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Deconvolution of ferromagnetic 
resonance spectrum of magnetic 
nanoparticle assembly using 
genetic algorithm
N. A. Usov1,2* & O. N. Serebryakova2

The ferromagnetic resonance (FMR) spectra of dilute random assemblies of magnetite nanoparticles 
with cubic magnetic anisotropy and various aspect ratios are calculated using the stochastic Landau–
Lifshitz equation at a finite temperature, T = 300 K, taking into account the thermal fluctuations 
of the particle magnetic moments. Particles of non-spherical shape in the first approximation are 
described as elongated spheroids with a given semiaxes ratio a/b, where a and b are the long and 
transverse semiaxes of a spheroid, respectively. A representative database of FMR spectra is created 
for assemblies of randomly oriented spheroidal magnetite nanoparticles with various transverse 
diameters D = 5–25 nm, moderate aspect ratios a/b = 1.0–1.8, and magnetic damping constants κ = 0.1, 
0.2. The basic FMR spectra of assemblies with D = 25 nm at different aspect ratios can be considered 
as representatives of assemblies of single-domain magnetite nanoparticles with transverse diameters 
D > 25 nm. The database is calculated at exciting frequency f = 4.9 GHz (S-band) to clarify the details of 
the FMR spectrum that depend on the particle magnetic anisotropy nature. The data obtained make 
it possible to analyze arbitrary combined FMR spectra constructed as weighted linear combinations of 
FMR spectra of the base assemblies. In addition, using a genetic algorithm, the corresponding inverse 
problem is solved. The latter consists in determining the volume fractions of the base assemblies in 
some arbitrary nanoparticle assembly, which is represented by its FMR spectrum.

Ferromagnetic resonance (FMR) is a well-known  technique1–3 for studying the magnetic properties of ferromag-
netic materials. In some cases it allows to determine the basic magnetic characteristics of a sample under study, 
such as the saturation magnetization, the type of magnetic anisotropy, the directions of easy anisotropy axes and 
the value of magnetic anisotropy constants. This technique has been sufficiently developed for bulk single-crystals 
and thin magnetic  films2–4. A significant number of theoretical and experimental studies have also been devoted 
to the investigation of FMR spectra of assemblies of magnetic  nanoparticles5–23. However, it should be noted that 
the theory of ferromagnetic resonance is well developed for isolated single-domain magnetic nanoparticles with 
various types of magnetic  anisotropy1–3. As a rule, the FMR spectrum of a single-domain nanoparticle consists 
of a narrow absorption line with the maximum at the resonance field Hr, whereas the absorption line width ΔH 
is determined by the particle magnetic damping  constant1–3. At the same time, experimental FMR spectra inter-
pretation for magnetic nanoparticles assemblies causes a  difficulty21. This is due to the wide distributions of the 
nanoparticle sizes and shapes in a real assembly. Namely, due to the influence of shape anisotropy, the particles 
of the same chemical composition are usually characterized by a combined type of magnetic  anisotropy12,15,19,24. 
In addition, the spatial orientation of nanoparticles in the assembly is random, as a rule. This leads to a further 
expansion of the resonance fields Hr of individual nanoparticles. Moreover, the FMR spectra of sufficiently small 
nanoparticles are greatly influenced by thermal fluctuations of the particle magnetic  moments7,8,19,20. Finally, 
strong magneto-dipole (MD) interaction in a dense nanoparticle assembly affects the dynamics of the particle 
magnetic  moments14,18,22,23. Under the influence of all these factors, the experimental FMR spectrum of an 
assembly of magnetic nanoparticles turns out to be very smoothed and  broad18,19,21,22.

At present the evolution of the FMR spectra of individual non-interacting nanoparticles, depending on 
changes in their sizes and anisotropy constants, the temperature of the assembly, and other factors has been 
well studied  theoretically5–11,15,17,20. At the same time, the problem of determining the magnetic and geometric 
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characteristics of nanoparticles from experimental FMR spectra has not yet received a satisfactory solution. 
This diminishes the importance of the FMR technique when applied to the study of the properties of magnetic 
nanoparticle assembly.

This paper is devoted to the calculation and interpretation of FMR spectra of dilute assemblies of magnetite 
nanoparticles, which are of interest for research in  biomedicine25,26 and  paleomagnetism27–29, since magnetite 
is part of the fossil remains of living organisms. The calculation of the FMR spectra of random assemblies of 
magnetite nanoparticles is carried out by solving the stochastic Landau–Lifshitz  equation30–33 at a finite tem-
perature, T = 300 K, taking into account the thermal fluctuations of the particle magnetic moments. Similar 
approach for random assembly of single-domain nanoparticles with uniaxial anisotropy was developed previ-
ously in Refs.13,17. The effect of the magneto- dipole interaction on the FMR spectrum of spherical magnetite 
nanoparticles is also investigated for an assembly of dilute nanoparticle clusters with different filling densities. 
The problem of decoding the FMR spectrum of a random assembly of magnetite nanoparticles is solved in two 
steps. First, using numerical simulation, a representative database of FMR spectra is created for assemblies of 
magnetite nanoparticles with various transverse diameters, aspect ratios and magnetic damping constants. The 
data obtained make it possible to trace in detail the change in the shape of the FMR spectrum of the assembly 
with a change in each of the parameters indicated. This also makes it possible to analyze arbitrary combined FMR 
spectra obtained as weighted linear combinations of FMR spectra of the base assemblies. At the second stage, the 
corresponding inverse problem is solved using a genetic  algorithm34–36. The latter consists in determining the 
volume fractions of the base assemblies in some arbitrary assembly, which is represented by its FMR spectrum.

