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Development and clinical 
application of a deep learning 
model to identify acute infarct 
on magnetic resonance imaging
Christopher P. Bridge1,2,3,4,10, Bernardo C. Bizzo1,2,3,4,5,9,10*, James M. Hillis1,3,6, John K. Chin1, 
Donnella S. Comeau1, Romane Gauriau1, Fabiola Macruz1, Jayashri Pawar1, Flavia T. C. Noro1, 
Elshaimaa Sharaf1, Marcelo Straus Takahashi5, Bradley Wright1, John F. Kalafut7, 
Katherine P. Andriole1,3,8, Stuart R. Pomerantz1,3,4, Stefano Pedemonte1,11 & R. Gilberto Gon
zález1,2,3,4,11

Stroke is a leading cause of death and disability. The ability to quickly identify the presence of acute 
infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment 
implications. We developed a machine learning model that used the apparent diffusion coefficient and 
diffusion weighted imaging series. It was trained on 6,657 MRI studies from Massachusetts General 
Hospital (MGH; Boston, USA). All studies were labelled positive or negative for infarct (classification 
annotation) with 377 having the region of interest outlined (segmentation annotation). The different 
annotation types facilitated training on more studies while not requiring the extensive time to 
manually segment every study. We initially validated the model on studies sequestered from the 
training set. We then tested the model on studies from three clinical scenarios: consecutive stroke 
team activations for 6-months at MGH, consecutive stroke team activations for 6-months at a hospital 
that did not provide training data (Brigham and Women’s Hospital [BWH]; Boston, USA), and an 
international site (Diagnósticos da América SA [DASA]; Brazil). The model results were compared to 
radiologist ground truth interpretations. The model performed better when trained on classification 
and segmentation annotations (area under the receiver operating curve [AUROC] 0.995 [95% CI 0.992–
0.998] and median Dice coefficient for segmentation overlap of 0.797 [IQR 0.642–0.861]) compared to 
segmentation annotations alone (AUROC 0.982 [95% CI 0.972–0.990] and Dice coefficient 0.776 [IQR 
0.584–0.857]). The model accurately identified infarcts for MGH stroke team activations (AUROC 0.964 
[95% CI 0.943–0.982], 381 studies), BWH stroke team activations (AUROC 0.981 [95% CI 0.966–0.993], 
247 studies), and at DASA (AUROC 0.998 [95% CI 0.993–1.000], 171 studies). The model accurately 
segmented infarcts with Pearson correlation comparing model output and ground truth volumes 
between 0.968 and 0.986 for the three scenarios. Acute infarct can be accurately detected and 
segmented on MRI in real-world clinical scenarios using a machine learning model.

Acute ischemic stroke is a significant cause of global morbidity and mortality1–3. Diffusion-weighted imaging 
(DWI) on magnetic resonance imaging (MRI) is highly accurate for diagnosing ischemic stroke shortly after 
symptom onset4, and the DWI lesion volume is used as a selection criterion for endovascular thrombectomy5–9. 
The selection of patients using MRI compared with CT doubles the likelihood of functional independence and 
results in fewer futile thrombectomies10,11.
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Machine learning, which involves a computer mathematical model learning to perform specific tasks from 
existing data, is predicted to play an increasing role in clinical care12. It has already been applied to acute stroke 
computed tomography (CT) imaging interpretation including for hemorrhage identification, large vessel occlu-
sion identification and ischemic core volume estimation13–20. For MRI, it has mainly been used in the context of 
stroke to automate segmentation of infarcted regions21–30. It has also been used to predict stroke onset time and 
hemorrhagic transformation on MRI31–33.

We sought to develop a machine learning model that would output the binary presence of an infarct and its 
segmented region. This model would therefore benefit clinicians by rapidly identifying studies with an infarct 
and quantifying the infarct size. In developing it, we used a combination of supervision types to leverage a 
greater quantity of training data34. We then validated this model on ‘real-world’ stroke data through identifying 
consecutive stroke presentations at two US academic medical centers including one that training data was not 
obtained from. We also validated the model on data obtained from an international site.

Results
Model development.  We used machine learning to train a model that detects acute infarct (Fig. 1; Sup-
plementary Fig. S1). The model calculates the probability of infarct in each voxel within an MRI study. The 
presence of any voxel with a probability above a given operating point causes the entire study to be classified 
positive. The amalgamated positive voxels output as a segmented region providing infarct visualization and 
volume quantification.

The primary dataset consisted of MRI studies from an academic medical center and its affiliated satellites. 
The data were allocated to a training set, validation set and primary test set (Table 1; Supplementary Table S1 for 
scanner manufacturers and models). The validation set allowed optimization of model hyperparameters includ-
ing selecting an appropriate operating point. We decided that an operating point of 0.5 provided an appropriate 
balance between sensitivity and specificity for clinical use (96.5% and 97.5% respectively on the validation set; 
Supplementary Table S2). We used this operating point for subsequent experiments.

Our machine learning architecture utilized two specific strategies to improve performance. Firstly, it included 
two annotation types: slice-level segmentation of the infarcted region and study-level classification of infarct 
presence. The segmentations provided the model with more information about individual cases but were time 
intensive to create, while the classification annotations exposed the model to a greater number of cases. This 
strategy improved AUROC for the validation set from 0.982 (95% CI 0.972–0.990) when trained on only the 
segmentation studies to 0.995 (95% CI 0.992–0.998) when trained on both the segmentation and classification 
studies (Table 2). The median Dice coefficient for overlap of ground truth and model output segmentations 
improved from 0.776 (interquartile range [IQR] 0.584–0.857) to 0.797 (IQR 0.642–0.861). Secondly, the model 
incorporated both ADC and DWI series given both are required clinically to determine restricted diffusion. The 
model performed with AUROC 0.954 (95% CI 0.939–0.968) on the validation set when using only ADC series, 
0.991 (95% CI 0.985–0.996) when using only DWI series and 0.995 (95% CI 0.992–0.998) when using both series. 
The median Dice coefficient was 0.598 (IQR 0.444–0.736) with only ADC series, 0.787 (IQR 0.650–0.863) with 
only DWI series and 0.797 (IQR 0.642–0.861) with both series.

