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Identification of a novel 
immune‑related long noncoding 
RNA signature to predict 
the prognosis of bladder cancer
Wenjing Ren1,2, Siyu Zuo1,2, Liang Yang1,2, Renyuan Tu1,2, Ping Wang1,2 & Xiling Zhang1,2*

Tumour immune regulation has attracted widespread attention, and long noncoding RNAs (lncRNAs) 
play an important role in this process. Therefore, we evaluated patient prognosis by exploring the 
relationship between bladder cancer (BLCA) and immune‑related lncRNAs (IRlncRNAs). Transcriptome 
data and immune‑related genes were analysed for coexpression, and then, the IRlncRNAs were 
analysed to determine the differentially expressed IRlncRNAs (DEIRlncRNAs) between normal 
and tumour samples in The Cancer Genome Atlas. The screened lncRNAs were pairwise paired and 
combined with clinical data, and finally, a signature was constructed by Lasso regression and Cox 
regression in 13 pairs of DEIRlncRNAs. According to the Akaike information criterion (AIC) values of 
the 1‑year receiver operating characteristic curve, BLCA patients were stratified into high‑ or low‑risk 
groups. The high‑risk group had a worse prognosis. A comprehensive analysis showed that differences 
in risk scores were associated with the immune status of BLCA‑infiltrated patients. The identified 
signature was correlated with the expression of immune checkpoint inhibitor‑related molecules and 
sensitivity to chemotherapeutic drugs. We also identified three BLCA clusters with different immune 
statuses and prognoses that are also associated with immunotherapy response and drug sensitivity. 
In conclusion, we constructed a powerful predictive signature with high accuracy and validated its 
prognostic value.

Abbreviations
BLCA  Bladder cancer
LncRNAs  Long noncoding RNAs
IRlncRNAs  Immune-related lncRNAs
TCGA   The Cancer Genome Atlas
DEIRlncRNA  Differentially expressed immune-related long noncoding RNAs
AIC  Akaike information criterion
AUC   Area under the curve
ROC  Receiver operating characteristic
HR  Hazard ratio
GSEA  Gene Set Enrichment Analysis
KEGG  Kyoto Encyclopedia of Genes and Genomes

Bladder cancer (BLCA) is the eleventh most frequently diagnosed cancer worldwide. In 2020, U.S. statistics 
showed that the projected incidence of BLCA was 7%, which makes it the fourth most common cancer in 
 men1. In China, the incidence of BLCA has also increased over the past four  decades2. The main pathological 
type of BLCA is transitional cell carcinoma. Studies have shown that approximately 25% of patients with BLCA 
present muscle-invasive BLCA (MIBC), while the remaining 75% have nonmuscle-invasive BLCA (NMIBC)3. 
The recurrence rate of BLCA is high. NMIBC is more likely to recur and develop into  MIBC4, and MIBC recurs 
in approximately 50% of cases after radical  cystectomy5. Currently, the commonly used treatment for NMIBC 
includes transurethral resection followed by instillation of a drug, such as mitomycin, BCG, and gemcitabine. 
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Studies have shown that such chemotherapy and immunotherapy agents injected into the bladder within 6 h after 
urethral resection can significantly improve patient  prognosis6. Common treatment strategies for MIBC include 
radical cystectomy, neoadjuvant therapy, the use of immune checkpoint inhibitors (ICIs), perioperative radio-
therapy, and  chemotherapy1. Although the prognosis of patients with BLCA has improved with these treatments, 
recent studies have shown that the use of ICIs can further improve patient outcomes and disease-free  survival7,8.

Long noncoding RNAs (lncRNAs), which have no protein-coding potential, are RNAs with a transcript 
length of no less than 200 nt. LncRNAs play important regulatory roles in tissue physiology and various dis-
ease  processes9. The prognosis of many types of cancers is closely related to the status of tumour immune cell 
 infiltration10–13. Thus, the role of immune-related lncRNAs (IRlncRNAs) in cancer has also attracted extensive 
attention. Recent studies have demonstrated that IRlncRNAs can serve as specific biomarkers and can play an 
important role in predicting prognosis and drug sensitivity in cancer  patients14–17.

