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Modeling solubility of  CO2–N2 gas 
mixtures in aqueous electrolyte 
systems using artificial intelligence 
techniques and equations of state
Reza Nakhaei‑Kohani1, Ehsan Taslimi‑Renani2, Fahime Hadavimoghaddam3,4, 
Mohammad‑Reza Mohammadi5 & Abdolhossein Hemmati‑Sarapardeh5,6*

Determining the solubility of non‑hydrocarbon gases such as carbon dioxide  (CO2) and nitrogen  (N2) in 
water and brine is one of the most controversial challenges in the oil and chemical industries. Although 
many researches have been conducted on solubility of gases in brine and water, very few researches 
investigated the solubility of power plant flue gases  (CO2–N2 mixtures) in aqueous solutions. In this 
study, using six intelligent models, including Random Forest, Decision Tree (DT), Gradient Boosting‑
Decision Tree (GB‑DT), Adaptive Boosting‑Decision Tree (AdaBoost‑DT), Adaptive Boosting‑Support 
Vector Regression (AdaBoost‑SVR), and Gradient Boosting‑Support Vector Regression (GB‑SVR), 
the solubility of  CO2–N2 mixtures in water and brine solutions was predicted, and the results were 
compared with four equations of state (EOSs), including Peng–Robinson (PR), Soave–Redlich–Kwong 
(SRK), Valderrama–Patel–Teja (VPT), and Perturbed‑Chain Statistical Associating Fluid Theory 
(PC‑SAFT). The results indicate that the Random Forest model with an average absolute percent 
relative error (AAPRE) value of 2.8% has the best predictions. The GB‑SVR and DT models also have 
good precision with AAPRE values of 6.43% and 7.41%, respectively. For solubility of  CO2 present 
in gaseous mixtures in aqueous systems, the PC‑SAFT model, and for solubility of  N2, the VPT EOS 
had the best results among the EOSs. Also, the sensitivity analysis of input parameters showed that 
increasing the mole percent of  CO2 in gaseous phase, temperature, pressure, and decreasing the ionic 
strength increase the solubility of  CO2–N2 mixture in water and brine solutions. Another significant 
issue is that increasing the salinity of brine also has a subtractive effect on the solubility of  CO2–N2 
mixture. Finally, the Leverage method proved that the actual data are of excellent quality and the 
Random Forest approach is quite reliable for determining the solubility of the  CO2–N2 gas mixtures in 
aqueous systems.

Abbreviations
AAPRE  Average absolute percent relative error
SD  Standard deviation
SRK  Soave–Redlich–Kwong
SAFT  Statistical associating fluid theory
RMSE  Root mean square error
PR  Peng–Robinson
VPT  Valderrama–Patel–Teja
PC-SAFT  Perturbed-chain statistical associating fluid theory
EOS  Equation of state
GB  Gradient boosting
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AdaBoost  Adaptive boosting
RF  Random forest
DT  Decision tree
SAFT  Statistical associating fluid theory
SVM  Support vector machine
SVR  Support vector machine for regression
SVC  Support vector machine for classification

In the last decade, one of the most important challenges in the petroleum and chemical industries has been 
evaluating the solubility of different gases in liquids, including hydrocarbon and non-hydrocarbon  gases1–3. 
The solubility of gases in liquids can be vital in the petroleum and chemical industries for a variety of reasons, 
including transport operations and the production of  hydrates1,4.  CO2 as a greenhouse gas has been considered 
a serious problem in recent  decades5–7. Carbon capture and storage (CCS)8,9 is a technique that involves captur-
ing  CO2 from major point sources and storing it in  formations10,11. Flue gas storage in saline aquifers, as well as 
 CO2 extraction and storage using gas hydrates, are considered as potential CCS methods. As a result, informa-
tion gaps about these methods, such as the solubility of gas mixtures in water and brine, must be filled before 
commercialization. Due to the high cost of traditional CCS technologies, considerable efforts have been made 
to improve the efficiency of CCS operations by creating cost-effective and practical CCS approaches; however, 
there are still a lot of technological and financial roadblocks to  overcome10,12–14.

Flue gas or the mixture of  CO2 and  N2 injected within gas hydrate reservoirs have been suggested as a potential 
alternative for  CO2 underground storage. The thermodynamic mechanism by which  CO2 in flue gas or a  CO2–N2 
mixture is collected as hydrate, on the other hand, is not well  recognized15.  CO2 storage in hydrate reservoirs has 
expensive obstacles that limit its widespread usage, despite all of the stated benefits. The primary expense in this 
scenario is  CO2 collection before  storage15,16. Injecting  CO2–N2 mixture within gas hydrate reservoirs rather than 
pure  CO2 might considerably cut  CO2 separation expenses. Furthermore, an industrial-scale  CO2 substitution 
experiment on the North Slope of Alaska found that injecting a gas combination of 77/23 ratio of  N2/CO2 into 
a hydrate reservoir while recovering methane successfully avoided  CO2 hydrate creation around the injection 
well. Although the prior studies show that injecting  CO2–N2 gas mixes into gas hydrate reservoirs might be a 
cost-effective technique for CCS, a primary concern remain: How can the reservoir circumstances following 
 CO2–N2 mixtures or flue gas injection into a gas hydrate reservoir affect the production of  CO2 and  CO2–mixed 
 hydrates15? Since different thermodynamic conditions affect the injection process of the  CO2–N2 mixture and 
make the injection process difficult, the first important step is to evaluate the solubility of the  CO2–N2 mixture at 
different thermodynamic conditions. It should be noted that these limitations have also led to limited laboratory 
data on the solubility of  CO2–N2 mixture in liquids. Therefore, finding a solution to measure the solubility of 
the  CO2–N2 mixture has great importance. As a result of these considerations, assessing the solubility of gases 
in liquids has become a contentious issue.  CO2 and  N2 have been extensively considered as two frequently used 
non-hydrocarbon gases in recent  studies17,18. The injection of  CO2 into the aquifer and the injection of a mixture 
of  CO2 and  N2 into oil and gas reservoirs are two examples of these situations, where knowing the degree of 
solubility of the gas is  critical10,19. As a result, a thorough understanding of the physical and chemical interac-
tions between  CO2,  N2, and water is required. For instance, solubility trapping and mineral trapping are the two 
significant mechanisms that influence the injection of  CO2 into the aquifer. To accurately determine the effect of 
these mechanisms, it is necessary to conduct a sufficient number of theoretical and experimental studies, which 
can be time-consuming and  costly10,20,21.

