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Novel fNIRS study 
on homogeneous symmetric 
feature‑based transfer learning 
for brain–computer interface
Khurram Khalil1, Umer Asgher1,2 & Yasar Ayaz1*

The brain–computer interface (BCI) provides an alternate means of communication between the brain 
and external devices by recognizing the brain activities and translating them into external commands. 
The functional Near‑Infrared Spectroscopy (fNIRS) is becoming popular as a non‑invasive modality 
for brain activity detection. The recent trends show that deep learning has significantly enhanced 
the performance of the BCI systems. But the inherent bottleneck for deep learning (in the domain of 
BCI) is the requirement of the vast amount of training data, lengthy recalibrating time, and expensive 
computational resources for training deep networks. Building a high‑quality, large‑scale annotated 
dataset for deep learning‑based BCI systems is exceptionally tedious, complex, and expensive. 
This study investigates the novel application of transfer learning for fNIRS‑based BCI to solve three 
objective functions (concerns), i.e., the problem of insufficient training data, reduced training time, 
and increased accuracy. We applied symmetric homogeneous feature‑based transfer learning on 
convolutional neural network (CNN) designed explicitly for fNIRS data collected from twenty‑six (26) 
participants performing the n‑back task. The results suggested that the proposed method achieves 
the maximum saturated accuracy sooner and outperformed the traditional CNN model on averaged 
accuracy by 25.58% in the exact duration of training time, reducing the training time, recalibrating 
time, and computational resources.

Brain–computer interface (BCI) offers an interaction between the brain and external devices through signals gen-
erated from the brain without the peripheral nervous system’s  involvement1. BCI is among such neurofeedback 
methods that may enhance patients’ quality of life suffering from acute motor debilities due to tetraplegia, stroke, 
and other spinal cord  injuries2. More BCI applications are in areas of neuro-rehabilitation, communication and 
control, motor therapy and recovery, brain monitoring, and neuro-ergonomics3–5. Non-invasive neuroimaging 
modalities like functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional near-infrared spectroscopy (fNIRS) are greatly used in BCI systems 
for brain imaging and functional assessment of activities. Portable non-invasive neuroimaging techniques are 
generally preferred owing to their ease of use with fewer imaging protocols. The commonly used neuroimaging 
methodologies in this context are EEG and fNIRS. Both the modalities are portable and lightweight and require 
a small setup than the other  techniques6. The electrodes capture EEG signals due to current neurons’ current 
variation due to postsynaptic  activities7. While fNIRS constructs the brain’s functional neuroimages using near-
infrared (NIR) light and gauge hemodynamic response function (HRF) in form of change in concentration of 
oxy and deoxygenated hemoglobin (HbO and HbR) to estimate the brain activities. Just like fMRI, the fNIRS 
also measures the blood oxygen level dependence (BOLD).

Using the BCI systems out of the laboratory needs to address several challenges such as robust signal acqui-
sition, extracting required information from raw brain signals, and accurate control or command generation 
through data  classification8,9. Another challenge hindering the BCI systems is the need for lengthy recalibration 
due to the high dimensionality and low signal-to-noise ratio (SNR) of EEG and fNIRS  signals10. Typically, each 
new session’s calibration time for these modalities-based BCI systems takes up to 20–30 min  approximately11,12. 
That extended time exhausts the subjects and puts extra fatigue even before the actual experimentation starts 
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or even before the BCI system became fully functional. Another important factor is the non-stationary nature 
of brain signals. The exact brain state depends on mental and psychosomatic conditions, concentration level, 
factors like drowsiness, fatigue, anatomical differences, and statistical variations in the  data13,14. The artifacts like 
instrumental noise, motion artifacts and poor sensitivity in naturalistic and non-structured environments, and 
the experimental errors due to variations in the electrodes’ resistivity may also alter the acquired brain  signals15–18. 
All these factors result in a complex classification problem. To successfully classify the correct brain states, brain 
signals classification and neurofeedback are implemented in four stages: first is pre-processing, then feature 
extraction, classification, and lastly command  generation19,20. The extracted features from brain signals are used 
to train the classifier. Machine or deep learning (DL) classifiers are used to discriminate various states of brain 
data. The different studies tried to address these challenges by exploiting various methods and algorithms while 
maintaining accuracy and information transfer rate (ITR) in a significant  range7,12,21–23. Deep learning (DL) 
algorithms have been vigorously applied in different BCI studies such as an artificial neural network (ANN)24,25, 
convolutional neural networks (CNN)26,27, deep belief network (DBN)28, long short-term memory (LSTM)29,30, 
and cascade CNN-LSTM31. Although DL algorithms have superior learning capabilities and can address complex 
classification problems, at the same time, these algorithms have posed a unique challenge of Big Data in the BCI 
 domain19. DL’s inherent bottleneck is the requirement of the huge amount of training data and computational 
resources for training deep  networks29. The collection of a very large amount of neuroimaging data is very com-
plicated and expensive in terms of time and resources, making it very hard to develop a substantial-scale, high-
quality marked dataset for DL models’ training. Moreover, it is difficult to approximate probability distributions 
of the feature vectors from low SNR signals, mostly in the case of machine learning (ML) algorithms, where only 
a few trials are performed for multi-dimensional brain signals. All these factors lead to the poor performance of 
trained classifiers on new session data. In this scenario “Transfer learning” proved to be an encouraging approach 
candidate to deal with these problems.