In our study, the expression of IRlncRNAs in BLCA patients was determined. Then, differentially expressed 
IRlncRNAs (DEIRlncRNAs) were determined by pairing and iterative screening, and finally, an IRlncRNA sig-
nature was constructed. This signature eliminates the problem of heterogeneity of different biological samples 
and different batches in systematic measurement and does not require a specific expression level of each lncRNA. 
The algorithm of this model is novel in BLCA. Our results demonstrate that this model can be used as a reliable 
prognostic predictor in patients with BLCA and that patients with different immune statuses can be separated 
into clusters to evaluate the relationship among tumour immune infiltration, immunotherapeutic responsiveness 
and the sensitivity of BLCA patients to chemotherapeutic drugs.

Results
Data retrieval and extraction. Figure 1 shows the BLCA transcriptome data, which included 18 normal 
samples and 394 tumour samples downloaded from the TCGA database. LncRNAs were identified following 
gene annotation and coexpression analysis with immune genes downloaded in Immport to extract IRlncR-
NAs (Supplementary Table S1). Differential expression analysis was performed on the screened IRlncRNAs, and 
96 IRlncRNAs with differential expression were extracted (Fig. 2a). Fifteen IRlncRNAs were downregulated in 
tumour samples, while 81 were upregulated (Fig. 2b).

Figure 1.  Study flowchart showing the process used for constructing the signature.
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Construction of the immune‑related lncRNA signature. Through iterative cycling and 0- or -1 
matrix screening, 3890 pairs of DEIRlncRNAs were identified. These 3890 DEIRlncRNA pairs were then cor-
related with clinical data downloaded from the TCGA database to obtain DEIRlncRNA pairs associated with 
BLCA prognosis. Using univariate tests and modified Lasso regression analysis (Fig. 2c,d) in the training set 
(N = 181), 53 pairs of DEIRlncRNAs were obtained (Supplementary Table S2), 13 of which were finally incorpo-
rated into the Cox proportional risk model (Supplementary Table S3) to construct the risk model, as described 
in the “Materials and methods”.

Validation of the risk prediction model and its value in clinical application. Regarding the pre-
dictive performance of this model, we constructed ROC curves for the training set and predicted the 1-year 
overall survival (OS) to be 0.818 (Fig. 3a). In addition, we plotted the ROC curves for the 3- and 5-year OS for 
the training set (Fig. 3b), and all were above 0.8. Subsequently, we plotted the ROC curves of the entire set and 
the test set for the 1-, 3- and 5-year survival (Fig. 3c,d). We used the AIC to identify the maximum inflection 
point as the cut-off value on the one-year ROC curve (Fig. 3a), and a risk score for each patient in all sets was 

Figure 2.  Establishment of an immune-related lncRNA signature. Differentially expressed immune-related 
lncRNAs (DEIRlncRNAs) were screened using a heatmap (a) and volcano plot (b). Overall survival (OS) was 
verified using the least absolute shrinkage and selection operator (Lasso) regression model (c) and to elucidate 
the Lasso coefficient spectrum of prognostic lncRNAs (d).
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then calculated and compared with a cut-off value; in this manner, each patient was categorized into either the 
high- or low-risk groups (Fig. 3e–g).

We compared the differences in clinical outcomes between the high- and low-risk groups for all sets 
(Fig. 3h–j), and over the entire follow-up period, we observed an increase in the mortality rate as the risk score 
increased. As shown in Fig. 3k–m, Kaplan–Meier analysis indicated that the high-risk group had a shorter OS 
and that the difference between the survival curves of the two groups with different risk scores was significant.

To confirm whether this prognostic model can serve as a prognostic risk factor, we tested the association of 
the model with patient outcomes using Cox regression in the training set (Fig. 4a) compared with other clinical 
variables, such as age, sex, tumour grade and stage, as covariates. Multivariate Cox analysis confirmed that our 
risk model was independent of other independent prognostic factors in patients, including clinical characteristics 

Figure 3.  Construction of an immune-related signature to predict the prognosis of BLCA. Receiver operating 
characteristic (ROC) curve analysis was used to predict overall survival (OS), including the 1-, 3-, and 5-year 
OS of BLCA patients in the training set (a,b), entire set (c) and test set (d). Patients were divided into either the 
high-risk or low-risk group according to the cut-off point obtained by the Akaike information criterion in the 
training set (e), entire set (f) and test set (g). Visualization of risk scores and clinical outcomes for each patient 
in the training set (h), entire set (i) and test set (j). Kaplan–Meier analysis based on risk scores of each BLCA 
patient was conducted to observe the OS of patients with different risk scores in the training set (k), entire set (l) 
and test set (m).