Results and discussion
The calculation of the FMR spectra of assemblies of magnetite nanoparticles are carried out under the assumption 
that the particles are single-crystal, have a saturation magnetization Ms = 450 emu/cm3, and are characterized by 
a cubic type of magneto-crystalline anisotropy with an anisotropy constant Kc = −  105 erg/cm337. In addition, we 
take into account the influence of the shape anisotropy energy that appears due to the deviation of the particle 
shape from that of an ideal sphere. Particles of non-spherical shape in the first approximation are described as 
elongated spheroids with a given semiaxes ratio a/b, where a and b are the long and transverse semiaxes of a 
spheroid, respectively. The uniaxial shape anisotropy energy increases as a function of a/b ratio and is added to 
the initial cubic anisotropy energy. It is reasonable to assume that in a real assembly the direction of the sym-
metry axis of the spheroid with respect to the axes of the cubic magnetic anisotropy is arbitrary. Besides, for a 
randomly oriented assembly, the orientations of the long axes of the spheroids with respect to the direction of 
the external magnetizing field H0 is also random. The latter, for definiteness, is assumed to be directed along the 
Z-axis of the Cartesian coordinates. Then, without loss of generality one can assume that a weak alternating (ac) 
magnetic field of frequency f that excites resonance is applied along the X axis.

It is clear that a FMR spectrum of any dilute assembly of nanoparticles can be obtained as a linear superposi-
tion of a sufficiently complete set of basic FMR spectra. The basic FMR spectra in this work are FMR spectra of 
assemblies of randomly oriented spheroidal magnetite nanoparticles with a given value of the transverse diameter 
D = 2b, aspect ratio a/b, and magnetic damping constant κ. Our calculations show that at a given temperature 
T = 300 K, the indicated parameters (D, a/b, κ) completely determine the shape of the FMR spectrum of the basic 
magnetite nanoparticle assembly.

Basic FMR spectra. In the calculated database of FMR spectra the transverse diameters of particles vary in 
the range of 5–25 nm, the semiaxes ratio of the spheroids changes from a/b = 1.0 to a/b = 1.8, the magnetic damp-
ing constant takes the values κ = 0.1, 0.2. The frequency of the ac magnetic field exciting the resonance is chosen 
to be f = 4.9 GHz (S-band), since at this excitation frequency the ferromagnetic resonance is observed at lower 
values of the external field H0. As a result, the details of the FMR spectrum that depend on particle magnetic 
anisotropy manifest themselves more clearly.

Figure 1 shows the change in the basic FMR spectra of dilute randomly oriented assemblies of magnetite nano-
particles depending on the aspect ratio a/b for the transverse diameters of particles in the range D = 5–15 nm. 
The top panels in Fig. 1 show the magnetic susceptibility of the assemblies as a function of the applied external 
field H0, the lower panels show the derivative of the magnetic susceptibility with respect to the magnetic field. 
Further, the shape of the FMR spectrum will mean precisely the dependence of the magnetic susceptibility of 
the assembly on the applied external magnetic field, which is the fundamental high-frequency characteristic of 
the magnetic nanoparticle assembly.

As Fig. 1 shows, the effect of thermal fluctuations has the strongest influence on the FMR spectra of nano-
particles with small transverse diameters, D ≤ 7 nm, while with an increase in the transverse diameter from 10 
to 15 nm the change in the FMR spectra is relatively small. As one can see from the upper panels in Fig. 1, for 
nanoparticles with a transverse diameter D ≥ 7 nm the FMR spectrum of the assembly becomes double humped 
with an increase in the a/b ratio, which is associated with an increase in the particle shape anisotropy energy. In 
addition, the FMR spectrum width also increases as a function of a/b ratio.

The shapes of the spectrum maxima change with an increase in the particle diameter in the range D = 7–15 nm, 
which is associated with a decrease in the effect of thermal fluctuations. However, for particles with diameters 
D ≤ 5 nm the dependence of the FMR spectrum on the aspect ratio becomes weak. For small particles the FMR 
spectrum has a single maximum in the entire range of aspect ratios a/b studied.

The data presented in Fig. 1 show that in a general case the FMR spectrum of magnetite nanoparticle assembly 
cannot be characterized by a single maximum with a fixed resonance field Hr. Such a description is qualitatively 
valid only for nanoparticles whose shape does not differ much from spherical, a/b ≤ 1.3. It is interesting to note 
that the behavior of FMR spectrum of non oriented assembly of magnetite nanoparticles as a function of particle 
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aspect ratio resemble that of random assembly of uniaxial  nanoparticles17 depending on the value of uniaxial 
anisotropy constant. This is because the uniaxial shape anisotropy energy dominates in the total anisotropy 
energy of magnetite nanoparticles with aspect ratio a/b ≥ 1.5.

Figure 2 shows the change in the shape of the FMR spectrum as a function of the transverse diameter for a 
fixed aspect ratio of the particles. Note that the FMR spectra of particles with diameters D = 15 and 25 nm in all 
the panels shown practically coincide. Calculations show that with a further increase in the transverse particle 
diameter, D > 25 nm, the FMR spectrum of the assembly with the given a/b and κ values does not change. Thus, 
the basic FMR spectra of particles with D = 25 nm at different aspect ratios a/b = 1.0–1.8 can be considered as 
representatives of all single-domain magnetite nanoparticle assemblies with transverse diameters D > 25 nm. 
Significant changes in the spectra, when the double humped nature of the spectrum changes to a single maxi-
mum, occur in the range of diameters D < 10 nm.