Transfer learning algorithms used in EEG-based BCI are primarily based on two approaches, one is impor-
tance sampling cross-validation  methods20,32, and the second is instance selection  methods33,34. Covariate shift 
adaptation (CSA) proposed in the  study20 uses the importance sampling cross-validation to weigh the data 
from the target domain (other subjects). The final prediction function is estimated based on parts with high 
weights, and others are rejected. In various  studies33,34, trials are selected on an active learning base and based 
on an instance selection approach close to the new subject’s few informative trials. Then, to train the BCI model, 
selected trials based on an instance selection approach are added to the new subject’s existing labeled trials.  In35, 
Zhang et al. proposed a diagnosis to susceptibility to alcoholism was done via extracting features using deep 
learning algorithms combined with transfer learning. Most of the proposed transfer learning algorithms in the 
feature domain focus on improving common spatial patterns (CSP). CSPs are improved with modifications of 
either the covariance matrix using the estimation  method36,37, or the CSP optimization  function7,38. An extension 
of CSP, proposed by Samek et al.  in39, transferred stationary information instead of discriminative information 
across multiple subjects by learning a stationary subspace. Similarly, to solve the Motor imagery (MI) for BCI, the 
authors  in40 proposed a combination of Continuous Wavelet Transform (CWT) along with deep learning-based 
transfer learning. Many existing MI-based BCI transfer learning algorithms on the classification domain have 
used domain adaptation  techniques41–43 and ensemble learning of  classifiers7,23. Domain adaptation techniques 
use the source domain classifier for the target domain while adjusting its parameters according to target data. 
Moreover, multi-task learning is also used in  BCI21,44, where the classification parameters are learned together 
from multiple subjects, resulting in minimization of the average total errors and differences among the param-
eters of the separate classifiers. This approach was a success to some extent. Still, it had its constraints as many 
parameters needed to be optimized simultaneously, making it computationally expensive. Similarly, that approach 
does not consider the similarities and dissimilarities between the data within subjects during the learning process. 
Several studies on BCI for the classification of different controlled and uncontrolled cognitive  tasks29,45–50 have 
used fNIRS. Despite being getting popular, to the best of the authors’ knowledge, there is no study on applying 
transfer learning in fNIRS-based BCI. The application of symmetric homogeneous feature-based transfer learn-
ing in the fNIRS domain is novel. This study’s major takeaway is that optimization obtained through transfer 
learning is superior to traditional DL network training.

Symmetric feature-based transfer learning approach discovers underlying meaningful structures between 
the domains to find a common latent feature space that has predictive qualities while reducing the marginal 
distribution between the  domains51. The exchange learning approach proposed by Prettenhofer addresses the 
complicated situation of a source space containing marked and unlabeled information and a physical space 
containing unlabeled information. The auxiliary correspondence learning procedure from Blitzer is applied 
to this issue. Supplemental correspondence learning depends on the manual meaning of turn works that catch 
correspondence between the source and target spaces. Viable rotate capacities should utilize highlights that 
happen as often as possible in the two areas and have significant prescient characteristics. Each turn work is 
transformed into a linear classifier using information from the source and target spaces. From these turn classi-
fiers, correspondences between highlights are found, and an inactive component space is found out. The unused 
component space is utilized to prepare the last objective classifier. The paper by Prettenhofer uses this answer 
to take care of the issue of text order where the source is written in one language, and the objective is written 
in an alternate style. In this particular execution alluded to as cross-language essential correspondence learn-
ing (CLSCL), the rotate capacities are characterized by sets of words, one from the objective and one from the 
source, that speaks to coordinate word interpretations from one language to the next. The tests are performed 
on the utilization of report assumption characterization and archive point arrangement. English archives are 
utilized in the source, and other language reports are being used in the objective. The benchmark technique used 
in this test prepares a student on the marked source records; at that point deciphers the objective reports to the 
source language and tests the translated form. An upper bound technique is set up via preparing a student with 
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the named target archives furthermore, experimenting with the objective reports. Standard order precision is 
estimated as the exhibition  metric52.

