if antibonding states of adsorbate 
are shifted above the Fermi level and/or if bonding states are shifted below the Fermi level. Simplifying, a narrow 
d-band causes a strong chemisorption. The higher energy of the centre of the d-bands is, the higher in energy the 
antibonding states are, which results in both the strengthening of the molecule–substrate bond and the weakening 
of the intramolecular bond of the adsorbed molecule. For example, it was shown for Au(111) covered by Pt that 
the upshift of d-band centre is responsible for a stronger bonding of CO molecules to the mixed Pt–Au islands 
than to the clean Pt(111) surface10,13. The influence of d-band upshift in Pt–Au system on the enhancement of 
the catalytic properties has been recently observed for a platinum monolayer (ML) on gold NPs8. The particles 
exhibit remarkable selectivity in the hydrogenation of halonitrobenzene to haloaniline. One of the reasons for 
such high activity is the upshift of the platinum 5d-band centre through platinum lattice expansion8. The nanosize 
of particles made their surfaces investigation difficult and thus the impact of nanosurface electronic and geo-
metric structure on catalytic properties is often unclear. Therefore, the studies of model systems, like ultra-thin 
films of platinum on gold monocrystalline surfaces under well-defined experimental conditions are important 
in order to better understand the processes responsible for catalytic activity of bimetallic NPs.

Gold as well as platinum crystallize in a face-centered cubic (fcc) structure with the unit cells equal aAu = 4.08 Å 
and aPt = 3.92 Å, and thus the lattice misfit is about 4%. For both metals, their topmost layer of {100} surfaces dis-
plays the quasi-hexagonal (hex) reconstruction instead of squared lattice16–21. The atom density of hex structure 
of Au(100) or Pt(100) is about 25% higher than that for the unreconstructed (1 × 1) phase. The atom compres-
sion in the topmost layer leads to various non-equivalent adsorption sites occupation by surface atoms on the 
unreconstructed second layer, ranging from hollow to top sites17,22. The scanning tunneling microscopy (STM) 
investigation of hex-phases revealed the atomic rows along the <011> directions17,18,21,22. The various vertical 
atoms positions result in their elevations and diminutions along as well as across the atomic rows. The hex 
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structure can be described with respect to the second layer by simplified (5 × 28) unit cell. The hex-reconstruction 
of Au(100) surface can be transformed into a (1 × 1) phase through deposition of adsorbates, e.g. platinum23,24 or 
iron24–26. Also a low energy ion (Ar or Ne) irradiation of bare hex-Au(100) leads to atoms rearrangement27. After 
ion exposition the coexistence of (1 × 1) phase with the hex areas, which number of atomic rows is quantized 
(‘magic’) and given by formula (6n + 1) (n is natural) has been found27. Above formula also describes the width 
of the energetically favorable configurations of Au islands on the hex-Au(100) surface studied by molecular 
dynamics (MD) simulations28.

The dehydrogenation rate subsequently increases with the platinum coverage up to 1.5 ML and then reaches 
maximum, which was about sixfold relatively to clean Pt(100), between 1.5 and 2 ML. The direct explanation for 
improvement of catalytic Pt properties was not determined, however the possible reasons of activity enhance-
ment, such as the Pt edge atoms in crystallites that are more active than atoms in a smooth plane or electronic 
interactions between platinum and gold which might affect the bonding of hydrocarbons were pointed out29,30. 
The latter were characterized by photoemission investigations, where formation of interface state at binding 
energy (BE) of 1.0 eV for 1 ML of Pt was found31. The feature is not observed for spectra obtained for clean 
Au(100) or for thicker films of Pt31. Better insight into morphology of Pt/Au(100) system (for coverage up to 0.5 
ML) has recently been obtained by STM investigations24. At coverage range from 0.05 to 0.4 ML the presence of 
anisotropic, rectangular/elongated, monoatomic Pt islands of which the long axis is parallel to rows of the hex-
Au(100) surface was reported. Subsequent increasing the amount of Pt from 0.15 to 0.4 ML resulted in locally 
lifting the Au(100) reconstruction around the ad-metal islands with a critical size about 10 nm. In consistency 
with previous LEED investigations, the reconstruction disappeared at coverage of 0.5 ML. Due to Pt coverage 
determined from X-ray photoelectron spectroscopy (XPS) being lower than the one obtained from STM, the 
possibility of Pt–Au alloy formation has been suggested24.