The bottom panels in Fig. 3 show the evolution of the FMR spectra of magnetite nanoparticles of sufficiently 
large transverse diameters, D ≥ 25 nm, with an increase in the magnetic damping constant κ for particles with 
aspect ratios a/b = 1.3, 1.5, and 1.8, respectively. It is obvious that an increase in the magnetic damping constant 
significantly decreases the amplitude of the FMR signal and smoothes the spectrum, transforming it from double-
belled to single-belled for the aspect ratios of particles a/b ≥ 1.5. However, an increase in κ only weakly affects the 
FMR spectrum width. The top panels in Fig. 3 show the effect of thermal fluctuations on the shape of the FMR 
spectrum for assemblies of nanoparticles with small transverse diameters, D ≤ 10 nm. Comparing the shape of 
the spectra in panels (a) and (d) in Fig. 3 one can see that for particles with moderate aspect ratios, a/b = 1.3, 
the spectral width at half maximum decreases under the influence of thermal fluctuations. At the same time, for 

Figure 1.  Dependence of the FMR spectrum of a dilute randomly oriented assembly of magnetite nanoparticles 
on the aspect ratio a/b = 1.0–1.8 for different transverse particle diameters: (a, e) D = 5 nm; (b, f) D = 7 nm; (c, 
g) D = 10 nm and (d, h) D = 15 nm. FMR excitation frequency f = 4.9 GHz, magnetic damping constant κ = 0.1, 
temperature T = 300 K.

Figure 2.  Dependence of the FMR spectrum of a dilute randomly oriented assembly of magnetite nanoparticles 
on the transverse particle diameter D = 2b for various aspect ratios: (a) a/b = 1.3; (b) a/b = 1.5; (c) a/b = 1.7. FMR 
excitation frequency f = 4.9 GHz, magnetic damping constant κ = 0.1, T = 300 K.
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particles with aspect ratios a/b ≥ 1.5, the shape of the FMR spectrum changes significantly under the influence 
of thermal fluctuations, which is especially noticeable for assemblies with κ = 0.1.

It was mentioned above that the correct choice of the excitation frequency is important to reveal the charac-
teristic details of the FMR spectrum. Actually, Fig. 4a and b show the change in the FMR spectrum in assemblies 
of magnetite nanoparticles with aspect ratios a/b = 1.5 and 1.8, respectively, with an increase in the excitation 
frequency from f = 4.9 GHz to 9.8 GHz (X-band).

Obviously, with an increase in the excitation frequency, the domain of observation of ferromagnetic resonance 
shifts to the range of high magnetizing fields. As a result, some characteristic details of the FMR spectrum are lost, 
since in a large magnetizing field the Zeeman energy is dominant in comparison with the magnetic anisotropy 
energy of the nanoparticles. Indeed, as Fig. 4a,b show, at the excitation frequency f = 4.9 GHz, one can clearly see 
the transformation of a single-belled FMR spectrum into a double-belled one with an increase in the transverse 
diameter of particles from 5 to 25 nm, while at the frequency f = 9.8 GHz this tendency is less noticeable.

For completeness of the study we also investigated the change in the FMR spectrum of spherical magnetite 
nanoparticles under the action of the magneto- dipole (MD) interaction depending on the filling density of 
nanoparticle clusters. The cluster filling density is  characterized38 by the ratio η = NpV/Vcl, where V is the volume 
of a particle and Vcl is the volume of a quasi-spherical cluster containing Np nanoparticles. Calculations of FMR 
spectra were performed for dilute assemblies of clusters containing Np = 60 of spherical magnetite nanoparticles. 

Figure 3.  Dependence of the FMR spectrum on the magnetic damping constant κ = 0.1, 0.2, and 0.4 for 
different transverse diameters D and aspect ratios of particles a/b. FMR excitation frequency f = 4.9 GHz, 
T = 300 K.

Figure 4.  (a, b) Change in the FMR spectrum with increase of the excitation frequency from f = 4.9 GHz 
to 9.8 GHz. (c) influence of magnetic dipole interaction on the FMR spectrum in dense clusters of spherical 
magnetite nanoparticles. The magnetic damping constant κ = 0.1, T = 300 K.
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As Fig. 4c shows, with an increase in the cluster filling density in the range η = 0.06–0.308, the maximum of the 
FMR spectrum noticeably decreases and shifts to lower magnetizing fields, while the width of the spectrum 
increases. Consequently, the effect of strong MD interaction in dense assemblies of magnetic nanoparticles leads 
to additional deformation of the FMR spectrum. This effect is worth to be studied separately.