Methods
Dataset and data acquisition. This study used an open-source meta-dataset acquired at the Technische 
Universität Berlin by Jaeyoung Shin et al. in  201739,53. The dataset includes fNIRS data of the scalp for different 
levels of mental workload acquired from 26 subjects. NIRScout (NIRx Medizintechnik GmbH, Berlin, Ger-
many) was used for NIRS data acquisition using the configuration of 36 channels, according to the internation-
ally recognized 10-5 system as shown in Fig. 1, at a sampling rate of 10.4 Hz. Sixteen optodes, a combination of 
sources with detectors were positioned at the frontal lobe across the region of AFz to AF8, and four channels 
were paced at C3, C4 for the motor cortex region. Four channels were places in the parietal region across P3 
and P4. Likewise, four channels around the POz region for the occipital region. The distance between the source 
and the detectors was ensured to be 30  mm40. All participants were informed about the experimental procedure 
and gave written informed consent prior to the experiment. All the experiments were conducted in accordance 
with the Declaration of Helsinki and was approved by the Ethics Committee of the Institute of Psychology and 
Ergonomics, Berlin Institute of Technology.

Experimental paradigm. Before the experimentation starts, all subjects were seated in a comfortable chair 
in front of a 24-in. LCD monitor, placed at a distance of 120 cm. It is pertinent to mention that the distance 
between the subject and the monitor is 120 cm. Subjects were asked to press numeric keys 7 and 8 to record their 
response and to ensure the subject’s engagement during data acquisition, with their index and middle finger, 
using a keypad attached to their right side. Furthermore, subjects were instructed to stay focused during the 
experiment by restricting their eye movement only to the monitor in order to avoid motion artifacts. The experi-
ment protocol was designed to perform three cognitive tasks i.e., n-back, Discrimination Selection Response 
(DSR), and Word Generation (W.G) by each subject. The tasks were performed in descending order depending 
on task difficulty level as due to the long duration of tasks and data recording, the subject’s focus decreases with 
apparent stress and fatigue. First task A was completed, then C, and lastly B. In this study, only dataset A (n-back) 
is used and is explained in detail in the next section. So, first, the n-back task was performed followed by W.G 
and lastly, data acquisition was done for DSR. For further information on other datasets (DSR and W.G) and 
 analysis39. The time sequence of the designed n-back experiment is shown in Fig. 2.

The n-back dataset consists of three sessions where each session is comprising of three individual series for 
individual n-back tasks i.e., 0-back, 2-back, and 3-back tasks. So, for each subject total of nine n-back series (3 
sessions × 3 series) were performed where a single series recording time was 62 s. In a single series, n-back task 
instructions were played for the first 2 s, followed by 20 trials of the n-back task for the next 40 s, and then the 
last 20 s were reserved for rest. In order to make the experiment more engaging and to keep the subject focused, 
a 250 ms beep was provided at the start and end of the task. Additionally, the word ‘STOP’ was also displayed at 
the end of the task followed by a fixation cross in the rest period to keep the subject focused and avoid unneces-
sary head and eye movements, and allowing the brain to relax to the standard baseline state. During the task 
period, subjects were asked to press either the target button using the right index finger or the non-target but-
ton using the right middle finger to record their response using the numeric keypad. In the case of the 0-back 
task, subjects were instructed to press the target button only in case if the number being displayed matched the 
last displayed number. Similarly, for 2 and 3 back tasks if the number being displayed matches the last 2 and 3 
numbers displayed, respectively. The probability of appearing target vs. non-target numbers was 30%. The 0-back 

Figure 1.  The NIRS optodes position according to 10-5 system.
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task was followed by the 2 and 3 back tasks. During these tasks, the subjects were asked to press the target button 
only in the case that if the number being displayed matches the 2 and 3 last numbers. The fixation cross followed 
the task period; the subjects were instructed to gaze at the cross and relax. It allowed the brain state to return 
to the standard baseline  value53. As there were three sessions, each having three series, while every single series 
encompassed 20 trials, making 180 trials.