The early studies on structural properties of Pt on Au(100) were performed by low-energy electron diffrac-
tion (LEED) and Auger electron spectroscopy (AES) methods23. Deposition of platinum at room temperature 
(RT) transforms the hex reconstruction to (1 × 1) structure at a coverage of about 0.5 ML. The diffraction pat-
tern remains unchanged up to 8 ML, i.e. the highest studied coverage, as well as during the sample annealing at 
temperatures range 425–475 K. The occurrence of diffusion of Pt into the gold crystal after annealing at 520 K 
was detected23. The AES results indicated the Volmer–Weber growth mode, i.e. the formation of 3D crystallites 
of Pt on gold surface. Apart from the determination of structural properties, the authors shown that the Pt/
Au(100) (up to 4 ML) system exhibits a remarkable activity for cyclohexene dehydrogenation to benzene29,30.

Since the exact morphology of islands observed after deposition of sub-monolayers of Pt on Au(100) as well 
as their thermal stability are still open issues, we performed the atomic scaled STM investigations and density 
functional theory (DFT) calculations on the Pt/Au(100) system. The presence of Pt-Au alloy on the sample sur-
face before and after annealing is found. The alloy is mainly disordered, however a c(2 × 2) structure is locally 
detected by STM after annealing. The DFT studies on this structure revealed an electron states redistribution 
for Pt atoms in comparison to those in smooth Pt(100)-(1 × 1) surface, which is in agreement with previous 
photoemission studies.

Methodology
The measurements were performed in situ in an ultra-high vacuum (UHV) chamber with the base pressure 
below 2·10–10 Torr by means of Aarhus STM. STM topographies were recorded at room temperature (RT) in 
the constant current mode with a tungsten tip cleaned by an argon ion beam etching. The STM images were 
prepared and analyzed using WS × M software from Nanotec32, where the following filters were used: Reverse 
Fast Fourier Transform, Remove Lines, and Smooth. An Au(100) single crystal was cleaned by cycles of Ar ion 
sputtering with the energy of 3 keV for 60 min; this was followed by 5 min annealing up to 900 K. The sample 
was annealed using electron bombardment from a tungsten filament mounted at the backside of the sample. 
The sample temperature was controlled by measuring sample current and calibrated on a tantalum plate with 
spot welded thermocouple type K. The cleanliness of the sample was checked by the STM at RT. Platinum was 
deposited from Pt 99.95% wire wound on a W filament heated by electron bombardment. The deposition rate 
was 0.05 ML/min and was established (based on series of STM images) by determination of the surface area 
covered by rectangular hex-reconstructed islands visible after Pt deposition.

Theoretical part of our study was based on density functional theory (DFT) as it is implemented in VASP 
package33–36. In the performed calculations the plane wave basis set was applied while the electron–ion interac-
tions were simulated with the use of PAW37,38 potentials. The exchange-correlations effects were described in the 
framework of generalized gradient approximation (GGA) in its PBE formulation39,40. The energy convergence 
of the electronic states was controlled with the help of Davison-Block algorithm41.

The description of Au(100) substrate has been performed with the use of an asymmetric slab composed of 
seven atomic layers with about 25 Å vacuum region. The bulk lattice constant obtained from minimum energy 
condition of the bulk unit cell equals 4.06 Å and was fully optimized. The surface unit cell size used for the c(2 × 2) 
structure calculation was the elementary unit cell of the fcc(100) structure and consisted of 1 Pt and 1 Au atom. 
The whole slab contained 14 atoms. During the relaxation procedure the atomic positions of the atoms from 
the five topmost layers were allowed to relax until the forces were reduced up to the level below 0.0001 eV/Å, 
while the atoms from the rest part of the system were frozen in their bulk-like positions. The irreducible part of 
the corresponding surface Brillouin-zone was sampled by the net of 110 k-points, however, the influence of this 
factor on the obtained results was tested in separate check calculations.