Genetic algorithm. The Supplemented Material presents a set of basic FMR spectra of assemblies of mag-
netite nanoparticles in the form of dependences of the magnetic susceptibility of the assemblies χ ′′(D, a/b,H0z) 
on the external magnetic field H0z at an excitation frequency f = 4.9 GHz and at a temperature of T = 300 K. The 
basic FMR spectra of dilute randomly oriented assemblies of nanoparticles are calculated for magnetic damping 
constants κ = 0.1 and 0.2 and are presented in Supplementary Tables 1 and 2, respectively. Derivatives of FMR 
spectra with respect to the applied magnetic field, dχ ′′/dH , can be obtained from these Supplementary Tables 
by numerical differentiation. In the calculations performed, the transverse diameter of magnetite particles takes 
the values D = 5, 7, 10, 15, and 25 nm, the aspect ratios vary with a step of 0.1 from a/b = 1.0 (sphere) to a/b = 1.8 
(moderately elongated particles). As noted earlier, at a fixed temperature T = 300 K the FMR spectra of particles 
with D = 25 nm can also be considered as representatives of the spectra of single-domain assemblies of nano-
particles with transverse diameters D > 25 nm, since at sufficiently large transverse sizes the effect of thermal 
fluctuations on the FMR spectrum is negligible.

The first column of Supplementary Tables 1 and 2 gives the values of the external magnetic field, which in 
these calculations varied with a step of 40 Oe. These values can be written as H0z = 40(j − 1), where the integer 
j runs from 1 to 101. The subsequent columns of Supplementary Tables 1 and 2 show the corresponding values 
of the magnetic susceptibility χ ′′ , that are written in the following order: a/b = 1.0, D = 5, 7, 10, 15 and 25 nm, 
then a/b = 1.1, D = 5, 7, 10, 15 and 25 nm, etc. It is convenient to enumerate the columns of the Supplementary 
Tables 1 and 2, starting from the second one, with the index i, which runs through the values i = 1–45. Thus, the 
columns with numbers i = 1–5 correspond to the values a/b = 1.0, and the transverse diameters D = 5, 7, 10, 15, 
and 25 nm, respectively, columns i = 6–10 correspond to the values a/b = 1.1, and diameters D = 5, 7, 10, 15 and 
25 nm, etc. As a result, the values of the magnetic susceptibility written in the form of Supplementary Tables 1 
and 2 represent matrixes χ ′′

(

i, j
)

.
Obviously, the FMR spectrum of a composite dilute assembly of magnetite nanoparticles can be obtained as 

a weighted linear combination of the basic FMR spectra of the form

where the coefficients λi, the sum of which is equal to 1, are the volume fractions of magnetite nanoparticles with 
the corresponding values (D, a/b)i in this composite assembly.

First of all, it is interesting to find out how the FMR spectrum of a composite assembly changes depending 
on the distribution of its constituent fractions λi, i = 1, 2,… 45. The corresponding illustrative calculations are 
presented in Fig. 5.

Figure 5a shows FMR spectra of composite assemblies constructed from different random sets of particle 
volume fractions λi, shown in insets (1)–(4). The heights of the bars in the insets show the values of the corre-
sponding coefficients λi in the given linear combination. For insert (1) the maximum values of the coefficients 

(1)χ ′′
(

j
)

=

45
∑

i=1

�iχ
′′
(

i, j
)

Figure 5.  Composite FMR spectra constructed on the basis of basic FMR spectra presented in Supplementary 
Table 1. (a) evolution of the FMR spectrum of composite assemblies having the distribution of volume fractions 
λi shown in the insets (1)–(4); (b) comparison of composite FMR spectra for assemblies with uniformly 
distributed volume fractions, cases (1), (2) and assemblies consisting mainly of quasi-spherical nanoparticles, 
cases (3), (4).



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3126  | https://doi.org/10.1038/s41598-022-07105-7

www.nature.com/scientificreports/

λi are approximately uniformly distributed in the interval 1 ≤ i ≤ 9. Outside this interval the coefficients λi are 
also random and close to zero. Similarly, for insert (2) the maximum values of λi are concentrated in the interval 
10 ≤ i ≤ 18, for insert (3) in the interval 19 ≤ i ≤ 36, and for insert (4) in the interval 36 ≤ i ≤ 45, respectively.

It is easy to see that in the first case, 1 ≤ i ≤ 9, the composite assembly contains mainly quasi-spherical par-
ticles with aspect ratios a/b = 1.0–1.1, in the second case, the particle aspect ratios correspond to the interval 
a/b = 1.2–1.3, etc. As Fig. 5a shows the FMR spectrum of the composite assembly changes noticeably depending 
on the volume fraction distribution which corresponds to different intervals of a/b values.

At the same time, as Fig. 5b shows, the distribution of the volume fractions within a given interval of a/b 
values does not significantly affect the shape of the FMR spectrum of a composite assembly. Indeed, in Fig. 5b 
the insets (1) and (2) show different random distributions of the coefficients λi, homogeneous over the entire 
range of values 1 ≤ i ≤ 45. One can see that these two different distributions of volume fractions correspond to 
very similar FMR spectra. Similarly, insets (3) and (4) show two different distributions of volume fractions in 
assemblies of quasi-spherical nanoparticles, for which the coefficients λi are concentrated in the intervals 1 ≤ i ≤ 10 
and 2 ≤ i ≤ 12, respectively. Again, despite the difference in the distribution of volume fractions for cases (3) and 
(4), the corresponding FMR spectra presented in Fig. 5b turn out to be very close.

The previous consideration shows examples of the FMR spectra of dilute composite assemblies obtained using 
known volume fractions of its constituent basic assemblies. It is clear that if a method for solving the so-called 
inverse problem were developed, the FMR technique would be much more useful for applications. The inverse 
problem consists in determining the volume fractions λi from the known FMR spectrum of a dilute composite 
assembly.