Data pre‑processing. The acquired data were first translated to the oxy and deoxy-hemoglobin (HbO and 
HbR) intensity variations to pre-process the fNIRS data. The conversions were made through the modified Beer-
Lambert law (MBLL)41. The fNIRS raw data were acquired and sampled at 10 Hz. This dataset’s fundamental 
frequency was very low, so the down sampled was not fed into the Butterworth bandpass filter. Instead, low pass 
filtered is employed to avoid losing the essential frequency  component42. The cutoff frequency of the filter was set 
to 0.2 Hz to remove the artifacts due to blood pressure, heartbeat and breathing and high frequency instruments.

Proposed convolutional neural network model. In this study, a convolutional neural network (CNN) 
was used to classify three mental workloads (MWL) classes owing to its reputation and increase in use for dif-
ferent MWL classification  studies26,27,29. CNN is a deep neural network that may integrate one or more convolu-
tional layers with a pooling layer, batch norm layer, activation layer, dense layer, and at very last an output layer. 
The most important CNN layer, i.e., the convolutional layer, allows its inputs to pass through cascaded filters 
bank and performs simple convolution operations. Essentially convolution layers output feature maps extracted 
from the input due to convolution, i.e., shifting and multiplication of input signal and  filter43. These feature maps 
are then used as an input to the next layer in the CNN architecture or as a set of definitive key features on which 
classification is performed in the last fully connected layers.

where W and H are the width and height of the output activation map or feature map, N is the dimension of 
the input activation or feature map, F is the dimension of filter sliding over the input image or activation map, 
the stride is the number of steps taken while sliding filter. While the parameters of a layer are calculated using:

W and H are the width and height of the output activation map or feature map, K is the number of filters, and 
K biases are the number of biases.

The mathematical formulation of CNN layers is well explained  in44. During the CNN model training, both 
filter bank parameters and dense layer weights are adjusted throughout the period. The model precisely fits the 
training dataset with the least possible error. Successful implementation of CNN for a given dataset mainly relies 
on the fact that different data domains usually have some standard key features shared across all of its elements 
(such as images). But this is not the case when it comes to generalization in areas with high inter-subject unpre-
dictability like brain signals acquired with EEG, fNIRS, fMRI methodologies, where data differ from subject to 
subject and depend on a lot of external and internal  factors45. The research’s CNN models are based on a feed-
forward CNN architecture comprising pairs of convolution and pooling  layers46. After initial tests on different 
feed-forward CNN architectures, the chosen CNN architecture with complete parameters and structure is shown 
in Fig. 3. A fully connected feed-forward CNN network is selected with two convolution layers, a max-pooling 
layer, followed by a flattening and dense layer. Finally, a fully connected layer ends into the final output layer.

Transfer learning. Since the study is based on homogeneous transfer learning, it is assumed that multiple 
fNIRS sessions previously acquired from different subjects or the same subject on the same or different tasks are 
already acquired. Throughout the literature, various research studies used different terminologies for similar 
concepts of transfer learning, types of transfer learning, and their mathematical formulation like domain adap-
tation, knowledge transfer, and transfer learning; following definition of transfer learning is used in this study:

A domain D consists of two essential parts, a feature space also known as latent space X and a marginal 
probability distribution (MPD) P(X), where feature vectors X = {× 1, . . . , xn} ∈ X. In the case of BCI, the genera-
tion of command is the classification goal, and the channel readings are considered as features, then xi is the ith 
feature vector (instance) corresponding to the ith generated command, n is the numbers of feature vectors in 

(1)Output size (W ,H) =
(N − F)

Stride
+ 1

(2)Parameters = (W ∗H ∗ K)+ K biases

Figure 2.  The experimental paradigm for data acquisition.
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X, and the X is the space of all possible feature vectors. For a given domain D, a task T can be defined as a label 
space Y and a predictive function F < . > . The predictive function F < . > is learned from the feature instance and 
corresponding label pairs [xi, yi] where xi ∈ X and yi ∈ Y. In the BCI problem, Y is the set of labels that might be 
rest, open, close commands, yi takes on one of the command values, and f(x) is the function approximator that 
predicts the label value for the command classification x. From the above definitions, a data domain is given by 
D = [X, P(X)], and a task is provided by T = [Y, F < . >]. Also, for consistency, we will represent source domain data 
as D.S., and by definition, it will be given by D.S. = [(xS1, yS1). . . , (xSn, ySn)], where xSi ∈ X.S. and it is the ith data 
point of D.S. and ySi ∈ Y.S. is the corresponding feature label for xSi. Likewise, the target domain data can be given 
as D.T. where D.T. = [(xT1, yT1). . . , (xTn, yTn)] where xTi ∈ X.T. and it is the ith data point of D.T. and yTi, ∈ Y.T. is 
the corresponding class label for xTi. Now, the source task, the target task, the source predictive function, and 
the target predictive function can be represented by T.S., T.T., F.S. < . > , and F.T. < . > , respectively. Now we can 
define transfer learning as improving the F.T. < . > , target predictive function, by using the gathered information 
from source domain data D.S. and source task T.S., given source domain D.S and target domain D.T. with or 
without target tasks T.T. Transfer learning can be categorized into two types: (1) Homogenous transfer learning 
and (2) Heterogeneous transfer learning. Mathematically, the condition where the source and target domain 
features Xt and Xs are equal for transfer learning is called homogenous transfer  learning47. Whereas the state 
where the source and target domain features Xt and Xs are not similar is called heterogeneous transfer learning. 
Homogenous and heterogeneous transfer learning is also called intra-domain and inter-domain transfer learning, 
respectively. This study performed homogenous transfer learning on fNIRS data and evaluated its performance 
and viability for deep learning networks.