In addition to the laboratory experiments, another technique for determining the solubility of  CO2 and  N2 
in water is to utilize equations of state (EOSs); however, it should be noted that EOSs are more appropriate for 
pure fluids but have limitations for pure compounds. Some of these limitations are as  follows22,23:

• To determine the solubility using these types of equations, critical characteristics of pure substances are 
necessary. Many of the chemicals studied, particularly those with complicated chemical structures, break 
down before meeting critical conditions. As a result, measuring the relevant characteristics does not appear 
to be feasible.

• To adjust the thermodynamic coefficients of the equation for a more precise estimation of the physical 
properties of the system, several physicochemical aspects of the system should be evaluated, such as the 
characteristics of the donor and the acceptor of the hydrogen bond of the molecule.

• Interaction factors setting for solubility data for each model is a time-consuming process.
• Numerical methods are often divergent to solve some equations for pure materials that have low solubility 

in water.
• The solubility estimations are heavily influenced by the optimization techniques used to get the best values 

for the thermodynamic model parameters.

As a result, choosing the appropriate optimization technique is another issue to consider. Despite these flaws, 
thermodynamic techniques have been extensively used to forecast the solubility of  CO2,  N2, and other gases in 
water, which are often found in the oil and gas industry under a variety of thermodynamic conditions. In the 
literature,  CO2 solubility in water and aqueous  solutions24–26 of salts like NaCl, KCl, and  CaCl2 has been thor-
oughly documented. Also, the solubility of  N2 and  CO2–N2 mixture in water and brine has been  studied22,27–29. 
Tomoya et al.30 measured  CO2 solubility in aqueous solutions and then correlated the experimental data with 
the Peng-Robinson-Stryjek-Vera EOS. Yiteng et al.31 also needed to know the solubility of  CO2 in brine to 
estimate  CO2 capturing potential in deep saline aquifers. For this purpose, they utilized the Peng-Robinson 
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Cubic-Plus-Association (PR-CPA) EOS to calculate the solubility of  CO2 in brine. They represented that good 
agreement was achieved with laboratory data.

The second group of methods for estimating solubility involves creating correlations, particularly mathemati-
cal methods that employ the physical characteristics of the chemicals in a manner that makes these approaches 
broad and thorough. These techniques may represent/predict the solubility of substances from diverse chemical 
categories in water in any  condition22. Abraham et al.32 suggested a linear solvation energy relationship (LSER) 
approach. However, the relationship can predict the solubility of ordinary organic substances; the model’s prop-
erties are challenging to be determined from the compounds’ chemical structures. Other researchers have taken 
the same  method33,34.

In the previous studies, a number of experimental data have been reported for the solubility of non-hydro-
carbon gases, including  CO2 and  N2 in liquids, especially in  water18,35,36. There is a scarcity of experimental 
results for non-hydrocarbon solubility due to the difficulties and sophistication of measured data of natural gas 
including gas equilibrium data. As a result, the utilization of laboratory data in new modeling approaches like 
artificial neural networks has gotten much  attention1. Machine learning techniques have recently found wide-
spread use in forecasting challenges such as hydrate  formation37, ammonia solubility in  liquids38, simulating 
asphaltene  behavior39, and hydrocarbon-CO2 interfacial  tension40. They have received much interest as a result 
of their captivating  performance41. Samani et al.42 proposed different intelligence techniques for estimating the 
solubility of various gases in aqueous electrolyte systems. Regarding the solubility of non-hydrocarbon gases 
(i.e.,  N2 and  CO2) in aqueous electrolyte systems, their database includes 774 data points, of which only 81 data 
are related to the  N2–CO2 gas mixture and the rest are related to the solubility of  N2 and  CO2 pure gases. Their 
model was based on Coupled Simulated Annealing (CSA) linked to the Least-Squares Support Vector Machine 
(LSSVM) method. Average absolute relative error and root mean square error (RMSE) values of their proposed 
CSA-LSSVM model were 10.71% and 0.0011, respectively. Hemmati-Sarapardeh et al.43 investigated the solu-
bility of  CO2 in water at high pressures and temperatures using four powerful machine learning techniques. In 
this study, Multilayer Perceptron (MLP), Radial Basis Function (RBF), Least-Squares Support Vector Machine 
(LSSVM), and Gene Expression Programming (GEP) models were developed using temperature and pressure 
as input data to estimate the solubility of  CO2 in water. The results showed that the LSSVM-FFA model a with 
an RMSE value of 0.3261 had the best performance compared to other models. Nabipour et al.1 investigated the 
solubility of  CO2 and  N2 in aqueous solutions using Extreme Learning Machine (ELM) and LSSVM approaches. 
Their solubility database was similar to Samani et al.’s  work42 including 774 data points with less than 90 data 
related to  CO2–N2 mixture solubility. The results showed that the LSSVM technique with an RMSE value of 0.001 
had higher proficiency than the ELM approach in estimating the solubility values of  CO2 and  N2 in aqueous 
solutions. Temperature, pressure, and composition were the most critical input parameters to the models. Saghafi 
et al.44 investigated the solubility of  CO2 in Monoethanolamine (MEA), Diethanolamine (DEA), Triethanolamine 
(TEA), and N-Methyldiethanolamine (MDEA) aqueous solutions. In this study, the AdaBoost-Decision Tree 
method and intelligent neural networks were used. The results showed that AdaBoost-Decision Tree models 
with RMSE values of 0.005–0.022 obtained the best solutions for different aqueous solutions. Gharagheizi et al.22 
estimated the solubility of pure compounds such as  CO2 in water using an Artificial Neural Network-Group 
Contribution (ANN-GC) technique. The results showed that this model with an RMSE value of 0.4 could have 
a good performance in estimating the solubility of pure materials in water.

Therefore, as mentioned earlier, particular importance and attention to the issue of determining the solubility 
of  CO2 and  N2 in liquids and especially water with various techniques including laboratory  methods45, EOSs, 
mathematical methods, and intelligent neural  networks46,47 in previous studies has caused further studies in this 
field and is still of interest to researchers. Although many studies have been done on pure  CO2 and  N2, few studies 
investigated the solubility of  CO2–N2 mixtures in water and brine. Only two  papers1,42 applied intelligent models 
for  CO2–N2 mixtures, however, they used less than 90 data points and in limited ranges of operating parameters.