In this work this problem is solved by using the simplest version of the genetic  algorithm34,35, which is 
described in the Methods section. Despite the aforementioned weak sensitivity of the FMR spectrum of the 
composite assembly to the distribution of the coefficients λi in the given intervals of a/b values, the used version 
of the genetic algorithm demonstrates the ability, in a relatively small number of iterations, to reproduce the 
distribution of volume fractions λi, which is very close to some arbitrary given distribution λi

(0).
In Fig. 6a the solid black curve shows the FMR spectrum of a certain dilute composite assembly of magnetite 

nanoparticles, and the black bars in the inset in this figure show the specified distribution of volume fractions λi
(0) 

for this spectrum. The red bars in the inset in Fig. 6a show the initial distribution of volume fractions λi (N = 1), 
generated by the genetic algorithm at the first iteration. The corresponding initial FMR spectrum is shown in 
Fig. 6a with red dots. As Fig. 6a shows, the initial distribution of volume fractions and the initial shape of the 
FMR spectrum, formed at the first iteration by the genetic algorithm, are very far from the specified distribution 
of volume fractions λi

(0). Accordingly, the residual of the genetic algorithm, which estimates the closeness of the 
current and the desired distributions, at the initial stage is very large, δ1 N = 1) = 0.18. However, in the course of 
iterations, the current distribution of volume fractions quickly approaches the desired one. Figure 6b shows that 
already at iteration N = 65, when the algorithm residual decreases to the value δ1 (N = 65) = 0.0005, the distribution 
of volume fractions λi (N = 65) turns out to be very close to the given distribution λi

(0). Moreover, calculations 
show that the FMR spectrum formed by the genetic algorithm is practically indistinguishable from the specified 
FMR spectrum even at the algorithm residual values δ1 < 0.01.

Similar results were also obtained when the genetic algorithm was applied to the set of FMR spectra presented 
in Supplementary Table 2. It should be noted that the number of iterations Nmax required for the genetic algorithm 
to obtain the specified FMR spectrum of the composite assembly with the required accuracy depends significantly 

Figure 6.  Application of a genetic algorithm to determine the volume fractions of basic assemblies of magnetite 
nanoparticles from a given FMR spectrum of a certain dilute composite assembly: (a) the first iteration of the 
genetic algorithm, N = 1, (b) the final iteration, N = 65. The insets in the figures show the given distribution of 
volume fractions λi

(0) (black bars) and the current distribution of volume fractions λi (red bars), obtained at the 
first and final iterations of the genetic algorithm, respectively.
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on the initial distribution that was randomly generated at its initial stage. In some cases, the variation in Nmax 
can be several hundred. In addition, it is well  known35 that in the case of an unsuccessfully formed initial state, 
the convergence of the algorithm may turn out to be very slow, or even absent. In this case it is recommended to 
stop the current calculations and to create a new initial state. As a rule, for new initial state the rate of evolution 
of the volume fraction distribution to a given distribution is acceptable. Anyway, it is found that if the genetic 
algorithm converges, it always leads exactly to the given distribution of volume fractions λi

(0).

Conclusions
Magnetic nanoparticle assembly is known to be a complex physical system. Its properties are determined by both 
geometric and magnetic particle parameters. The standard measurement of a quasi-static hysteresis loop of an 
assembly makes it possible to determine the saturation magnetization of the particles, the coercive force, and 
the initial magnetic susceptibility of the assembly. However, many of the important microscopic characteristics 
of the assembly, that is, the particle size and shape distribution, the type of magnetic anisotropy of the particles, 
the distribution of the directions of the easy anisotropy axes in space, remain unknown. So do the dynamic 
characteristics of the particles, such as the magnetic damping constant and the characteristic particle relaxation 
time. The geometric characteristics of the particles are usually determined by rather expensive electron micro-
scopic  methods21,22. In turn, FMR spectra measurement opens the way to assessing the dynamic characteristics 
of nanoparticles. However, the FMR technique as applied to assemblies of nanoparticles would be in greater 
demand if an effective method for a detailed analysis of complex FMR spectra of magnetic nanoparticle assem-
blies were developed and validated.

In this work it is proposed to use the genetic  algorithm34–36 for the analysis of FMR spectra of dilute assem-
blies of magnetite nanoparticles, which are widely used in  biomedicine24,25 and are interesting for paleomagnetic 
 studies27–29. The genetic algorithm is known as a very productive way to iterate over a large number of feasible 
options when searching for an option that meets certain criteria. To implement this technique in the paper, we 
calculated a representative set of basic FMR spectra of dilute magnetite nanoparticle assemblies with fixed val-
ues of the transverse diameter D = 5–25 nm, the aspect ratio a/b = 1.0–1.8, and the magnetic damping constants 
κ = 0.1, 0.2. Using the constructed database, the FMR spectrum of a certain composite dilute assembly of mag-
netite nanoparticles can be represented with high accuracy as a linear combination of basic FMR spectra. The 
coefficients determined by the genetic algorithm in the linear combination constructed are the volume fractions 
of the basic assemblies in the original composite assembly of magnetite nanoparticles.

Due to limited scope of the article, the results of applying the genetic algorithm are demonstrated only for 
the case κ = 0.1. This value was chosen because, according to some experimental data, it seems to be the most 
plausible for iron oxide nanoparticle assemblies. Nevertheless, similar results for application of genetic algorithm 
were also obtained for κ = 0.2. At the final stage of this study it is supposed to have basic FMR spectra of magnetite 
nanoparticles for a sufficiently representative set the magnetic damping constants. Thus, a researcher gets the 
opportunity, on the basis of the measured FMR spectrum of a dilute assembly, to estimate the size and shape 
distribution of the assembly particles, and, in addition, to estimate the most appropriate value of the magnetic 
damping constant.