Methodology
The available dataset of 26 participants is divided into three subsets with an approximately 60:20:20 ratio. The 
first 16 participants’ data is used to train the CNN network to learn the task’s domain knowledge. This trained 
network is then used as parameters trained on D.S. transferred to D.T. The validity and viability of transfer learn-
ing are evaluated under the following assumption: the transfer learning efficiently transferred the source domain 
knowledge to the target domain, it required the reduced training iterations for deep learning models, and while 
transferring the learned domain knowledge, the transfer learning increases the achieved classification accuracies. 
We evaluated these assumptions by placing the remaining ten subject data into two groups and named them 
as the baseline and control groups. The baseline group is used for training conventional deep neural network 
models in a standard and widely adapted setting. The aim of this study is to learn the intra-subject varainces 
while performing the same task, as evident in the name homogenous transfer learning. We intended to learn 
features that maximally differentiate the n-back classes (0,2,3-back and rest) for the new subject in least amount 
of training data and time. For the training of the trained CNN network, we performed experiments with 70:30 
split ratio, leave one out (LOO) and tenfold cross-validation methods. The result obtainerd with tenfold cross 
validation results were the best performing one. In contrast, the control group is retrained and fine-tuned on 
the pre-trained CNN model with domain knowledge Ds and Ts from the first 16 participants. The pre-trained 
model is fed with the control group data D.T. and trained with different epochs from 10 up to 60. The differ-
ent experiments were performed for the retraining and fine-tuning process. First of all, the complete learnable 
parameters of the trained CNN were freezed except the last dense layer, and retraining was performed. Next, 
we repeated the same experiment by unfreezing the last two dense layers. The process is repeated up till the first 
convolutional layer. The retraining by unfreezing the last two dense layers yielded the best results and is used 

Figure 3.  The proposed CNN model with input, convolution, max pool, dense, and output layers. Model 
summary includes details about hyperparameters and network architecture.
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in further analysis. These obtained accuracies are compared with the baseline group accuracies. The statistical 
analysis is performed on the obtained accuracies, and the conclusion is discussed in the next section.

Results
Statistical analysis. The statistical analysis was performed between baseline and control groups (refer-
ence). Shapiro–Wilk test is used to gauge the normal distribution of baseline and control groups’ accuracies. It 
is a right-tailed normal distribution criterion with a null and alternate hypothesis as the  H0 (null hypothesis): 
if the population is normally distributed and  H1: if the population is not normally  distributed48. For all epochs, 
the resulting p-value is (probability with data normal distribution with the confidence of 95%) > α (confidence 
level); therefore, the  H0 is accepted. The quantile–quantile or QQ-plot is another method used for a graphical 
illustration of the Shapiro–Wilk test and shows the significance test run on the baseline group as shown in Fig. 4. 
Based on the Shapiro Wilk test results, it became established that the statistical significance measures with other 
scales like t-test and ANOVA are possible on the current accuracies. The paired t-test is calculated with the null 
hypothesis  (H0): There is no significant difference between the baseline and control group accuracies, and the 
p-value > 0.05 and the alternative hypothesis  (H1): the two populations are not equal, a significant difference 
between these accuracies and the p-value < 0.05. The two-tailed P-value (2.443e−8) is less than 0.0001 with the 
degree of freedom (DOF) = 9. By conventional criteria, this difference is considered to be extremely statistically 
significant. After analysis, the t-value comes out to be t = 17.8723 . The null hypothesis  (H0) is rejected with 
p < 0.05, and the alternate hypothesis is accepted.