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3444  | https://doi.org/10.1038/s41598-022-07286-1

www.nature.com/scientificreports/

(Fig. 4b). We also verified this finding in the entire set and test set and obtained consistent results (Supplemen-
tary Fig. S1).

We compared the ROC curves of this model with those of other clinical traits, as shown in Fig. 4c, which 
demonstrated that this model is more accurate than other clinical traits in predicting patient prognosis.

To test the relationship between risk and clinicopathological characteristics in patients with BLCA, a chi-
square analysis was used. We determined that clinical stage (Fig. 4d), tumour grade (Fig. 4e), T stage (Fig. 4f), 
and M stage (Fig. 4g) were significantly correlated with the risk score. In conclusion, our risk assessment model 
can serve as an independent prognostic factor for bladder cancer.

Correlation analysis of tumour‑infiltrating immune cells and immunosuppressive molecules 
using a risk assessment model. Since the differential lncRNAs identified in our study were immune-
related, we speculated that this risk assessment model might be related to the tumour immune microenviron-
ment. Using the Wilcoxon signed-rank test, the high-risk group was found to have certain tumour-infiltrating 
immune cells, such as cancer-associated fibroblasts (CAFs)18,19, haematopoietic stem cells and macrophages. 
However, the model was negatively correlated with CD4 + Th1 T cells, Tregs and naive CD8 + T cells (Supple-
mentary Fig. S2). The results of the Spearman correlation analysis of these platforms mentioned in the “Materi-
als and methods” are shown in Fig. 5a, and the details of each immune cell type are shown in Supplementary 
Table S4. In parallel, we also performed the same analysis for the entire group and the test group and obtained 
similar results (Supplementary Fig. S3, S4 and Supplementary Table S5, S6). As reflected in the figure, the high-
risk group had more tumour infiltration of immune cells.

Tumour immunotherapy has developed rapidly in recent years. Several clinical trials to determine the 
response of urothelial carcinoma to immune checkpoint inhibitors are ongoing and have yielded promising 
 results20,21; moreover, ICIs targeting PD-1 and CTLA-4 have been shown to significantly improve the prognosis 
of locally advanced and advanced BLCA and are well  tolerated22–24. For this reason, we investigated whether this 
signature was associated with certain biomarkers associated with ICIs. As illustrated in Fig. 5b, the expression 
of some immune checkpoint inhibitors was different in the high- and low-risk groups, and thus, we may be able 
to find suitable immune checkpoint inhibitors for different groups of bladder cancer patients.

Correlation analysis between the risk assessment model and chemotherapeutic drug sensitiv-
ity and biological function. In addition to tumour ICI therapy, the correlation between the risk assess-
ment model and sensitivity to conventional chemotherapy was also evaluated. Patient risk scores were associated 
with sensitivity to certain conventional chemotherapeutic agents. The IC50 values of 26 chemotherapy drugs 

Figure 4.  Application of the risk assessment model for clinical evaluation. In the training set, risk assessment 
demonstrates that the risk model was a risk factor for BLCA by univariate Cox analysis (a) and an independent 
prognostic factor by multivariate regression (b). The ROC curves of this model compared with those of other 
clinical traits (c). Clinical stage (d), Tumour grade (e), T stage (f), and M stage (g) were significantly associated 
with the risk score.
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were different between the high- and low-risk groups of the training set (Supplementary Fig. S5). For example, 
the high-risk group was more sensitive to the chemotherapy drug docetaxel (Fig. 5c) and less sensitive to metho-
trexate (Fig. 5d). In parallel, we also performed the same analysis for the entire group and the test group and 
obtained similar results (Supplementary Fig. S6, S7). Thus, the risk model may be used as a predictor of chemo-
therapy sensitivity. In addition, we explored the biological function of this model through GSEA in the training 
set (Supplementary Fig. S8) and found that the pathways enriched in the high-risk group were correlated with 
ECM receptor interactions and glycosaminoglycan biosynthesis and chondroitin sulfate. The low-risk group was 
correlated with base excision repair and selenoamino acid metabolism (Fig. 5e).