Unfortunately, this technique is hardly applicable to the analysis of FMR spectra of dense assemblies of mag-
netic nanoparticles, since the strong MD interaction of particles in dense assemblies has a noticeable additional 
effect on the shape of the FMR spectrum. On the other hand, calculations show that the genetic algorithm can 
be successfully used to analyze the FMR spectra of dilute assemblies of nanoparticles of other types, for example, 
nanoparticles with uniaxial magnetic anisotropy.

Methods
Calculation of basic FMR spectra. Let us consider a dilute assembly of Np spheroidal magnetite nano-
particles with given geometric parameters D, a/b, and a fixed value of the magnetic damping constant κ. In a 
randomly oriented assembly, the magneto-crystalline anisotropy energy of magnetite nanoparticles is

where V = 4πab2/3 is the volume of spheroidal particle, αi is the unit magnetization vector and (e1i, e2i, e3i) is the 
set of orthogonal unit vectors that determine the spatial orientations of the cubic easy anisotropy axes of i-th 
nanoparticle of the assembly. Since the axes of symmetry of spheroidal nanoparticles are assumed to be randomly 
and uniformly distributed in space, the shape anisotropy energy of the assembly can be written as

where KSh is the shape anisotropy constant and ni is the unit vector along the direction of elongation of i-th 
nanoparticle. The shape anisotropy constant is given  by39

Here Na is the demagnetizing factor along the long nanoparticle axis.
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Zeeman energy of the assembly in a constant magnetic field H0 = (0,0,H0z), and a weak ac magnetic field with 
an amplitude H1 = (H1x,0,0) is given by

where ω = 2πf is the angular frequency of the ac magnetic field.
Dynamics of the unit magnetization vector �αi of i-th single-domain nanoparticle of the assembly is governed 

by stochastic Landau–Lifshitz  equation30–33

where γ is the gyromagnetic ratio, γ1 = γ/(1 + κ2), �Hef ,i is the effective magnetic field and �Hth,i is the thermal field. 
The effective magnetic field acting on a separate nanoparticle can be calculated as a derivative of the total energy 
W = Wmc + WSh + WZ

The thermal fields �Hth,i acting on various nanoparticles of the assembly are statistically independent, with 
the following statistical  properties30 of their components.

Here kB is the Boltzmann constant, δαβ is the Kroneker symbol, and δ(t) is the delta function.
It is well  known26,38 that the power absorbed by the assembly per unit time and per unit volume is proportional 

to the area of the assembly hysteresis loop

where m is the reduced magnetic moment of the assembly. To numerically calculate the power absorbed by an 
assembly of superparamagnetic nanoparticles in ac magnetic field H1(t), it is convenient to rewrite Eq. (9) in 
the form of the time-averaged integral

where Δt is a certain time interval significantly exceeding the period of oscillations of the ac magnetic field, 
τ = 2π/ω. On the other hand, using the small amplitude of the ac magnetic field, the same quantity can be 
expressed in terms of the imaginary part of the magnetic susceptibility of the  assembly3,40

Comparison of Eqs. (10) and (11) makes it possible to obtain the imaginary part of the magnetic susceptibility 
χ ′′

(

H0z , f
)

 of the assembly as a function of the magnetizing field component H0z.
The calculation of the absorbed power according to Eq. (10) was carried out in this work for randomly ori-

ented basic assemblies of magnetite nanoparticles with fixed parameters D, a/b, and κ. The calculation results 
were averaged over a fairly large number of independent experiments, Nexp = 100. In every experiment a new 
assembly of Np = 100 non interacting spheroidal magnetite nanoparticles with random directions of the cubic 
anisotropy axes and random directions of the long axes of the spheroids was created. The frequency of the ac 
magnetic field exciting the resonance was f = 4.9 GHz, or f = 9.8 GHz, the amplitude of the ac magnetic field was 
H1x = 10 Oe. The numerical time step was 1/30 of the characteristic precession period of the unit magnetization 
vectors. The full time interval of calculations covered at least 200 periods of the ac magnetic field, whereas time 
averaging of the integral in Eq. (10) occurred over the last quarter of the total number of periods, when the 
dynamics of unit magnetization vectors became stationary. Thus, the time interval Δt in Eq. (10) exceeds 50τ. 
A double averaging of the numerical results for the absorbed power over a sufficiently long time interval Δt and 
over a set of Nexp = 100 independent realizations of assemblies of Np = 100 nanoparticles makes sure that the data 
obtained for the magnetic susceptibility of the assembly are statistically significant.

Genetic algorithm implementation. To determine the volume fractions λi of basic assemblies in a lin-
ear combination of FMR spectra, which approximates the FMR spectrum of a dilute composite assembly with 
a given accuracy, a simple version of the genetic algorithm is used in this work. The genetic  algorithm34–36 in a 
number of cases turns out to be very effective when choosing an optimal set from a large number of admissible 
data sets that satisfies certain, precisely formulated conditions. In this problem, the admissible data set is an 
arbitrary vector λ = {λi}, i = 1–45, whose components are the volume fractions of the basic assemblies of nano-
particles in a certain composite assembly and obey the obvious relations

(5)WZ = −MsV

Np
∑

i=1

(αixH1x sin (ωt)+ αizH0z)

(6)
∂ �αi

∂t
= −γ1 �αi ×

(

�Hef ,i + �Hth,i

)

− κγ1 �αi ×
(

�αi ×
(

�Hef ,i + �Hth,i

))

, i = 1, 2, . . .Np,

(7)�Hef ,i = −
∂W

MsV∂ �αi

(8)
〈

H
(α)
th.i (t)

〉

= 0;
〈

H
(α)
th,i (t)H

(β)

th,i (t1)
〉

=
2kBTκ

γMsV
δαβδ(t − t1), α,β =

(

x, y, z
)

.