Findings
This section presents the results of transfer learning for fNIRS-based BCI after experimentation and statistical 
analysis. The first 16 participants’ data is used to train the CNN network to learn the task’s domain knowledge. 
This pre-trained CNN model is used to re-train and fine-tune the learned parameters on the control group. The 
CNN network is trained and tested on both baseline and control groups with tenfold cross-validation. Figure 5 
shows the accuracy of control group subjects with different training epochs (n = 10, 20, 30… 60), while Fig. 6 
shows the accuracy of baseline group subjects trained on the randomly initialized CNN network. Tables 1 and 
2 represent the accuracies of the control group and the baseline group, respectively. Both networks are trained 
with a range of epochs from 10 to 60 with an increment of 10 epochs per step. The optimality of network models 
is measured by the ‘accuracy’ metric that tells the percentage of true positives from all predictions. The average 
accuracies for the control group after each 10 step epochs were 51.42, 63.72, 73.78, 82.76, 90.43, and 94. %, while 
for the baseline group, the average accuracies were 52.14, 63.96, 64.89, 66.13, 67.83, and 68.95%. After 60 epochs, 
the training is stopped because the pre-trained CNN starts over-fitting. The results show that the proposed 
technique successfully transferred the learned knowledge and achieved the maximum accuracy of 97.83%. The 
control group’s saturated accuracy results are obtained earlier than the conventional CNN on the baseline group, 
which significantly reduces the number of training epochs and effectively reduces the time required to train the 
network. The proposed transfer learning method also outperformed the averaged accuracy achieved using the 
learned CNN model over the traditional CNN model by 25.58% in the exact duration of training time as shown 
in Fig. 7. The Keras is used for prototyping with the TensorFlow backend. The networks are trained on Nvidia 
GEFORCE GTX 1060 GPU, having 3 GB VRAM on spyder IDE. The number of neurons, the number of filters, 
the number of layers, their combinations, dropout, and max-pooling percentage, etc., all remain to be at best 
‘hyper parameters’. For this study, the network architecture design process was as follows: create a network with 
a minimum number of parameters, a single convolutional layer, a single pooling layer, and one dense layer, then 
tune other hyperparameters. Add more layers and then tune network hyperparameters with grid search using 
the sklearn wrapper and choose the best performing network.

Machine or deep learning (DL) classifiers are used in various other studies to discriminate various states of 
brain data. The different studies tried to address these challenges by exploiting various methods and algorithms 
while maintaining accuracy and information transfer rate (ITR) in a significant  range7,12,21–23. Deep learning (DL) 
algorithms have been vigorously applied in different BCI studies such as an artificial neural network (ANN)24,25, 
convolutional neural networks (CNN)26,27, deep belief network (DBN)28, long short-term memory (LSTM)29,30, 
and cascade CNN-LSTM31. Although DL algorithms have superior learning capabilities and can address complex 

Figure 4.  The depiction of accuracies normality using QQ plot.
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classification problems, at the same time, these algorithms have posed a unique challenge of Big Data in the 
BCI  domain19. DL’s inherent bottleneck is the requirement of a huge amount of training data and computational 
resources for training deep  networks29. The collection of a very large amount of neuroimaging data is very com-
plicated and expensive in terms of time and resources, making it very hard to develop a substantial-scale, high-
quality marked dataset for DL models’ training. Moreover, it is difficult to approximate probability distributions 
of the feature vectors from low SNR signals, mostly in the case of machine learning (ML) algorithms, where only 
a few trials are performed for multi-dimensional brain signals. All these factors lead to the poor performance of 
trained classifiers on new session data. In this scenario “Transfer learning” proved to be an encouraging approach 
candidate to deal with these problems.

Discussion
Transfer learning aims to produce an efficient model to map the learned knowledge from a source domain task 
to a different but related target domain  task49,50. Training deep learning models only on target tasks may result 
in degraded performance due to insufficient data or labeled instances. Transfer learning improves the model’s 
ability to classify target instances by utilizing the source domain  knowledge54. With the inherent constraints of 

Figure 5.  The accuracies obtained by the learned CNN model on control group subjects at epochs from 10 up 
to 60.

Figure 6.  The accuracies using CNN model on baseline group subjects at epochs from 10 up to 60.
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Table 1.  The accuracies obtained on the control group from a range of epochs up to 60 (with increment of 10).