Construction of immune subtypes in bladder cancer. These results show that tumours can be divided 
into different molecular subtypes according to immune cell infiltration and that this classification is closely 
related to immunotherapy response and clinical  outcomes25–27. Thirteen pairs of DEIRlncRNAs are the basis for 
our ability to reclassify bladder cancer patients into three clusters. This process was completed using R pack-
age ConsensusClusterPlus consensus cluster analysis of the training cohort (Fig. 6a and supplementary S9). To 
ensure that different clusters could be well defined, we used principal component analyses (PCA) for verifica-
tion, and the results were as expected (Fig. 6b). Kaplan–Meier analysis revealed a significant difference in prog-
nosis between patients in Cluster 1 and those in the other two clusters, and patients in Cluster 1 had the best 
prognosis (Fig. 6c). To verify the differences in immune cell infiltration and the TME among different clusters, 
we first plotted the results of immune cell infiltration of each cluster obtained on different platforms, and Clus-
ter 3 was found to have the most obvious immune cell infiltration (Fig. 6d). Second, according to the results of 
the ESTIMATE algorithm, the ESTIMATEScore, ImmuneScore and StromalScore of Cluster 1 were lower than 
those of the other two clusters (Fig. 6e–g). Subsequently, we mapped immune checkpoint proteins, such as such 
as CTLA4, LAG3, and HAVCR2, that were expressed differently in different clusters and found that the major-
ity were most highly expressed in Cluster 3 (Fig. 6h). For this purpose, we may be guided by these results when 
selecting suitable immune checkpoint inhibitors for different patient clusters to improve response to immuno-
therapy. With P < 0.05 as the filtering condition, 89 chemotherapy drugs with IC50 differences between clusters 
were obtained (Supplementary S5). Generally, the classification of BLCA patients into different clusters accord-
ing to the 13 pairs of DEIRlncRNAs can help us predict immunotherapy response to a certain extent and can 
provide guidance for selecting more sensitive drugs for different clusters.

Figure 5.  Risk assessment model evaluation of tumour-infiltrating cells, immunosuppressive molecules and 
biological function. Spearman correlation analysis was used in the training set to demonstrate differences in the 
levels of tumour-infiltrating cells across different risk groups, and the results are shown in a lollipop diagram (a). 
Differentially expressed immune checkpoints in the high- and low-risk groups (b). Drug sensitivity to docetaxel 
(c) and methotrexate (d) in the high- and low-risk groups. GSEA of the training set (e).
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Comparison of the efficiency of the risk model of paired DEIRlncRNAs and the signature con-
structed with 11 immune‑related lncRNAs. We applied a commonly used method for model con-
struction. First, we screened IRlncRNAs associated with prognosis and then established a prognostic model 
based on the expression of each lncRNA through multiple Cox regression analysis. In this signature, patients 
were divided into low-expression groups based on the median risk score to compare whether our prognostic 
signature was superior to other immunoprognostic models. Based on the above methods, we constructed an 
11-IRlncRNA signature (Supplementary Table S7). The differences in clinical outcomes between the high- and 
low-risk groups of this model and their relationship with OS were visualized, and the 1-, 3-, and 5-year ROC 
curves were drawn. This model also demonstrated a certain prognostic predictive ability, as the prognoses of 
the high- and low-risk groups were significantly different (Fig. 7a–c). Compared with more well-known clinical 
characteristics of patients with BLCA (Fig. 7d), the model demonstrated better prognostic ability despite the 
1-, 3-, and 5-year ROC curve values and despite that the respective AUC values (Fig. 7e) were 0.760, 0.774, and 
0.775, respectively. Nonetheless, the prediction accuracy of this model was lower than that of our model con-
structed using the paired IRlncRNA signature.