To improve the comparison of the structural and electronic properties of considered system obtained from 
our theoretical study with corresponding experimental data provided by STM measurements we have per-
formed the simulations of the STM images based on the Tersoff–Hamann approach42, as it is implemented in 
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Hive code43. This code uses the partial charge distributions obtained from VASP calculations and enables us to 
simulate, in the constant current mode, the STM topographies and profiles which could be directly compared 
with corresponding experimental data. The analysis and visualization of DFT results has been also performed 
in VESTA44 and p4vasp45 programs.

Results and discussion
In this work platinum is deposited onto the hex-reconstructed Au(100) surface at RT. For low coverages, up to 
about 0.15 ML, the formation of small rectangular islands on the substrate is observed by STM. The representa-
tive STM image of surface terraces after deposition of about 0.05 ML Pt is presented in Fig. 1a. The hex-stripes 
are clearly visible on the uncovered areas and indicate that the surface is hex-reconstructed there. The long axis 
of islands is parallel to the atomic rows of reconstructed substrate. The apparent height of island relative to the 
hex-Au(100) surface, see the line profile along the arrow in Fig. 1a, is about 2.0 Å. This value is consistent with 
the apparent height of step edge and indicates that the islands have monoatomic height. The islands are present 
on the surface even after subsequent sample annealing at 50 °C, 80 °C, 100 °C for 10 min. The STM images with 
atomic resolution, see Fig. 1b as an example, confirm the substrate hex-reconstruction in uncovered areas, and 
reveal the arrangement of atoms at the islands. The structural similarities between the atoms creating the island 
and those in the substrate surface are observed. The islands consist of atoms arranged in the quasi-hexagonal 
structure. Moreover, the number of atomic rows building the islands is quantized and follows the formula 
(6n + 1), which was reported previously for describing the ‘magic widths’ of Au islands on hex-Au(100)28 and Au 
nanowire-like features27. The island shown in Fig. 1b contains 19 atomic rows, i.e. n = 3, see the insert. The hex 
stripes of the island are not a continuation of the substrate pattern—the corresponding valleys and ridges are not 
aligned. The mismatch is also present before annealing at RT—see Fig. 1a, where the hex-stripes on the substrate 
and the island marked by blue and green arrow, respectively, are shifted. Surface morphology observed by us is 
consistent with the previous STM investigations on the Pt/Au(100) system reported in Ref.24 Therein, the forma-
tion of rectangular islands aligned with the hex-stripes for coverages 0.05–0.15 ML at RT was found. The islands 
were described to be built of platinum through which the imaging of Au surface row corrugation occurred24. 
Comparable observation was made in the same work for the islands obtained after deposition of about 0.1 ML 
of iron and chromium. On the other hand in the works25,26 on the Fe/Au(100) system, it was shown by scanning 
tunneling spectroscopy, that the rectangular islands with the hexagonal atom arrangement are built of gold. The 
formation of gold islands was explained by the exchange process of Fe atoms at RT with the atoms in the hex-
Au surface. The gold atoms expelled from the substrate create the islands25,26. In the case of our study we could 
not determine the composition of the islands unambiguously. However, the mismatch of hex-patterns between 

Figure 1.   STM images of Au(100) after deposition of: (a) 0.05 ML Pt; (b) layer from (a) after subsequent 
annealing at 50, 80 and 100 °C for 10 min; (c,d) 0.3 ML; (e,f) 0.5 ML Pt. Taken for: (a) U =  + 758 mV; I = 2.1 nA; 
(b) U =  + 9 mV; I = 5.4 nA; (c) U = − 464 mV; I = 4.5 nA; (d) U = − 3 mV; I = 5.3 nA; (e,f) U =  + 3 mV; I = 4.7 nA.
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the islands and substrate observed in the images with atomic resolution indicates the hex atom arrangement at 
the islands rather than scanning through the ad-layer. Moreover the shape and ‘magic’ width of islands are in 
agreement with those previously found for Au overlayers on the hex-reconstructed Au(100)19,28. The rectangular 
islands with the hex atom arrangement were detected by STM during homoepitaxy on Au(100)19, whereas the MD 
simulations revealed that widths of (6n + 1) rows are the energetically favorable configurations for Au islands28.