In this study, to estimate the solubility of  CO2–N2 mixtures in water and aqueous brine solutions, an exten-
sive database containing 289 laboratory is collected from the literature. This paper uses six machine learn-
ing approaches, including Random Forest, Decision Tree (DT), Gradient Boosting-Decision Tree (GB-DT), 
Adaptive Boosting-Decision Tree (AdaBoost-DT), Adaptive Boosting-Support Vector Machine for Regression 
(AdaBoost-SVR), and Gradient Boosting-Support Vector Machine for Regression (GB-SVR), for determining 
 CO2–N2 mixture solubility in aqueous solutions in terms of temperature, pressure, ionic strength of aqueous 
brine solutions,  CO2 mole percent in gaseous mixture, and finally the index of non-hydrocarbon gases (i.e.,  N2 
and  CO2) whose solubility is to be estimated. Also, four reputable equations of state, including Peng–Robinson 
(PR), Soave–Redlich–Kwong (SRK), Valderrama–Patel–Teja (VPT), and Perturbed-Chain Statistical Associat-
ing Fluid Theory (PC-SAFT) are utilized to have a comparison with artificial intelligence models. Moreover, 
the sensitivity analysis of input parameters utilizing the relevancy factor is performed to check their impact on 
the solubility of  CO2–N2 gas mixtures in aqueous electrolyte systems. Lastly, the Leverage method is applied 
to investigate the quality of actual data and the reliability of the best-proposed approaches for determining the 
solubility of the  CO2–N2 gas mixtures in aqueous systems.

Data gathering
In this study, to estimate the solubility of  CO2–N2 mixtures in water and aqueous brine solutions, an extensive 
database containing 289 laboratory data has been collected from the  literature10,18, which is presented in the 
Supplementary file. Although two  studies1,42 have been performed to estimate the solubility of  CO2,  N2, and 
 CO2–N2 mixture in aqueous electrolyte systems using artificial intelligence models, in these studies, the number 
of data related to the solubility of  CO2–N2 mixture in water is much less than the data for the two pure substances 
(i.e.,  CO2,  N2). The number of  CO2–N2 mixture solubility data of these  studies1,42 is less than 90 data points. The 
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database used in this work has 200 data points of  CO2–N2 mixture solubility in aqueous electrolyte solutions more 
than Nabipour et al.1 and Samani et al.’s42 works. Therefore, what distinguishes this study from other previous 
studies is the use of a large data bank containing a large number of data related to  CO2–N2 mixture solubility in 
aqueous brine solutions. Therefore, the results of the developed models can be more comprehensive and reliable 
for use in the cases mentioned at the beginning of the introduction. To develop the models, temperature, pressure, 
ionic strength of aqueous solutions,  CO2 mole percent in gaseous mixture, and the index of non-hydrocarbon 
gases (IDX: 1 =  N2 and 2 =  CO2) whose solubility is to be estimated, have been used as input parameters. The 
statistical parameters of inputs and output data are summarized in Table 1.

Models’ implementation
Support vector machine for regression (SVR). The Support Vector Machine (SVM) is a type of 
controlled machine learning system that can be employed for both regression (SVR) and classification (SVC) 
 problems48. SVM has been widely used in various research areas due to its superior feature, notably in solving 
non-linear problems called the kernel trick, mapping the input space into a higher-dimensional space. For the 
sake of conciseness, this article briefly explains the concept of SVR; however, it has extensively been presented in 
 literature49. Let the given dataset be a set of n independent samples, [

(
x1, y1

)
, . . . .,

(
xn, yn

)
] , where x ∈ Rd has d 

dimension and y ∈ R . The objective of SVR is to identify regression function as below:

here w, b, and φ(x) denote the weight, bias, and kernel function, respectively.
To get the appropriate values of the weight and bias vectors, Vapnik et al.50 suggested the following optimiza-

tion procedure:

here wT indicates the transposed matrix, ε is the toleration of error, ζ+j  and ζ−j  are regarded positive variables 
reflecting the lower and higher excessive variations, respectively, and C interprets a positive regularization fac-
tor determining the deviance from ε . By employing the Lagrange multiplier, Eq. (2) can be converted into a dual 
optimization problem as follows, which makes it easier to  solve48.

where K(xk , xl) is the kernel function, ak and a∗k  represent the Lagrange multipliers.
It should be noted that in the present study, the polynomial kernel function was used in the SVR model 

which was selected by using grid search for the best performance. Weight and bias in Eq. (1) stand for trainable 
variables of SVR model.

Random forest (RF). Decision Trees, a tree-like structure, are easy to interpret and perform well, notably 
when the dataset is large. However, the problems of the model are twofold. First, the Decision Trees usually expe-
rience low prediction bias and high variance, so-called over-fitted, which means the model picks up even small 
perturbations and random noises in the training dataset. Furthermore, although the most optimum decision is 
determined at each step, this greedy model does not consider the global optimum; therefore, the overall decision 
tree might not be optimal. The abovementioned issues can be mitigated by ensembling methods, integrating 
the results of multiple trees (weak learners) into the final result (strong learner)51,52. Such ensemble learning 
algorithm in which each tree is trained in parallel forms a Decision Tree ensemble, which is referred to as Ran-
dom Forests. The greedy strategy in RF determines the importance of each tree at each  stage53. Moreover, RF 
can measure the feature’s importance and retain the most informative input  features54. To improve the variable 
selection and diversity of the trees, the RF algorithm employs a technique called bagging or bootstrap aggrega-
tion. The model will decide how to split the input data into multiple sub-datasets according to the given trees’ 

(1)y = f (x) = w.φ(xi)+ b

minimize
1

2
wTw + C

N∑

j=1

(
ζ−j + ζ+j

)

(2)






(w.∅(xi)+ b)− yi ≤ ε + ζ−j
yi − (w.∅(xi)+ b) ≤ ε + ζ+j
ζ+j , ζ−j ≥ 0.i = 1, 2, . . . ,m

(3)y = f (x) =

n∑

i=1

(
ai − a∗i

)
.K(xi , x)+ b

Table 1.  Statistical details of the dataset in this work.

IDX Temperature (K) Pressure (MPa) Ionic strength (M) CO2 (mole %) Solubility (mole fraction)

Mean 1.505 294.13 11.11 0.8158 31.6114 0.004323

SD 0.5008 15.76 5.83 1.1633 29.1251 0.006132

Min 1 273.25 1.51 0 0 0.0001

Max 2 318.15 21.74 3.99 100 0.025
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population. Bagging, a type of random sampling technique, allocates a third of data for the training purpose of a 
subtree development process, and the remaining will be left behind, which are referred to as out-of-bag samples. 
Additionally, the cross-validation technique is unnecessary while using the RF algorithm as multiple bagging in 
the training process prevents over-fitting55. The framework of RF construction is illustrated in Fig. 1.

Suppose D is the training dataset with n number of observations, D = [
(
x1, y1

)
,
(
x2, y2

)
· · ·

(
xn, yn

)
] , and Dt 

is the training dataset for the tree ht, the predicted output corresponding to the out-of-bag dataset of sample x 
can be expressed as  follows56:

The learning error of the OOB can be obtained by:

The procedure of RF must be random and this feature can be controlled over a parameter formulated as k55. 
The significance of a characteristic of a variable Xi could be obtained as follows:

where Xi is the ith parameter in vector X , B indicates the current number of trees in the RF,  ÕOBerrti denotes the 
predicted error of the OOB samples for the feature Xi of tree t  , and OOBerrt is the initial OOB samples including 
permuted  variables56.