Figure 6.  Construction, validation and immunocorrelation analysis of BLCA clusters. Different clusters of 
patients with bladder cancer (a). PCA was performed on the clusters (b). Kaplan–Meier analysis based on risk 
scores of each BLCA patient was conducted to observe the OS of patients in different clusters (c). Immune cell 
infiltration among different clusters (d). The ESTIMATEScore (e), ImmuneScore (f) and StromalScore (g) of 
each cluster. Differentially expressed immune checkpoint proteins in the three clusters (h).
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Discussion
BLCA is a common malignant tumour of the urinary system. Although the active use of various treatment meth-
ods has improved the survival rate of patients with BLCA, the treatment outcomes are still not  satisfactory28. 
Therefore, biomarkers that can predict the prognosis and drug sensitivity of BLCA are urgently needed. In recent 
years, lncRNAs, which play an important role in cell functions, including tumour migration, invasion, growth 
and development, have also been found to serve as potential biomarkers for predicting tumour  prognosis17,29–31. 
Although several lncRNA-based signatures can predict prognosis in patients with BLCA, most signatures are 
based on the specific expression of a single  lncRNA32–35. If the expression of a single lncRNA is required, normali-
zation is needed across different samples and batches to eliminate heterogeneity. In this study, paired DEIRlncR-
NAs were used for the first time to construct a risk assessment model in BLCA. Using this model, we only com-
pared the relative expression of two DEIRlncRNA pairs in the sample since batch correction was not necessary.

Before model construction, we randomly divided patients into a training group and a test group. Using the 
model, which was constructed based on 13 pairs of DEIRlncRNAs in our training group, patients with BLCA can 
be divided into different risk groups according to their risk scores. Kaplan–Meier analysis, ROC curve analysis 
and other methods were used to verify the accuracy of our model. Moreover, this model was superior to other 
clinical parameters in predicting survival. Cox regression analysis confirmed that this model is an independent 
prognostic factor. The above results demonstrate that this model can accurately predict patient prognosis. In 
addition, we predicted the level of tumour-infiltrating immune cells. We found that the risk score was positively 
associated with infiltration by macrophages, cancer-associated fibroblasts and other cell types. Studies have 
shown that macrophages play an important regulatory role in promoting malignant tumour  progression36, while 
LNMAT1 promotes lymphatic metastasis of BLCA through recruitment of CCl2-dependent  macrophages37, and 
BMP4 induces polarization of M2 macrophages and facilitates tumour progression in  BLCA38. CAFs are closely 

Figure 7.  Validation of the effectiveness of the 11 immune-related lncRNA signature. Kaplan–Meier analysis 
was performed by stratifying BLCA patients according to risk scores to observe the OS of patients (a). Risk 
scores and clinical outcomes for each patient (b,c). The ROC curves of this model compared with those of other 
clinical traits (d). The AUC values of the ROC, including the 1-, 3-, and 5-year OS of BLCA patients (e).
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associated with cancer progression and are present at the highest levels in the stroma. CAFs induce epithelial-
mesenchymal transition of BLCA cells through paracrine IL-6  signalling39. Appropriate chemotherapy drugs 
can also be selected according to the patient’s risk score. These results were also verified internally in the test set 
and the entire set.

During tumorigenesis and tumour progression, immune checkpoints are one of the main causes of immune 
tolerance. However, we found that only some of the immune checkpoint were differentially expressed in the 
high- and low-risk groups, which may lead to inadequate prediction of immunotherapy response in bladder 
cancer patients. The effect of immunotherapy may be closely related to the immune  microenvironment40–42. 
Some recent studies have shown that tumours can be divided into different immune clusters according to dif-
ferent infiltration states of immune cells, which can be more effective in predicting the TME of tumours and 
thus better in predicting the response to  immunotherapy25,27,42–44. Therefore, we divided bladder cancer patients 
into 3 clusters based on the 13 pairs of DEIRlncRNAs. The ESTIMATEScore, ImmuneScore and StromalScore 
of the TME were calculated. The results show that this method can clearly distinguish the TME of the three 
clusters. Cluster 1 had the lowest ESTIMATEScore, ImmuneScore and StromalScore and had the best prognosis 
and the lowest level of tumour immune cell infiltration. Through the clusters of BLCA, we found more immune 
checkpoint proteins that were differentially expressed beyond what was shown by the risk assessment model. 
This enabled us to select the curative effect of immune checkpoint inhibitors in patients with BLCA and to bet-
ter predict the response of BLCA patients to immunotherapy, as well as to select the corresponding sensitive 
chemotherapeutic drugs for each cluster.