Control group

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 Epoch 60

Subject 1 49.54 58.51 65.33 74.61 89.16 95.36

Subject 2 45.20 59.75 73.37 80.80 86.38 91.95

Subject 3 44.58 53.87 67.80 69.66 84.52 91.64

Subject 4 63.78 64.09 65.02 90.71 93.19 95.67

Subject 5 52.94 73.68 83.59 94.74 96.90 96.59

Subject 6 59.75 68.73 77.71 84.52 95.05 93.19

Subject 7 52.01 71.52 77.40 85.14 88.24 95.05

Subject 8 39.32 61.61 74.61 84.21 88.24 96.59

Subject 9 59.75 63.16 74.61 77.40 89.47 91.33

Subject 10 47.37 62.23 78.33 85.76 93.19 97.83

Table 2.  The accuracies with CNN on the baseline group from a range of epochs up to 60 (with an increment 
of 10).

Baseline group

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 Epoch 60

Subject 1 42.11 66.25 63.78 59.44 68.73 71.83

Subject 2 55.11 67.18 69.35 70.59 76.16 74.61

Subject 3 58.20 60.37 60.99 64.09 63.78 60.68

Subject 4 53.87 64.40 67.49 72.14 72.45 67.49

Subject 5 48.61 66.25 64.09 64.40 69.04 66.87

Subject 6 48.61 65.02 67.80 64.71 73.68 68.42

Subject 7 53.56 62.54 59.75 67.80 67.18 66.56

Subject 8 52.32 59.75 65.02 67.80 68.11 70.59

Subject 9 53.25 67.18 65.63 66.87 59.44 72.45

Subject 10 55.73 60.68 65.02 63.47 59.75 69.97

Figure 7.  The comparison between accuracies acquired on control and baseline group via learned CNN and 
randomly initialized CNN network.
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collecting neuroimaging data and the high training iterations for deep learning models in BCI, transfer learn-
ing provides promising results. The collection of neuroimaging data is very complicated and expensive both in 
terms of time and resources, making it very hard to develop a substantial-scale, high-quality marked dataset for 
the training of deep learning models.

Usually while using machine learning algorithms on multi-dimensional brain signals, it is often difficult to 
approximate probability distributions of the features from low SNR signals with only a few trials. However, in this 
case the model’s ability to classify target instances can be improved by enhancing the training with supplementary 
labeled data from a related source domain. In last few years, various researchers have tested different transfer 
learning approaches on EEG-based  BCI20,32–34. But the real challenge arises while distinguishing inherent cross-
domain noise due to the varied distributions from the beneficial knowledge in a source domain and then applying 
that knowledge to a target domain. According to literature, transfer learning can be split into two main categories 
according to the feature space: homogeneous and heterogeneous transfer  learning55. In homogeneous transfer 
learning, the feature spaces of the source and target domains is of the same dimension (Ds = Dt) while the data 
of both domains is represented by the same attributes (Xs = Xt) and labels (Ys = Yt). Thus, homogeneous transfer 
learning aims to bridge the gap in the data distributions experienced during cross-domain  transfer55. While, in 
Heterogeneous Transfer Learning, the feature spaces between the source and target are non-equivalent and are 
non-overlapping i.e., Xs ≠ Xt and/or Ys ≠ Yt. The source and target domains may share no features or labels, and 
the feature spaces’ dimensions also may differ. Thus, for cross-domain transfer, Heterogeneous Transfer Learn-
ing requires feature and label space transformations to bridge the gap for knowledge transfer and to handle the 
cross-domain data distribution differences.

For EEG-based BCI, both homogenous and heterogeneous transfer learning approaches are used in lit-
erature i.e., instance-based, feature-based, and parameter-based transfer  learning7,19,49. Every transfer learning 
approach focuses on improving target prediction function using source and target domain data differently. Like, 
the instance-based transfer learning approach assumes that although the entire source domain cannot be used 
directly but some source domain data can be re-used for learning the target domain i.e., by combining the few 
target labeled data with some instances from the source domain, by some weight adjustments, if needed. While, 
the feature-representation transfer learning approach focuses on improving the construction of feature space for 
the target domain using the source domains’ data instead of combining target labeled data with source domain 
data to improve target prediction  function19. The performance of the target task is thus enhanced by minimizing 
classification errors. Lastly, the parameter-based transfer learning relates target domain with ethe source domain 
by assuming that parameters and prior distributions are shared between the source’s functions and target tasks 
thus can be transferred to the target prediction function resulting in reduction of the classification errors.