Decision tree (DT). Decision Tree, a nature-inspired supervised learning algorithm, has been widely uti-
lized in the literature and can be used for classification and  regression57. This algorithm consists of four elements: 
root node, which is the topmost node in the tree carrying the input data; leaf nodes, which are the final section 
of the flowchart and denotes the output of the system; internal nodes, which are placed between the root and leaf 
nodes; branches, which are the connection between nodes. A tree-building process in a decision tree algorithm 
includes three techniques: splitting, pruning, and  stopping58. The input data is split into branches and decision 
nodes starting from the root node. The splitting process caries on till a stopping criterion is convinced. The 
pruning technique implies removing the low-importance  branches59. A simple architecture of a DT model is 
illustrated in Fig. 2.

(4)Hoob(x) = argmax
∑T

t=1
I(ht(x)) = y

(5)εoob(x) =
1

|D|

∑
(x.y)ǫD

I(Hoob(x) �= y)

(6)I(Xi) =
1

B

∑B

t
ÕOBerrti − OOBerrt

Figure 1.  Schematic illustration of random forest algorithm.
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Gradient boosting (GB). Gradient Boosting (GB) is an effective machine learning technique that can be 
used in both regression and classification to reduce bias error or overfitting. Gradient boosting, as functional 
gradient descent, obtains the residual errors generated from the previous learner, and adds a new learner to it 
to minimize the loss function of the model at each stage of gradient descent. This technique aims to combine 
a group of weak learners in a stage-wise manner to build a strong learner and in turn, a more robust model to 
fit more accurately to the response variable. In other words, the new base-learner must have two conditions: be 
correlated with the negative gradient of the loss function and also be associated with the whole ensemble. As 
the idea behind gradient boosting is to minimize the loss function, there is a range of loss functions that can 
be used. Assume h(x, θ) is a custom base-learner and �

(
y, f

)
 a loss function, it is tough to predict the variables 

and a repetitive model; therefore, is proposed to choose a new function as h(x, θt) , where the t enhancement is 
directed  by60,61:

This converts a potential sophisticated optimization problem into a classic least square  minimization60,62.

The following are the steps in the GBDT technique  process63:

• Suppose that  f̂0 is a constant
• Evaluate the  gi(x) and training h(xi , θ) function
• Obtain parameter ρi and modify the function:

The method starts with a single leaf and optimizes the training algorithm for each node and record. Figure 3 
shows a schematic example of a conventional GBDT.

Adaptive boosting (AdaBoost). The adaptive boosting algorithm presented by Freund and  Schapire64 
aims to combine weak classifiers and learn from their mistake to create a strong classifier. In other words, it 
selects the training dataset iteratively to combine the multiple classifiers and assign the appropriate weight to 
each classifier based on the accuracy of each classifier so that higher weights are assigned to the misclassified/
mislabeled  samples65. The following are the general stages of the AdaBoost  technique66,67:

(7)gt(x) = Ey

[
∂ψ(y, f (x))

∂f (x)
|x

]

f (x)=f̃ t−1(x)

(8)(ρt , θt) = argminρ,θ

N∑

i=1

[
−gt(xi)+ ρh(xi , θ)

]2

(9)f̂i = f̂i−1 + ρih(xi , θ)

Figure 2.  Schematic illustration of a typical decision tree.
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• Weights definition: wj =
1
n , j = 1, 2, . . . , n

• Apply the training data to a weak learner Wli (x), weights, and obtain the weighted error for each i.

• Determine the weights for predictors for each i as follows:

• Update the sample weights for each i to N (where N is the learner’s number)
• Assign a weak learner to the data test (x) as a result.

Support vector regressors (SVR) and Decision Trees (DT) have been used as weak learners in AdaBoost 
systems in this study.

In this paper, we have applied ensemble models such as Adaboost-DT, Adaboost-DT, and GB-SVR. To dis-
cover the functionality and different possibilities of regression methods, AdaBoost and Gradient boosting as 
varieties of clustering methods have been executed to enhance the conventional weak regressors by incorporating 
the outcome of the weak regressors into a weighted combination that determines the best output of the enhanced 
powerful regressor and also the outcome of the weak regressors is distorted in pursuit of incorrectly estimated 
samples autonomously.

More details are as follows:
Linear SVR indistinguishability is achieved by using a nonlinear imaging approach to convert features with 

linearly unidentifiable low-dimensional input space into a high-dimensional feature space. This allows the non-
linear features of the samples to be analyzed linearly using a linear algorithm in a high-dimensional feature 
space. However, the choice of kernel functions and parameters has a significant impact on its  performance68. 
The AdaBoost method trains many base learners, and the sample generalization could be further improved by 
combining techniques to produce the final strong learner. Anomaly samples are susceptible to the AdaBoost 
method, and anomalous samples may obtain greater weights in iterations, affecting the prediction accuracy of 
strong learners. Furthermore, the decision tree is widely used as a basic learning method, but it is inadequate 
in dealing with nonlinear issues, and prediction accuracy varies  substantially69. The AdaBoost method, on the 
other hand, is sensitive to anomalous data, and anomalous samples may obtain greater weights in iterations, 
affecting strong learners’ prediction accuracy.

When using SVR for sample learning, the model’s performance is determined by the kernel function and 
kernel parameters. Using SVR as the AdaBoost base learner, on the other hand, lowers the influence of the SVR 
algorithm’s kernel functions and parameters. It also overcomes AdaBoost’s standard algorithm’s inability to 
address nonlinear issues. This makes the AdaBoost-SVR method appropriate for dealing with nonlinear feature 
data prediction while also ensuring the model’s  generalizability70. We combined GB and SVR  algorithms71. The 
combined GB and SVR algorithm into a single predictive model is another meta-algorithm applied in this paper 
in order to enhance the overall performance. Gradient Boosting as part of an ensemble technique attempts to 
create a strong regressor from several weak regressors.

(10)I(x) =

{
0 if x = false
1 if x = true

(11)Erri =

∑n
j=1wjI(tj �= wli(x))∑n

j=1wj

(12)βi = log

(
(1− Erri)

Erri

)

Figure 3.  Schematic illustration of a typical GBDT.
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Equations of state (EOS). An EOS is a mathematical representation that connects system parameters to 
represent the state of a material under a range of predefined circumstances, including pressure, temperature, or 
 volume72. These thermodynamic models can characterize the thermal characteristics and volumetric behavior of 
mixtures and pure  materials73. During the last few decades, cubic EOSs have been widely employed. New EOSs, 
like various forms of the Statistical Associating Fluid Theory (SAFT), have been applied successfully in the past 
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The formulation for the contributions from the dispersion and ideal gas are similar 
to those of Gross and  Sadowski80
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few years. To explain the interactions between the molecules in a system, the SAFT EOSs were constructed using 
statistical  mechanics74,75. SAFT EOSs are designed to depict molecules as chains of spherical particles that engage 
with others via long-range attraction, short-range repulsion, and hydrogen bonding at particular places. In this 
study, four equations of state such as PR, SRK, VPT, and PC-SAFT, have been used. The PVT relationships and 
parameters of the respective equations of state are reported in Tables 2 and 3. The critical properties and acentric 
coefficients of the materials utilized in this study are summarized in Table 4.