(9)P = Msf

∮

1

Np

Np
∑

i=1

�αid �H = Msf

∮

�md �H .

(10)P = Ms
1

�t

t+�t
∫

t

mx
dH1x

dt
dt

(11)P = π f χ ′′
(

H0z , f
)

H2
1x
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Each admissible vector λ according to Eq. (1) determines an approximate FMR spectrum, χ ′′
(

j
)

 , j = 1 – Nh, 
where Nh = 101 is the number of the external magnetic field values where the FMR spectra are specified. The 
approximate FMR spectrum can be compared with a given FMR spectrum by means of a fitness function

The problem is to choose the components of the vector λ in such a way that the residual δ does not exceed a 
sufficiently small value, say δ < ξ = 0.001, which means that the constructed optimal and specified FMR spectra 
are sufficiently close.

The structure of the genetic algorithm is not specified  precisely34,35. It has to be chosen so as to ensure fast 
convergence of the algorithm iterations in a particular problem. In the implemented version of the genetic algo-
rithm, at the first iteration, a set of 30 random vectors λs, s = 1–30 is created, and for each vector its residual δs is 
determined according to Eq. (13). Of the 30 initial vectors, 10 vectors are selected that have the smallest residu-
als δs, the remaining vectors are discarded. The selected vectors are ordered according to the degree of residual 
increase, so that the vector λ1 always has the least residual δ1 in the selected set of vectors.

The group of 10 vectors selected in such a way occupies the first 10 places in the formation of a new genera-
tion of vectors. The next group of 10 vectors in the new generation are formed from the vectors already selected 
using the well-known crossover  technique34,35. Namely, when forming a vector of the second group, two vectors, 
λa and λb, are arbitrarily selected from the vectors of the first group, and a random integer i* is assigned, such 
that 1 < i* < 45. The new vector λc of the second group is constructed from parts of the vectors λa and λb. Namely, 
its components are selected according to the following rule: λc(i) = λa(i) for components with numbers i ≤ i*, but 
λc(i) = λb(i) if i* < i. Then the components of the vector λc(i) are normalized to satisfy condition (12).

Thus, the vectors of the second group in the new generation are constructed using the crossover rocedure. 
Finally, 10 vectors of the third group in new generation are assigned randomly, taking into account the only 
condition, Eq. (12). As a result of these operations, a new generation of 30 vectors is created, and the whole 
procedure described above is repeated. Since the best vector of the previous generation is always included in the 
next generation, the smallest residual δ1 in the new generation certainly cannot exceed the previous one. As a 
rule, with subsequent iterations of the genetic algorithm the smallest residual decreases sequentially. Iterations 
stop when the condition δ1 < ξ is satisfied, where ξ is the assigned accuracy of determining the optimal vector λ1.

Data availability
The generated Supplementary Tables 1 and 2 for magnetic susceptibilities of assemblies of magnetite nanopar-
ticles with magnetic damping constants κ = 0.1 and 0.2 are given in the Supplement Materials.

Received: 16 November 2021; Accepted: 4 February 2022

References
 1. Morrish, A. H. The Physical Principles of Magnetism (Wiley, 1965).
 2. Skrotskii, G. V. & Kurbatov L. V., in Ferromagnetic Resonance, edited by S. V. Vonsovskii, 12–77 (Pergamon, 1966).
 3. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC Press, 1996).
 4. Farle, M. Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755 (1998).
 5. Valstyn, F. P., Hanton, J. P. & Morrish, A. H. Ferromagnetic resonance in single-domain particles. Phys. Rev. 128, 2078–2087 (1962).
 6. de Biasi, R. S. & Devezas, T. C. Anisotropy field of small magnetic particles as measured by resonance. J. Appl. Phys. 49, 2466–2469 

(1978).
 7. Raikher, Y. L. & Stepanov, V. I. The effect of thermal fluctuations on the FMR line shape in dispersed ferromagnets. Sov. Phys. JETP 

75, 764 (1992).
 8. Raikher, Y. L. & Stepanov, V. I. Ferromagnetic resonance in a suspension of single-domain particles. Phys. Rev. B 50, 6250–6259 

(1994).
 9. Berger, R., Bissey, J.-C. & Kliava, J. Lineshapes in magnetic resonance spectra. J. Phys. Condens. Matter 12, 9347–9360 (2000).
 10. Berger, R., Kliava, J., Bissey, J.-C. & Baietto, V. Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed 

glass. J. Appl. Phys. 87, 7389–7396 (2000).
 11. Berger, R. et al. Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles. J. Magn. Magn. Mater. 234, 

535–544 (2001).
 12. de Biasi, E., Ramos, C. A. & Zysler, R. D. Size and anisotropy determination by ferromagnetic resonance in dispersed magnetic 

nanoparticle systems. J. Magn. Magn. Mater. 262, 235–241 (2003).
 13. Usadel, K. D. Temperature-dependent dynamical behavior of nanoparticles as probed by ferromagnetic resonance using Landau–

Lifshitz–Gilbert dynamics in a classical spin model. Phys. Rev. B 73, 212405 (2006).
 14. Schmool, D. S. & Schmalzl, M. Ferromagnetic resonance in magnetic nanoparticle assemblies. J. Non-Cryst. Solids 353, 738–742 

(2007).
 15. Kachkachi, H. & Schmool, D. S. Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. Eur. Phys. 