Increase the Pt coverage by subsequent deposition leads to lateral growth of islands on the surface. In Fig. 1c 
the STM images obtained for 0.3 ML Pt on the hex-Au(100) surface are presented. Herein, the islands are not 
perfectly rectangular but still have elongated shape. Behind the islands the substrate morphology could be 
determined. The uncovered substrate topmost layer mostly consists of the hex-stripes (assigned as Au(100)-hex 
in Fig. 1c), which indicates the hex- reconstruction of surface. Again the long axis of islands is parallel to the 
substrate stripes. Those stripes coexist with the small flat areas, located mainly beside the shorter edges of islands. 
Exemplary flat areas are labeled as (1 × 1) in Fig. 1c. The magnification of this phase reveals that it is the (1 × 1) 
structure. The presence of flat phase implies that the growth of islands is accompanied by partially lifting the hex 
reconstruction of Au(100). The islands morphology is also not uniform and two structures could be distinguished 
i.e. flat phase and nanowire-like features. In contrast to the substrate morphology, herein the flat phase prevails 
under the nanowire-like structures. The apparent height difference between those two phases is 0.6 Å. The value 
is in good agreement with the previously reported apparent height difference between the (1 × 1) and hex phases, 
which coexist in the topmost layer of Au(100)27. Therefore, we conclude that those two phases creates single ad-
layer rather than there is a growth of 3D islands with flat first ad-layer and the nanowire-like features on it as the 
second ad-layer. The nanowires-like structures on the islands are aligned with those observed on the substrate.

We determine the islands composition from the STM images with atomic resolution, representatives are 
shown in Fig. 1d–f. In Fig. 1d the coexistence of flat phase with nanowire-like feature at single island is visible. 
The (1 × 1) structure for flat areas is found. The nanowire-like structure consists of atoms arranged in the rows 
which exhibit STM contrast modulation comparable to one recorded for hex-stripes of Au(100) reconstruction. 
However, there are some atoms appearing brighter than expected from their positions within the row. Examples 
of such atoms are assigned in Fig. 1d by green arrows. The apparent height difference between bright atom and 
the neighboring atoms in the same rows is in the range of 0.1 Å. Therefore, the bright species are not adatoms, 
but belong to the hex-row. It is worth to emphasize that comparable brighter species appear in the hex-stripes 
at the uncovered substrate surface, which is indicated by blue arrows. As it will be shown later, the bright ones 
are Pt and the dark ones Au atoms. This reinforces our supposition that the growth mechanism is similar to that 
observed for Fe/Au(100)25,26. The nanowire-like structures at the islands exhibit the ‘magic widths’. For instance 
the ones in Fig. 1d consists of seven atomic rows (the utmost ones are labeled as #1 and #7), which is in accord 
with the formula on ‘magic width’ for n = 1. The flat phase at the islands appears with non-uniform STM contrast, 
i.e. bright and dark areas are distinguishable e.g. in Fig. 1d as well as in Fig. 1e where the island obtained after 
deposition of 0.5 ML of Pt is visible. The provided in Fig. 1f high-resolution STM image of area marked by black 
square in Fig. 1e clearly reveals the (1 × 1) structure. Its unit cell is marked by blue square. The phase consists of 
two kinds of atoms bright (labeled as A) and dark (marked as B) with the apparent height difference of about 
0.1 Å. This value is comparable to one obtained for bright atoms and their neighbors in the nanowire-like fea-
ture (in Fig. 1d). The differences in the STM appearance of atoms we attribute to different chemical contrast46 
between platinum and gold. Thus, the (1 × 1) structure is composed of disordered Pt-Au alloy and there are some 
exchanges of atoms in the nanowire-like structures. Since we expect that hex-stripes at the surface mostly consist 
on gold atoms, we ascribe Pt atoms to the brighter features visible in the STM image presented in Fig. 1d. The 
possibility of Pt-Au alloy formation for Pt/Au(100) system was previously suggested in Ref.24, where the coverage 
determined from the size of platinum islands observed in the STM images was higher than the one obtained from 
the XPS analysis. Moreover, the presence of bimetallic islands of Pt–Au alloy has been found after deposition 
of about 0.04 ML of Au on the hex-Pt(100) surface by STM47. Therein the atoms in the islands were arranged in 
the square (1 × 1) structure and the islands contain some Pt atoms that, depending of the imaging conditions, 
appeared as darker or brighter features.