The signature constructed by paired DEIRlncRNAs showed stronger predictive power than the signature 
constructed by the more commonly exploited single gene expression approaches, although both approaches 
showed some predictive power.

However, due to the limited amount of BLCA data in the TCGA database, the signature we constructed has 
some limitations. For example, as the Gene Expression Omnibus (GEO) and other databases mainly focus on the 
expression of coding RNA, few relevant lncRNA data are published, which makes it diffcult for us to verify the 
risk model we established using external datasets. Moreover, we lack information regarding the exact molecular 
mechanisms of the IRlncRNAs used to construct the model. In future studies, we will collect clinical samples and 
conduct external validation of our model. Moreover, the investigation of the cellular mechanisms and processes 
involving screening lncRNAs should be studied using single or paired methods.

Overall, we constructed a signature that may potentially be used as an independent predictive indicator of 
prognosis in patients with BLCA. The model consists of 13 pairs of DEIRlncRNAs. We verified that this model 
can assess the status of immune infiltration to a certain extent and was correlated with the efficacy of selected 
chemotherapeutics. Thus, we hope that this model may help identify patients with BLCA who have a poor prog-
nosis, provide guidance for treatment selection, and ultimately improve the prognosis of patients with BLCA.

Materials and methods
Datasets of patients with bladder cancer. The transcriptome, including BLCA RNA-Seq data and 
related clinical data, was downloaded from The Cancer Genome Atlas (TCGA) database. These data were then 
merged into a matrix file using the Perl programming language. Clinical data with zero follow-up days were 
excluded. Human immune-related genes were downloaded from the  ImmPort45,46 project.

Differentially expressed immune‑related lncRNAs. To identify IRlncRNAs, we first used the R pack-
age  limma47 to analyse the coexpression of immune-related genes and lncRNAs with the following screening 
conditionscorrelation coefficient > 0.4 and P value < 0.001. To identify DEIRlncRNAs, the R packages limma 
and pheatmap were used for differential expression analysis of IRlncRNAs among the normal and cancer sam-
ples downloaded from TCGA. The threshold was set to |log2-fold change [FC]| > 2 and a false discovery rate 
(FDR) < 0.05.

Determination of paired DEIRlncRNAs. A 0 or 1 expression matrix was constructed by pairing DEIRl-
ncRNAs and comparing two DEIRlncRNAs in each pair. When the expression level of the first lncRNA was 
higher, the value was marked as 1; otherwise, it was marked as 0. The 0 or 1 matrix was then screened for DEIRl-
ncRNA pairs, and those with a 0 or 1 ratio greater than 80% were deleted.

Establishment of a Risk Assessment Model. Using the R package caret, the TCGA-BLCA dataset was 
allocated randomly to the training set or the test set at a one-to-one  ratio48,49. In the training set, univariate 
Cox analysis was performed to identify DEIRlncRNAs associated with prognosis, followed by Lasso regression, 
10-fold cross-validation, and finally, stepwise multivariate Cox proportional risk regression analysis and model 
construction. The R packages survival, survminer, and glmnet were  used11.

Validation of the risk assessment model. Prognostic value verification was performed using the test 
set and the entire set. The risk score for each patient was calculated according to the following formula:

The regression coefficient was denoted by β , and the score of immune-related lncRNA pairs in the sample was 
denoted by S . In the training set, the Akaike information criterion (AIC) value of each point in the 1-year ROC 

Risk Score =

k
∑

i=1

βiSi



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3444  | https://doi.org/10.1038/s41598-022-07286-1

www.nature.com/scientificreports/

curve was evaluated to determine a cut-off value, and patients in each set were divided into either the high- or 
low-risk groups according to the calculated cut-off value obtained in the training set. The receiver operating 
characteristic (ROC) curves of all sets for this model at different time points and clinical traits of patients with 
BLCA were plotted. The area under the curve (AUC) was used to test the efficacy of this model in predicting the 
prognosis of patients with BLCA. The clinical outcomes associated with each sample were observed to identify 
any differences in outcomes between high- and low-risk patients. We used a Kaplan–Meier analysis to understand 
and visualize differences in OS between the two groups. The R packages survival and survminer were used. We 
analysed the relationship between the model with the clinicopathological characteristics using the chi-square 
test to determine the potential clinical value of the model. The R packages limma and ggpubr were used for this 
analysis.