In most of the transfer learning BCI approaches, some sort of knowledge is transferred between a source 
and target domain either by (i) finding some structure in the data that is invariant across datasets and known as 
stationary information transferred, (ii) finding some structure in a way the decision rules differ between different 
subjects and known as discriminative information  transfer37. Here, the focus is on constructing discriminative 
systems by exploiting the features, filters, and classifiers to transfer stationary information. While in the case of 
discriminative information transfer, the aim is to construct more invariant systems that rely on common infor-
mation across the source and target  domains56. Due to the popularity of machine learning algorithms in BCI, 
various researchers opted for experimentation with transfer learning for the machine learning  classifiers7,20,33,36. 
 In20, authors proposed an instance-based transfer learning method, namely Bagged importance-weighted LDA 
(Bagged IWLDA), based on the covariant shift adaptation method. The purpose was to reduce the non-station-
arities present in the recording of the different sessions. Another  study33 proposed an instance-based transfer 
learning method based on active transfer learning (ATL) to transfer particular instances i.e., to find the most 
informative samples for labeling. This approach results a higher performance learning process with less labeling 
effort. In  literature7,36 researchers have proposed different feature-based transfer learning methods for EEG-based 
BCI studies. Among all the presented methods in literature, spatial filters are most commonly used to learn the 
new feature representation for BCI transfer learning. Over the years different algorithms are designed to com-
pute spatial features. While, Common Spatial Patterns (CSP), is the most commonly used algorithm of all for 
extracting discriminative features from EEG signals. Despite of its popularity among the researchers, the main 
bottleneck is its overfitting when there are only a few trials of data is available for training. Therefore, different 
improved approaches for CSP were proposed to overcome this limitation.  In7  and36, linear discriminant analysis 
and stationary subspace-based CSPs were proposed, respectively. More precisely, it was proposed that using the 
data from a subset of source subjects could improve the CSP covariance matrix estimation. These studies showed 
that by using smart methods alongside CSP, this problem could be overcome.

This study proposed a novel symmetric homogeneous feature-based transfer learning methodology in the 
classification realm to increase the fNIRS-based BCI performance by reducing the training time, addressing the 
problem of insufficient data, and increasing the accuracy. The symmetric homogeneous feature-based transfer 
learning is applied in the following steps: A deep learning convolutional neural network (CNN) model is trained 
on multi-subject data acquired with the fNIRS system from subjects during Mental workload “n-back” tasks. 
Second, the trained CNN model parameters are transferred to train and fine-tune the unseen subjects’ data. Last, 
the transferred model’s learned feature space is utilized to regularize the re-training and fine-tuning process. The 
results confirmed that the proposed technique successfully transferred the learned knowledge and achieved the 
maximum accuracy of 96.5% with 20 epochs earlier than the conventional DNN method. The proposed transfer 
learning method also outperformed the averaged accuracy achieved using the learned CNN model over the 
traditional CNN model by 24.5% in the same duration of training time.
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Conclusion
In this research study, a feature-based homogenous transfer learning approach was explored for the classification 
domain to reduce the training and calibration time for the fNIRS-based BCI systems. We evaluated the validity 
and viability of transfer learning for the fNIRS-based BCI systems under the following different assumptions. 
First, the transfer learning efficiently transferred the source domain knowledge to the target domain and required 
reduced training iterations for deep learning models. Second, transfer learning minimizes the need for a large 
amount of data needed for training deep learning models for the target domain. We used 16 subjects to train the 
CNN network and named it a ‘learned CNN’ network that learns the source domain knowledge of the n-back 
dataset. Further, we split the remaining ten subjects into two groups, i.e., the control and baseline group. The 
control group is trained with the learned CNN network and baseline with a randomly initialized CNN network, 
and their accuracies are compared using statistical analysis. The results suggested that applying the proposed 
feature-based transfer learning algorithms could achieve the maximum saturated accuracy sooner than the 
baseline group, which reduces the training time. The proposed transfer learning method also outperformed 
the averaged accuracy achieved using the novel learned CNN model (94.52%) over the traditional CNN model 
(68.94%) by 25.58%. Thus, the proposed transfer learning methodology for fNIRS is a promising solution for 
both the problems of increased training iterations for deep learning models and limited training datasets for BCI.

The classification of different brain activities and training time of BCI models would remain an area of con-
cern, leaving room for more research in using transfer learning methodology for fNIRS-based BCI. This study 
utilized the data acquired on the same task from different subjects. Future research work may explore the domains 
of the intrasession BCI dataset with heterogeneous transfer learning approaches. Additional experimentation of 
transfer learning for deep neural networks (DNN) designed explicitly for time-series data such as Long Short-
Term Memory (LSTM) may be used to explore more optimal results with DNN compared to other machine 
learning classifiers. This study serves as a baseline study for future transfer learning research in fNIRS-based BCI.
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