Performance analysis of models
The mathematical description of the statistical parameters employed in this study are summarized  below72,83:

• Average absolute percent relative error (AAPRE)

• Standard deviation (SD)

• Coefficient of determination  (R2)

• Root mean square error (RMSE)

In the above equations, SiEXP , SiPRED , SiEXP  , and N refer to experimental solubility, predicted solubility, mean 
experimental solubility, and the total number of data points, respectively.

Also, several graphical analyses, namely, cross-plot, relative error distribution diagram, cumulative frequency 
plot, and trend plot were utilized to visually evaluate the developed models. Descriptions of these analyses can 
be found  elsewhere72.

Results and discussion
Statistical evaluation of models. The models discussed in the previous sections have been developed to 
predict the solubility of  CO2–N2 mixtures in water utilizing 289 laboratory data. In this study, we have employed 
six algorithms, which were rarely used, to estimate  CO2–N2 gas mixture solubility in water. The structure of the 
models was modified and also the grid search algorithm was used to optimize the hyperparameters of the mod-
els to avoid overfitting in this particular problem. The hyperparameters obtained by the grid search are different 
for each model. It is based on the importance of the hyperparameters according to theoretical and practical 
aspects. Total data has been divided randomly to 80/20 for the training and testing phase. It should be noted that 
experimental data and predictions of different models are presented in the Supplementary file. The calculated 
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Table 3.  PC-SAFT EOS factors for the substances utilized in this paper.

Substance Mw (g/mol) m σ (Å) ε/k (K) Reference

N2 28.013 1.2053 3.313 90.96 80

CO2 44.01 2.0729 2.7852 169.21 80

H2O 18.015 2 2.3533 207.84 82

Table 4.  Critical properties and acentric factors utilized in the EOSs for the substances used in this  paper79.

Substance Pc (MPa) Tc (K) Zc ω

N2 3.394 126.10 0.2917 0.0403

CO2 7.382 304.19 0.2744 0.2276

H2O 22.055 647.13 0.2294 0.3449
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statistical parameters for the represented models are summarized in Table 5. In this table, different statistical 
parameters such as RMSE,  R2, SD, and AAPRE are reported. GB-SVR outperforms other models except for 
Random Forest because SVR is more like a soft fabric that can bend and fold in whatever way we need to better 
fit our data. This gives more degrees of freedom and flexibility so that a more accurate model can be achieved. 
Moreover, SVR can capture the non-linear relationships between variables. The performance of the model is 
further improved by tuning the hyperparameters. These are the main reasons that GB-SVR has shown a higher 
accuracy. Random Forest proved the highest accuracy in this study even higher than SVR-GB. Random Forest is 
built for multiclass issues, whereas SVM is for two-class problems. In SVM, in the case of a multiclass problem, 
the problem must be broken down into numerous binary classification tasks. With a combination of numeri-
cal and categorical variables, Random Forest performs well. Also, in classification problems, it is not necessary 
to do normalization or scaling in Random Forest. SVM seeks to maximize the "margin," relying on the idea of 
"distance" between points. It is up to us to decide if "distance" is significant. As a consequence, one-hot encoding 
for categorical features is a must-do. Further, min–max or other scaling is highly recommended in preprocessing 
step. Random forests are good for a specific set of issue types when given a specific set of data, but they do not 
act well for many others. We should mention that random forests are unexpectedly effective for a wide range of 
issues because they are built on trees, the variables cannot be scaled. A tree inherently captures any monotonic 
alteration of a single variable, and in random forest built-in feature selection is  automated84.

According to Table 5, it can be seen that the Random Forest model with an AAPRE value of 2.84% has the 
most accurate prediction for the solubility of  CO2–N2 mixtures in water. The GB-SVR and DT models with 
AAPRE values of 6.43% and 7.41%, respectively, have the closest prediction to the Random Forest model com-
pared to other models. However, it should be noted that other models also have relatively good results. Another 
noteworthy point is that sometimes the high accuracy of a model in predicting outputs may be due to over-
training. In order to ensure that this does not happen, the results of training and test data should be compared 
with each other. If the difference between the statistical parameters of the training and test data is significant, 
the model may be over-trained. If the results of the training and test data are close to each other, it can be stated 
that over-training has not happened. As the results show, the statistical parameters for the training and test data 
are very close.

To evaluate the performance of artificial intelligence methods in comparison with mathematical methods, 
four equations of state such as SRK, PR, VPT, and PC-SAFT, have been used. For this purpose, the solubility of 
 CO2 and  N2 in different  CO2 +  N2 +  H2O (brine) systems was calculated using 24 laboratory data points extracted 
from the  literature10, and the results are reported in Table 6 and Table 7. As shown in Tables 6 and 7, the value 
of AAPRE obtained for the SRK and PR equations of state is much higher than VPT and PC-SAFT equations of 
state and the intelligent models. For solubility of  CO2 in aqueous solutions, the Random Forest approach out-
performs the other intelligent techniques with an AAPRE value of 1.16%, and the PC-SAFT model has the best 
results among the EOSs with an AAPRE value of 3.35%. For solubility of  N2 in aqueous solutions, the Random 
Forest technique has the best results among the intelligent approaches with an AAPRE value of 4.13%, and the 
VPT model has the best results among the EOSs with an AAPRE value of 5.71%.

Graphical analysis of models. Figure 4 shows the cross-plot diagrams for the six models presented in this 
study. In this graph, where the predicted results are plotted against actual values, the higher the compaction of 
data around the Y = X line indicates that the estimated values are closer to the actual values; therefore, the model 

Table 5.  Calculated statistical criteria for the proposed models.