Annealing the Pt/Au(100) systems (for 0.2–0.4 ML) between 100 and 150 °C changes the surface morphol-
ogy. In Fig. 2a the STM image obtained after annealing at ~ 100 °C the 0.3 ML of Pt on Au(100) is shown. The 
presented surface state is typical for post-annealing Pt/Au(100) systems for coverage range between 0.2 and 0.4 
ML and temperatures higher than 100 °C. The islands are not present on the surface anymore. Now, only the 
topmost layer of the sample is detected, which consists of nanowire-like features coexisting with the flat areas. 
They have the ‘magic widths’, for instance in Fig. 2a five nanowire-like structures are visible—their widths are in 
accord with the formula on the ‘magic widths’ for n = 1 (four of them) and n = 2 (the one on the left side of image). 
The flat phase morphology is comparable to the one observed at the islands before annealing, i.e. dark and bright 
areas are distinguishable. The high resolution STM images, as presented in Fig. 2b, show that atoms are arranged 
in the (1 × 1) structure. Moreover, the phase contains bright (A) and dark (B) atoms with the apparent height 
difference between them of about 0.1 Å. Therefore, the flat phase, similar to the unheated layer, is composed of 
Pt-Au mixture. The majority of the alloy is disordered, however small compositionally ordered domains of the 
c(2 × 2) structure are observed, see the insert in Fig. 2b. The unit cell of the c(2 × 2) structure is drawn by green 
square. The structural properties up to 8 ML of Pt on Au(100) after annealing at 425–475 K was investigated by 
LEED23. Therein only the (1 × 1) structure was detected before and after sample annealing. However, the diffusion 
of Pt into the gold crystal after annealing at 520 K was found by AES23. Lack of LEED pattern associated with the 
formation of the c(2 × 2) structure may arise from the very small size of compositionally ordered domains and 
thus unavailability to detect them by LEED. The diffraction method needs at least an order arrangement of atoms 
in a size larger than the coherence length of the probing electrons, which differs from different instruments but 
is in the order of a hundred of Ångstroms.
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The described above STM data reveal that annealing of Pt/Au(100) system leads to development of small 
ordered domains of Pt-Au surface alloy. Two kinds of atoms, arranged in the c(2 × 2) structure, are clearly 
distinguishable in the STM images, however their exact identification is not possible based on the presented 
experimental results. In order to ascribe an atom (Pt or Au) to its STM appearance, we have performed DFT 
calculations. Two surface structures, i.e. the (1 × 1) of Au(100) and the c(2 × 2) of Pt-Au mixture on Au(100)-
(1 × 1), have been considered. The results of multilayer relaxation of both structures are summarized in Fig. 3. 
The relaxation process moves Pt about 0.16 Å below the topmost gold atoms. The influence of Pt on the vertical 
position of topmost gold atoms is negligible, i.e. they are shifted upwards about 0.02 Å in comparison to those 
in the Au(100)-(1 × 1) structure. The diminutions of vertical position of Pt atoms in comparison to gold atoms 
in the first layer is not surprising, since Pt is a smaller atom than Au.

The standard way in the interpretation of the topographies of the images provided by STM measurements 
is based on the assumption that they reproduce the distribution of these electronic states at the sample surface 
which are active in tunneling process. To compare the obtained STM data with corresponding surface electronic 
structure obtained from our theoretical study we have performed the simulation of STM images. These simula-
tions were based on the calculated spatial charge distributions of the electronic states from the following energy 
ranges: from −0.132 eV up to the Fermi level (occupied states) and from the Fermi level up to + 0.132 eV (unoc-
cupied states). These two energy windows correspond with bias voltages 0.132 V, which were used in our meas-
urements shown in Fig. 4. This figure presents the comparison between STM images obtained for occupied and 
unoccupied states (a), and (b), respectively (bias −0.132 and + 0.132 V) and corresponding simulated STM images 
calculated for the same energy ranges (i.e. for occupied and unoccupied states shown in (c) and (d), respectively). 
The presented images were prepared for the charge density level equal to 14 × 10–6 e/Å3, which correspond to 
the images obtained for the tip hold 3.1 Å above the highest atom. Moreover, Fig. 4a,b also present STM profiles 
from STM images. Corresponding dependencies extracted from the calculated images are also presented in 
Fig. 4c,d. The comparison of the experimental data with the corresponding STM simulations shown in Fig. 4 
indicate the good agreement between experimental and theoretical results. Calculated STM images presented 
in Fig. 4c,d reproduce the topographies of STM images provided by our measurements shown in Fig. 4a,b very 
well. Also the STM profiles extracted from experimental data are well restored by the corresponding profiles 
obtained from STM simulations.