Evaluation of tumour‑infiltrating immune cells and expression analysis of ICI‑related immuno-
suppressive molecules. Immune cell infiltration estimation data for all cancers in the TCGA were down-
loaded from TIMER2.050 (http:// timer. cistr ome. org/). We used currently established algorithms (xcell, timer, 
quantiseq, mcpcounter, epic, cibersort-abs, and  cibersort51) to predict the relationship between these immune 
cell characteristics and risk. The results of Spearman’s correlation analysis (P < 0.05) and the relationships identi-
fied are displayed in a lollipop  diagram17.

The Wilcoxon signed-rank test was used to analyse differences in the expression of infiltrating immune cells 
between the high- and low-risk groups, and the results are presented in a box diagram. The R packages limma, 
scales, ggplot2, reshape2, tidyverse, ggpubr and ggtext were used. The R packages ggpubr and reshape were used 
to illustrate the relationship between this model and the expression levels of ICI-related genes.

Evaluation of the significance of this model in clinical treatment. First, to understand the poten-
tial significance of this model in the clinical treatment of BLCA, we used the Wilcoxon signed-rank test. First, 
the half inhibitory concentration (IC50) of each BLCA patient was determined using the package “pRRo-
phetic52”, which is a drug response prediction algorithm based on the Genomics of Drug Sensitivity in Cancer 
(GDSC). Second, we compared the IC50 values of these drugs for both the high- and low-risk groups. The sam-
ples used were derived from the BLCA dataset extracted from the TCGA database. The R packages used were 
 pRRophetic52,53 limma, ggpubr, and ggplot2.

Biological function analysis of this model. Gene set enrichment analysis (GSEA) was the method used 
for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in the entire set. Gene sets for which 
P < 0.05 were screened.

Consensus clustering based on 13 pairs of DEIRlncRNAs. To further explore the response of blad-
der cancer patients to immunotherapy, we performed a cluster analysis to classify bladder cancer into different 
molecular subtypes. This process was performed using the R package  ConsensusClusterPlus54 and was based on 
13 pairs of DEIRlncRNAs that were used to construct the risk assessment model mentioned above. Differences 
in the ESTIMATE score, immune score, and stromal score among different subtypes of bladder cancer were 
estimated by running the R package  ESTIMATE41.

Construction of the immune‑related lncRNA signature. The identification of IRlncRNAs used in 
the signature is described above. Univariate Cox regression was performed to screen for IRlncRNAs associated 
with prognosis by filtering those for which P < 0.001. Stepwise regression multivariate Cox analysis was then 
performed to establish the risk model as follows:

The median risk score was used to divide patients into high- and low-risk groups. Kaplan–Meier curves were 
plotted based on the risk scores of patients with BLCA. The risk scores of patients with BLCA were visualized 
to observe differences in clinical outcomes. Univariate Cox analysis and multivariate Cox regression were used 
to determine whether the IRlncRNA signature could serve as an independent risk factor. The ROC curves of 
the model at 1, 3, and 5 years were plotted, as were the ROC curves of the model against clinicopathological 
characteristics. The R packages used were survival, survminer, pheatmap, and survivalroc.

Ethics committee approval and patient consent. All data used in this article are from the public 
TCGA database and were obtained in compliance with the ethical standards of the "Gene Expression Synthesis" 
and The Cancer Genome Atlas Human Subject Protection and Data Access Policy" adopted by the National 
Cancer Institute and the National Human Genome Research Institute.

Data availability
The original contributions presented in the study are publicly available. These data can be found at [https:// portal. 
gdc. cancer. gov/]. The immune-related gene list can be found at [http:// www. immpo rt. org]. The data of Immune 
cell infiltration estimation can be found at [http:// timer. cistr ome. org/].
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