Statistical criteria RMSE SD R2 AAPRE (%)

DT

Train 0.000297 0.1044 0.9978 6.1904

Test 0.000290 0.3172 0.9965 12.3069

Total 0.000295 0.1721 0.9977 7.4179

GB-DT

Train 0.000166 0.2324 0.9993 10.5323

Test 0.000155 0.3973 0.9991 15.3978

Total 0.000164 0.2745 0.9992 11.5088

AdaBoost-DT

Train 0.000217 0.2331 0.9988 12.5086

Test 0.000204 0.2901 0.9985 13.7655

Total 0.000214 0.2457 0.9987 12.7609

AdaBoost-SVR

Train 0.000161 0.2220 0.9993 9.5464

Test 0.000147 0.2076 0.9992 9.6933

Total 0.000159 0.2192 0.9993 9.5759

GB-SVR

Train 0.000300 0.1120 0.9977 6.7068

Test 0.000290 0.0716 0.9970 5.3403

Total 0.000298 0.1051 0.9976 6.4326

Random forest

Train 0.000132 0.0740 0.9995 2.9086

Test 0.000131 0.0608 0.9994 2.5999

Total 0.000132 0.0716 0.9995 2.8466
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is more accurate. In addition,  R2 value for this dataset will close to 1. As shown in Fig. 4, the Random Forest 
model is in a better position than the other models, which also confirms the results reported in Table 5.

Figure 5 shows the error distribution diagram for the developed models. This diagram shows the relative 
error on the Y-axis and the experimental data on the X-axis. The closer and the more compaction of the points 
around the zero line, the less the predicted data error. On the other hand, according to this diagram, the relative 
error range for experimental data can be visually observed. For example, it can be seen how the relative error 
will change as the value of experimental data increases. As shown in Fig. 5, it can be observed that the Random 
Forest model is in a better condition and shows relatively lower errors than other models.

A cumulative frequency graph is one of the most important diagrams that can be used to compare the perfor-
mance of several models simultaneously. Figure 6 shows a cumulative frequency diagram for different models. In 
this diagram, which is a cumulative frequency of the number of data in terms of absolute relative error, the higher 
the curve of one model than the curve of other models, the higher the accuracy. In other words, if a model’s curve 
is higher than another model’s curve in a constant AAPRE value, it means that a higher percentage of the data 
in that model has a lower absolute relative error than another model. The higher the curve of one model at small 
absolute relative errors (close to 1), the higher the percentage of that data, the lower the absolute relative error, 
and the more accurate the model. Therefore, according to Fig. 6 and what is said, the Random Forest model is in a 
better situation than other models and has a higher accuracy, which also confirms the results presented in Table 5.

Trend analysis. Investigating the trend of solubility changes in terms of different parameters can give us a 
better understanding of the solubility of  CO2–N2 mixture in water and brine solutions. On the other hand, the 
validity of the developed models can be investigated by comparing the trend of measured changes with labora-
tory data, equations of state, and predicted data. For example, when an input parameter shows an increasing 
trend in experimental data, the developed models should show the same trend. In this case, the validity of the 
developed model will be more. In the following, we examined the trend analysis of various parameters.

Figure 7 shows the effect of pressure on the solubility of  CO2 and  N2 in an aqueous system consisting of 39% 
 N2 and 61%  CO2 at 283 K. In this figure, the changes in solubility in terms of pressure using laboratory and pre-
dicted data in the Random Forest model as the best model and equations of state were investigated. According 
to Fig. 7a and b, all methods show an incremental trend. What is debatable in this figure is the degree to which 
the models are overestimated and underestimated. Another noteworthy point is the perfect agreement of the 
Random Forest model data with the experimental data, which confirms the efficiency of the intelligent models. 
As shown in Fig. 7a, the curves related to the equations of state are generally in a higher position than the curve of 

Table 6.  Predictions of EOSs and smart models for  CO2 solubility in different  CO2 +  N2 +  H2O (brine) systems.

Solubility 
system Data no. P (MPa)

CO2 solubility (mole fraction)

Exp DT GB-DT AdaBoost-DT
AdaBoost-
SVR GB-SVR

Random 
Forest SRK PR VPT PC-SAFT

CO2 
(14.6%) +  N2 
(85.4%) +  H2O, 
at 303.05 K

1 1.98 0.0008 0.000791 0.000800 0.000900 0.000900 0.000816 0.000800 0.0010 0.0013 0.0009 0.0008

2 5.63 0.0022 0.002101 0.002200 0.002150 0.002200 0.002095 0.002200 0.0023 0.0032 0.0023 0.0021

3 9.35 0.0031 0.003384 0.003350 0.003542 0.003460 0.003258 0.003050 0.0033 0.0041 0.0033 0.0031

4 13.17 0.0039 0.003888 0.003900 0.003975 0.003900 0.003794 0.003750 0.0039 0.0049 0.0043 0.0038

5 16.97 0.0045 0.004417 0.004500 0.004500 0.004500 0.004444 0.004650 0.0045 0.0061 0.0048 0.0043

6 20.75 0.0048 0.004717 0.004575 0.004560 0.004575 0.004718 0.004650 0.0051 0.0066 0.0053 0.0046

CO2 (3%) +  N2 
(97%) +  H2O, at 
283.15 K

7 2.05 0.0003 0.000405 0.000400 0.000780 0.000400 0.000410 0.000300 0.0002 0.0003 0.0003 0.0003

8 5.74 0.0008 0.001142 0.000800 0.000900 0.000800 0.001135 0.000800 0.0005 0.0007 0.0008 0.0008

9 9.84 0.0012 0.001258 0.001400 0.001400 0.001400 0.001241 0.001200 0.0007 0.0010 0.0013 0.0012

10 13.58 0.0014 0.001501 0.001600 0.001700 0.001500 0.001477 0.001400 0.0008 0.0012 0.0015 0.0014

11 18.06 0.0017 0.001739 0.001700 0.001750 0.001800 0.001739 0.001700 0.0010 0.0014 0.0018 0.0016

12 21.5 0.0018 0.001843 0.001800 0.001800 0.001800 0.001828 0.001800 0.0011 0.0016 0.0021 0.0017

CO2 (61%) + 2N 
(39%) +  H2O, at 
303.05 K

13 1.92 0.0024 0.003120 0.002400 0.002400 0.002400 0.003257 0.002400 0.0032 0.0057 0.0026 0.0024

14 5.59 0.0064 0.007550 0.006400 0.006400 0.006400 0.008086 0.006400 0.0093 0.0099 0.0065 0.0062

15 9.06 0.0091 0.009971 0.009100 0.009100 0.009100 0.009878 0.009100 0.0113 0.0124 0.0091 0.0087

16 13.3 0.0112 0.011830 0.011200 0.011400 0.011467 0.011521 0.011200 0.0133 0.0144 0.0113 0.0107

17 17.03 0.012 0.012651 0.012000 0.012000 0.012000 0.012598 0.012250 0.0142 0.0178 0.0125 0.0117

18 20.99 0.0125 0.013007 0.012500 0.012500 0.012500 0.012988 0.012250 0.0156 0.0201 0.0133 0.0123

CO2 
(14.6%) +  N2 
(85.4%) + brine 
(10 wt.% 
NaCl), at 
273.25 K

19 2 0.0013 0.001176 0.001300 0.001200 0.001250 0.001186 0.001300 0.0011 0.0016 0.0013 0.0013