We will now discuss the influence of Pt atoms embedded into Au(100) topmost layer on the surface electronic 
structure. Figure 5 shows the local density of d-states near the Fermi level for 1st and 2nd atomic layers of Pt(100)-
(1 × 1), Au(100)-(1 × 1), and Pt/Au(100)-c(2 × 2) phases. In the case of LDOS (d-states) for Au(100)-(1 × 1) two 

Figure 2.   STM images of Pt/Au(100) obtained after annealing of (a) 0.3 ML at 100 °C; (b) 0.4 ML at 
100 ÷ 200 °C. Taken for (a) U = − 1489 mV; I = 8.1 nA; (b) U =  + 215 mV; I = 8.7 nA; insert: U = −132 mV; I = 8.9 
nA.

Figure 3.   Geometry properties of the relaxed Au(100)-(1 × 1) and Pt/Au(100)-c(2 × 2) structures.
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maxima can be distinguished at energies of 4.5 eV and 6.3 eV below the Fermi level. The energy positions of those 
maxima are in accord with previous ultra-violet photoelectron spectroscopy (UPS) investigations on the clean 
Au(100) surface where the characteristic d-band derived emissions at EBs of 4.6 eV and 6.4 eV were observed31.

It is visible for Pt/Au(100)-c(2 × 2) system that a strong increase of local density of states (LDOS) for platinum 
atoms at energy interval from −1.5 eV up to −0.5 eV occurs. Such states are not observed for Pt in the topmost 
layer of the Pt(100)-(1 × 1) surface. Our theoretical results are in line with the experimental data available in the 
literature31. Therein the additional feature centered at 1.0 eV below the Fermi energy for Au(100) after deposition 
of 1 up to 2 ML of Pt was observed by UPS. The structure was not detected for bare Au(100) surface as well as for 
thick layer of platinum and was ascribed to Au-Pt interface state31. Our calculations suggest that this additional 
feature results from the redistribution of Pt d-states in the Pt–Au alloy.

The LDOS of Pt/Au(100)-c(2 × 2) system for energy range + /− 0.25 eV around the Fermi level (see the insert) 
are almost constant for both Au and Pt atoms. Therefore the difference in the STM contrast between Pt and Au 
obtained for bias voltage in the range from around −0.25 V to + 0.25 V should be comparable, which is in agree-
ment with the STM images presented in Fig. 4a,b.

Further information about the system electronic properties is provided by the charge density differences 
(∆ρ) and Bader’s analysis. The ∆ρ was calculated as ∆ρ = ρPt–Au-c(2×2)—(ρAu(100)_vacancy + ρPt), where ρPt–Au-c(2×2), 
ρAu(100)_vacancy and ρPt denotes the charge densities of the Pt/Au(100)-c(2 × 2) system, the bare Au(100)-(1 × 1) 
with vacancy in the place of Pt and the isolated Pt atom, respectively. Figure 6 presents isosurfaces of charge 
density difference for two topmost layers. As it can be seen, there is a depletion (blue) of electron density around 
the atoms. The charge flows from the atoms and accumulates (yellow) in the interatomic space forming a bond 
between Pt and Au. There is also a sphere of negative charge at the very top of the Pt atoms. Bader’s analysis 
reveals that there is a charge transfer into the first layer from the bulk (the second and deeper layers). Pt and 
Au atoms gain 0.11e and 0.06e, respectively. Thus the first layer of atoms is polarized, where Pt atoms are more 
negatively charged than Au. Compared to the bare A(100)-(1 × 1), this is an increase of 0.02e and 0.07e for Au 
and Pt respectively.

Figure 4.   Comparison of STM images of c(2 × 2) structure taken for (a) U =  + 132 mV; I = 8.7 nA and (b) 
U = −132 mV; I = 8.7 nA with the calculated images for (c) U =  + 132 mV and (d) U = − 132 mV.
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Figure 5.   Local density of d-states obtained for Pt(100)-(1 × 1) (bottom image), Au(100)-(1 × 1) (middle image) 
and Pt/Au(100)-c(2 × 2) (upper image).