J. B 56, 27–33 (2007).
 16. Noginova, N. et al. Observation of multiple quantum transitions in magnetic nanoparticles. Phys. Rev. B 77, 014403 (2008).
 17. Sukhov, A., Usadel, K. D. & Nowak, U. Ferromagnetic resonance in an assembly of nanoparticles with randomly distributed 

anisotropy axes. J. Magn. Magn. Mater. 320, 31–35 (2008).
 18. Sendilkumar, A. et al. Investigation of magnetic anisotropy in Co nanoparticles using ferromagnetic resonance technique. J. Phys. 

Conf. Ser. 200, 072088 (2010).

(12)0 ≤ �i ≤ 1

45
∑

i=1

�i = 1

(13)δ =

Nh
∑

j=1

∣

∣

∣
χ ′′

(

j
)

− χ ′′(0)
(

j
)

∣

∣

∣

/

Nh
∑

j=1

χ ′′(0)
(

j
)



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3126  | https://doi.org/10.1038/s41598-022-07105-7

www.nature.com/scientificreports/

 19. de Biasi, E. et al. Effect of thermal fluctuations in FMR experiments in uniaxial magnetic nanoparticles: Blocked vs. superpara-
magnetic regimes. J. Magn. Magn. Mater. 326, 138–146 (2013).

 20. Poperechny, I. S. & Raikher, Y. L. Ferromagnetic resonance in uniaxial superparamagnetic particles. Phys. Rev. B 93, 014441 (2016).
 21. Wetterskog, E. et al. Size and property bimodality in magnetic nanoparticle dispersions: Single domain particles vs strongly coupled 

nanoclusters. Nanoscale 9, 4227–4235 (2017).
 22. Kumar, P. et al. Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe2O4 nanoparticles. 

Nanoscale Adv. 2, 1939–1948 (2020).
 23. Slay, D. et al. Ferromagnetic resonance of superparamagnetic nanoparticles: The effect of dipole–dipole interactions. J. Appl. Phys. 

130, 113902 (2021).
 24. Usov, N. A. & Barandiarán, J. M. Magnetic nanoparticles with combined anisotropy. J. Appl. Phys. 112, 053915 (2012).
 25. Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. 

Phys. D 42, 224001 (2009).
 26. Périgo, E. A. et al. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015).
 27. Kopp, R. E. et al. Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: 

A case study of mutant magnetotactic bacteria. J. Geophys. Res. 111, 12–25 (2006).
 28. Kind, J. et al. Rock magnetic techniques complemented by ferromagnetic resonance spectroscopy to analyse a sediment record. 

Geophys. J. Int. 191, 51–63 (2012).
 29. Charilaou, M. Ferromagnetic resonance of biogenic nanoparticle-chains. J. Appl. Phys. 122, 063903 (2017).
 30. Brown, W. F. Jr. Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963).
 31. García-Palacios, J. L. & Lázaro, F. J. Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. 

B 58, 14937–14958 (1998).
 32. Scholz, W., Schrefl, T. & Fidler, J. Micromagnetic simulation of thermally activated switching in fine particles. J. Magn. Magn. 

Mater. 233, 296–304 (2001).
 33. Coffey, W. T., Kalmykov, Y. P. & Waldron, J. T. The Langevin Equation Vol. 14 (World Scientific, Singapore, 2004).
 34. McCall, J. Genetic algorithms for modelling and optimization. J. Comput. Appl. Math. 184, 205–222 (2005).
 35. Simon, D. Evolutionary Optimization Algorithms (Wiley, 2013).
 36. Montesinos, F. G., Blanco-Montenegro, I. & Arnoso, J. Three-dimensional inverse modelling of magnetic anomaly sources based 

on a genetic algorithm. Phys. Earth. Planet. Int. 253, 74–87 (2016).
 37. Chikazumi, S. Physics of Magnetism (Wiley, 1964).
 38. Usov, N. A. et al. Heating ability of magnetic nanoparticles with cubic and combined anisotropy. Beilstein J. Nanotechnol. 10, 

305–314 (2019).
 39. Akhiezer, A. I., Baryakhtar, V. G. & Peletminskii, S. V. Spin Waves (North-Holland, 1968).
 40. Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).

Acknowledgements
The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of 
the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISIS», Contract № 
K2-2019-012.

Author contributions
N.U. designed the numerical simulation scheme. O.S. carried out the numerical simulation. N.U. and O.S. 
analyzed the numerical simulation data obtained. O.S. prepared all figures. Both authors participated in the 
manuscript preparation.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 07105-7.

Correspondence and requests for materials should be addressed to N.A.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-07105-7
https://doi.org/10.1038/s41598-022-07105-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deconvolution of ferromagnetic resonance spectrum of magnetic nanoparticle assembly using genetic algorithm
	Results and discussion
	Basic FMR spectra. 
	Genetic algorithm. 

	Conclusions
	Methods
	Calculation of basic FMR spectra. 
	Genetic algorithm implementation. 

	References
	Acknowledgements