20 5.59 0.0033 0.003190 0.003225 0.003175 0.003300 0.003184 0.003300 0.0025 0.0036 0.0032 0.0031

21 9.42 0.0047 0.004564 0.004665 0.004462 0.004733 0.004561 0.004700 0.0034 0.0048 0.0046 0.0044

22 13.26 0.0056 0.005460 0.005600 0.005428 0.005600 0.005432 0.005900 0.0041 0.0055 0.0055 0.0052

23 17.12 0.0061 0.005996 0.006000 0.005800 0.006002 0.005914 0.006500 0.0053 0.0058 0.0063 0.0056

24 21.08 0.0065 0.006276 0.006079 0.005900 0.006129 0.006212 0.006500 0.0058 0.0061 0.0066 0.0059

AAPRE, % – – 8.71 3.67 11.87 4.42 9.03 1.16 23.34 30.18 5.08 3.35
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the experimental data, and this indicates that these equations overestimate the solubility of  CO2 in the mentioned 
system. Figure 7b also shows the conformity of the data curve predicted by the Random Forest model with the 
experimental data, but the different point is that the PR EOS overestimates the solubility of  N2 in the mentioned 
system and other models underestimate although the degree of agreement of the VPT EOS to the experimental 
data is significant. Again, for solubility of  CO2 present in gaseous mixtures in aqueous systems, the PC-SAFT 
model, and for solubility of  N2, the VPT model had the best results among the EOSs.

Figure 8 shows the effect of  CO2 content in the gas mixture for the solubility of  CO2 and  N2 in an aqueous 
system containing  CO2 and  N2 at a temperature of 308 K and pressure of 8 MPa, as experimentally investigated 
in the  literature18. As expected, increasing the amount of  CO2 in the gas mixture reduces the solubility of  N2 in 
the system and, conversely, increases the solubility of  CO2 at constant temperature and pressure. As it is clear, 
the solubility of  N2 in water is less than that of  CO2.

Figure 9 shows the effect of pressure on the solubility of  CO2 and  N2 in a system containing 85.4%  N2 and 
14.6%  CO2 in water at 303 K for the Random Forest model and laboratory  data10. As shown in Fig. 9, increasing 
the pressure can have a positive effect on increasing the solubility of both  CO2 and  N2 in the system, although 
this effect is more significant for  CO2.

Figure 10 shows the effect of pressure on the solubility of  CO2 and  N2 in aqueous systems with different 
salinity (pure water, 5% NaCl brine, and 15% NaCl brine). What can be seen in both Fig. 10a and b is the effect 
of salinity on system performance. For both  CO2 and  N2 gases, increasing the pressure increases the solubility, 
but it is noteworthy that increasing the salinity decreases the solubility of  CO2 and  N2. Therefore, increasing the 
concentration of NaCl in water, or in other words, an increase in the ionic strength of the solution, reduces the 
solubility of  CO2 and  N2. The salting-out phenomenon causes a reduction in  CO2 and  N2 solubility in water. 
The electrolytes influence water to dissolve less gas in this process. As salinity increases, more water molecules 
are attracted to the salt ions, reducing the amount of  H+ and  O2

− ions available to gather and separate the gas 
molecules, lowering  CO2 and  N2 solubility in the  water85.

Input parameters impact analysis. To study the influence of input parameters on the output of the 
model, a parameter called Relevancy factor was used. Relevancy factor is calculated as  follows86:

Table 7.  Predictions of EOSs and smart models for  N2 solubility in different  CO2 +  N2 +  H2O (brine) systems.

Solubility 
system Data no. P (MPa)

N2 solubility (mole fraction)

Exp DT GB-DT AdaBoost-DT
AdaBoost-
SVR GB-SVR

Random 
Forest SRK PR VPT PC-SAFT

CO2 
(14.6%) +  N2 
(85.4%) +  H2O, 
at 303.05 K

1 1.98 0.0002 0.000196 0.000300 0.000300 0.000300 0.000195 0.000200 0.0002 0.0003 0.0002 0.0002

2 5.63 0.0005 0.000498 0.000611 0.000600 0.000500 0.000486 0.000660 0.0005 0.0007 0.0005 0.0005

3 9.35 0.0008 0.000802 0.000900 0.000900 0.000900 0.000819 0.000750 0.0007 0.0011 0.0008 0.0007

4 13.17 0.0011 0.001034 0.001200 0.001100 0.001100 0.001044 0.001000 0.0010 0.0013 0.0011 0.0009

5 16.97 0.0013 0.001269 0.001350 0.001367 0.001300 0.001223 0.001300 0.0013 0.0016 0.0014 0.0011

6 20.75 0.0015 0.001471 0.001500 0.001500 0.001500 0.001485 0.001500 0.0015 0.0019 0.0016 0.0013

CO2 (3%) +  N2 
(97%) +  H2O, at 
283.15 K

7 2.05 0.0003 0.000331 0.000400 0.000320 0.000300 0.000338 0.000300 0.0002 0.0004 0.0003 0.0003

8 5.74 0.0008 0.000790 0.000800 0.000750 0.000800 0.000793 0.000748 0.0004 0.0009 0.0008 0.0007

9 9.84 0.0012 0.001235 0.001213 0.001200 0.001200 0.001247 0.001200 0.0007 0.0012 0.0012 0.0011

10 13.58 0.0016 0.001632 0.001600 0.001600 0.001600 0.001625 0.001600 0.0009 0.0018 0.0016 0.0014

11 18.06 0.002 0.002035 0.002000 0.002000 0.002000 0.002050 0.002000 0.0011 0.0024 0.002 0.0018

12 21.5 0.0023 0.002332 0.002300 0.002100 0.002300 0.002329 0.002300 0.0013 0.0027 0.0023 0.0020

CO2 (61%) +  N2 
(39%) +  H2O, at 
303.05 K

13 1.92 0.0001 0.000157 0.000307 0.000200 0.000200 0.000163 0.000100 0.0001 0.0002 0.0002 0.0001

14 5.59 0.0004 0.000430 0.000600 0.000600 0.000440 0.000433 0.000354 0.0003 0.0005 0.0004 0.0004

15 9.06 0.0006 0.000613 0.000600 0.000600 0.000600 0.000640 0.000560 0.0004 0.0008 0.0006 0.0006

16 13.3 0.0008 0.000816 0.000800 0.000800 0.000800 0.000842 0.000727 0.0006 0.0011 0.0009 0.0008

17 17.03 0.001 0.001079 0.001000 0.001000 0.001000 0.001019 0.001000 0.0008 0.0013 0.0011 0.0009