Figure 6.   Isosurfaces of charge density difference for various levels. Yellow colour signifies accumulation and 
blue denotes depletion of electrons.
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We will now discuss our results concerning the scenario of processes accompanying the Pt adsorption on 
Au(100) and the influence of Pt–Au alloy formation on the surface catalytic properties. The small rectangular 
islands, visible in the STM images for low Pt coverages (Fig. 1a,b), have monometallic composition and their 
shape and width are in accordance with those previously observed for Au islands on hex-Au(100)19,28. Moreover, 
they exhibit better thermal stability than bimetallic ones obtained for higher coverages. Indeed, after annealing 
at 100 °C for 10 min rectangular islands are still present on the surface, whereas the bimetallic dissolve. The 
bimetallic islands consist of flat phase and nanowire-like features. The latter have the same ‘magic width’ and 
atom arrangement as the small rectangular islands. They composition is bimetallic, however, gold is the major 
component. This allows us to conclude that the ‘precursors’ of nanowire-like features are small rectangular 
islands build of gold atoms. The growth process is comparable to one observed for Fe on Au(100)25,26. Firstly, 
the deposited Pt atoms exchange with gold ones which diffuse and create rectangular islands on the surface. 
Then, further depositions leads to exchange of atoms not only at the topmost layer of substrate but also at the 
islands—presence of bright species in the nanowire-like structures (indicated by arrows in Fig. 1d). Increasing the 
number of Pt atoms in nanowire-like feature may lead to atoms rearrangement into the (1 × 1) phase. The atoms 
creating the flat phase of islands come also from Pt adatoms deposited on the surface and Au atoms expelled 
from hex-stripes after lifting the substrate reconstruction.

As we have shown, the formation of Pt/Au(100)-c(2 × 2) alloy significantly influences the d-states of platinum, 
see Fig. 5. Above all, the surface gains the narrow d-band with the maximum centre around −1 eV. Therefore, 
we expect a stronger chemisorption and easier dissociation for molecules adsorbed on Pt/Au(100)-c(2 × 2) 
domains than on the Pt(100) surface. These electronic changes may contribute to the remarkable improvement 
of Pt catalytic properties in cyclohexene dehydrogenation to benzene for Pt/Au(100) system reported in Ref29,30.

Conclusions
We presented the surface morphology evolution of hex reconstructed Au(100) influenced by the platinum deposi-
tion (up to 0.5 ML) at RT and then after annealing at 100–150 °C. At the beginning (below 0.2 ML) the presence 
of rectangular islands with hex-atom arrangement is found by STM. On the areas where the substrate surface 
is uncovered, the hex reconstruction of the topmost layer is preserved. Increase the amount of Pt, for range 
between 0.2 ML and 0.4 ML, leads to a change of the islands morphology. Now the coexistence of bimetallic 
(Au–Pt) nanowire-like features with flat phase of disordered Pt-Au alloy is detected. The sample annealing of 
Pt/Au(100) leads to dissolution of islands. The surface consists of the flat phase of Pt–Au alloy which coexists 
with the nanowire-like features. We showed that the number of atomic rows creating all nanowire-like features 
as well as the rectangular islands (observed for lower coverages) is quantized and in accord with the formula 
(6n + 1). After annealing there are small areas of Au-Pt flat phase which exhibit compositionally ordered c(2 × 2) 
structure. The DFT calculation of STM images of this structure reproduces the topographies of corresponding 
images provided by experiment very well and allows for exact atoms identification. Moreover the calculated 
LDOS reveal the strong redistribution of d-states for Pt embedded into Au(100)-(1 × 1) topmost layer in com-
parison to Pt(100)-(1 × 1). The enhancement of LDOS is observed for energy range between −1.5 and −0.5 eV. 
The charge density difference and Bader’s analysis reveal the bonding creation between Au and Pt atoms and 
charge transfer into the topmost layer, mainly Pt atoms. The changes of both structural and electronic properties 
of bimetallic Pt/Au(100) system with respect to monometallic ones, which were indicated by our present study, 
may significantly influence their catalytic properties.
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