18 20.99 0.0012 0.001268 0.001200 0.001200 0.001200 0.001265 0.001200 0.0010 0.0017 0.0012 0.0011

CO2 
(14.6%) +  N2 
(85.4%) + brine 
(10 wt.% 
NaCl), at 
273.25 K

19 2 0.0002 0.000172 0.000200 0.000200 0.000200 0.000171 0.000200 0.0001 0.0003 0.0002 0.0001

20 5.59 0.0004 0.000420 0.000500 0.000484 0.000400 0.000424 0.000328 0.0003 0.0007 0.0004 0.0004

21 9.42 0.0006 0.000615 0.000650 0.000800 0.000600 0.000608 0.000600 0.0005 0.0009 0.0006 0.0006

22 13.26 0.0008 0.000776 0.000800 0.000850 0.000800 0.000776 0.000800 0.0007 0.0011 0.0008 0.0008

23 17.12 0.001 0.000977 0.001000 0.001100 0.001000 0.000979 0.001000 0.0009 0.0014 0.001 0.0009

24 21.08 0.0012 0.001134 0.001200 0.001200 0.001200 0.001158 0.001200 0.0011 0.0016 0.0012 0.0010

AAPRE, % – – 6.13 17.59 13.74 7.18 6.81 4.13 21.72 35.18 5.71 8.78
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Here, inpm,i, and inpi,j indicate the average value, and the jth value of the ith input, respectively Oj refers to the 
jth value of predicted output, and Om is the average of output data.

This parameter, which is between 1 and − 1, shows the effect of inputs on the output of the model as  follows87:
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Figure 4.  Cross plots of the developed models in this study.
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Figure 5.  Error distribution plots of the developed models for training and test sets.
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(a) If the relevancy factor < 0, the impact of the input parameter on the output is decreasing. In other words, 
by increasing the desired parameter, the value of the output parameter decreases. On the other hand, the 
closer the relevancy factor to -1, the greater the influence.

(b) If the relevancy factor = 0, there is no relation between the input parameter and output or this relation is 
not monotonic.

(c) If the relevancy factor > 0, the impact of the input parameter on the output data is incremental. In other 
words, by increasing the desired parameter, the value of the output parameter also increases. Therefore, 
the closer the relevancy factor to 1, the greater the influence.

Figure 11 shows the relevancy factor value for the input parameters of the Random Forest model as the best 
model. According to this figure, the impact of temperature, pressure, and mole percent of  CO2 in gaseous phase 
on the solubility of  CO2–N2 mixture in aqueous solutions is increasing, and the impact of ionic strength is 
decreasing. Among the parameters whose relevancy factor values are positive, the mole percent of  CO2 in gaseous 
phase with a relevancy factor of 0.61 has the most significant impact. Therefore, with increasing temperature, 
pressure, and the mole percent of  CO2 in gaseous phase, the solubility of  CO2–N2 mixture in water and brine 
solutions increases, and with increasing ionic strength, the solubility decreases.

Implementation of Leverage method. The Leverage  method88–90 was used to determine the applica-
bility domain of the constructed Random Forest model and to identify any data that is suspect. The Leverage 
method, which is well-established analytically and visually through Williams’ plot, is one of the most important 
approaches in outlier diagnosis. Standardized residuals (R), which reflect the differences of model’s outcomes 
from experimental observations, and Leverage values, which are the diagonal components of the hat matrix, are 
determined in this method. The following is the definition of the hat  matrix83:

here, XT denotes the transpose of the matrix X, which is an (m × n) matrix, and m and n denote the number of 
data points and model input variables, respectively. In addition, the critical leverage (H*) is determined to be 
3(n + 1)/m.

The proposed model’s applicability domain is then graphically evaluated by displaying the standardized resid-
uals versus leverage values. If most of the data points were located in the limits of 0 ≤ H ≤ H∗ , and −3 ≤ R ≤ 3 , 
the created model is considered trustworthy and its estimations are made in the applicability  domain91.

Following that, as shown in Fig. 12, William’s plot is utilized to determine the Random Forest model’s appli-
cable scope and outliers. As shown in Fig. 12, the majority of data falls between 0 ≤ H ≤ 0.062 , and −3 ≤ R ≤ 3 , 
indicating that the experimental results are of excellent quality and the Random Forest model is quite reliable. 
Suspicious data are data points with R > 3 or R < − 3, linked with a high level of doubt. Out of Leverage data are 
data points with H > 0.062, and −3 ≤ R ≤ 3 beyond the Random Forest model’s applicability range. Only nine 
data points were identified to be as suspected data and one outlier exists in the solubility databank, which proves 
the high validity of the experimental databank used for modelling. Eight suspected data points along with one 
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outlier belong to the training subset and one suspected data point belongs to the test subset, which is specified 
in the Supplementary file.

Conclusions
In this study, using 289 laboratory data and six intelligent models including DT, GBDT, AdaBoost-DT, AdaBoost-
SVR, GB-SVR, and Random Forest, the solubility of  CO2 and  N2 in the systems of  CO2–N2 mixture and aqueous 
solutions was predicted and comparing their results with thermodynamic models such as SRK, PR, VPT, and 
PC-SAFT led to the following conclusions:

1. Among the presented models, the Random Forest model with an AAPRE value of 2.84% has the best results. 
GB-SVR and DT models then have the closest predictions with AAPRE values of 6.43% and 7.41%, respec-
tively. After these models, AdaBoost-SVR, GB-DT, and AdaBoost-DT are ranked in terms of good predic-
tions, respectively. Therefore, intelligent models are very efficient and reliable compared to equations of state.

2. Generally, the equations of state used in this work overestimate the solubility of  CO2 in the aqueous system 
by increasing the pressure; however, this is the opposite for  N2 except for the PR equation of state for all other 
models.
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Figure 7.  Experimental  values10 with predictions of the EOSs and Random Forest model for the (a)  CO2 
solubility and (b)  N2 solubility in the  N2 (39%) +  CO2 (61%) +  H2O system at a temperature of 283 K.
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3. For solubility of  CO2 present in gaseous mixtures in aqueous systems, the PC-SAFT model, and for solubility 
of  N2, the VPT model had the best results among the equations of state.

4. Increasing the  CO2 content in the gas mixture increases the solubility of  CO2 in the system and, conversely, 
decreases the solubility of  N2 at constant temperature and pressure.
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 N2 +  CO2 +  H2O system at a temperature of 308 K and pressure of 8.0 MPa.
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5. Increasing the water salinity causes the reduction of  CO2 and  N2 solubility in water.
6. The impact of mole percent of  CO2 in gaseous phase, temperature, and pressure on increasing the solubility 

of  CO2 and  N2 in water is incremental, and the impact of ionic strength on the solubility of  CO2 and  N2 in 
water is decreasing.
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