The finalized model was evaluated on the primary test set. It performed with AUROC 0.998 (95% CI 
0.995–0.999; Fig. 2a), sensitivity 98.4% (95% CI 97.1–99.5%) and specificity 98.0% (95% CI 96.6–99.3%) for 
infarct detection. The median Dice coefficient was 0.813 (IQR 0.727–0.863) and the Pearson correlation coef-
ficient for the segmentation volumes was 0.987 (Fig. 2b). The inference time was less than 20 s for all studies in 
the primary test set and subsequent test sets.

Stroke code test set performance.  As balanced datasets can differ from real-world clinical scenarios, 
the model was next evaluated on MRI studies performed after ‘stroke code’ activations12. These activations reflect 
group pager messages to mobilize team members including neurology, radiology and pharmacy after a patient 
presents with stroke symptoms. Approximately half of these patients ultimately have an infarct. We obtained the 
activations over a six-month period from two hospitals including the hospital that training data was obtained 
from (‘training hospital’) and a hospital that training data was not obtained from (‘non-training hospital’).

The training hospital had 598 stroke codes for which 396 MRI studies occurred and 381 met model inclusion 
criteria (Supplementary Fig. S2; Supplementary Table S3 for manufacturers and models). There were 168 posi-
tive studies (44.1%). The model performed with AUROC 0.964 (95% CI 0.943–0.982), sensitivity 89.3% (95% 
CI 84.5–93.9%) and specificity 94.8% (95% CI 91.7–97.6%) for classification (Fig. 3a). The model also outputted 
segmented infarct regions (Supplementary Fig. S3). The model volume quantification had Pearson correlation 
0.968 compared with the averaged reader volume (Fig. 3b and Supplementary Fig. S4). The Bland–Altman analy-
sis between the averaged reader and model volumes provided a difference of − 0.4 mL (95% CI − 6.9 to + 6.1 mL) 
for infarcts less than 70 mL and − 1.5 mL (95% CI − 27.0 to + 24.0 mL) for all infarcts (Supplementary Fig. S5). 
The overlap of segmented regions was similar for the model compared to each reader as it was between readers: 
the median Dice coefficient was 0.726 (IQR 0.568–0.803) for model versus reader 1, 0.709 (IQR 0.551–0.793) 
for model versus reader 2, 0.727 (IQR 0.598–0.813) for reader 1 versus reader 2. The model performed similarly 
on GE and Siemens scanners with AUROCs 0.962 (95% CI 0.938 to 0.982) and 0.997 (95% CI 0.981 to 1.000) 
respectively. While two patients were excluded from the final analysis due to age < 18 years, the model correctly 
predicted both studies as negative.

The non-training hospital had 494 stroke codes for which 255 MRI studies occurred and 247 met model 
inclusion criteria (Supplementary Fig. S6; Supplementary Table S3 for manufacturers and models). There were 
128 positive studies (51.8%). The model performed with AUROC 0.981 (95% CI 0.966–0.993), sensitivity 96.1% 
(95% CI 92.3–99.2%) and specificity 86.6% (95% CI 80.2–92.3%) for classification (Fig. 3c). The model volume 
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Figure 1.   Model design and development: (a) The structure for development and inference of a runtime model 
including incorporation of both DWI and ADC sequences as well as both classification and segmentation 
annotations. The shading of voxel level probabilities uses an operating point of 0.5. (b) The training process for 
a single batch of DWI and ADC pairs from 8 studies. A batch consisted of 2 segmented positive studies, 2 non-
segmented positive studies and 4 negative studies, which involved oversampling of segmented studies. A Dice 
segmentation loss was applied for the segmented positive studies and negative studies using the segmentation 
output masks. In addition to the segmentation output, a classification output was produced by a global max-
pooling operation on the output masks. A binary cross-entropy loss was then applied for all examples in the 
batch using the classification output.
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quantification had Pearson correlation 0.986 compared with the averaged reader volume (Fig. 3d; Supplementary 
Fig. S7). The Bland–Altman analysis between the averaged reader and model volumes provided a difference of 
− 3.1 mL (95% CI, – 14.4 to + 8.2 mL) for infarcts less than 70 mL and − 6.1 mL (95% CI − 31.2 to + 19.0 mL) 
for all infarcts (Supplementary Fig. S8). The overlap of segmented regions was similar for the model compared 
to each reader as it was between readers: the median Dice coefficient was 0.658 (IQR 0.480–0.750) for model 
versus reader 1, 0.652 (IQR 0.473–0.770) for model versus reader 2, 0.682 (IQR 0.592–0.770) for reader 1 versus 
reader 2. The model performed similarly on GE and Siemens scanners with AUROCs 0.988 (95% CI 0.960 to 
1.000) and 0.979 (95% CI 0.960 to 0.993) respectively.

We reviewed the false negative and false positive studies from the training hospital and non-training hospital. 
The majority of false negative studies were for infarcts that were less than 1 mL (14 out of 18 studies at the training 
hospital and 2 out of 5 studies at the non-training hospital; Fig. 4a and Supplementary Fig. S9a). The remaining 
false negative studies were felt secondary to subtle ADC hypointensity (4 studies) and atypical infarcts (1 study 
for each of air embolism etiology, venous etiology and atypical hippocampal location; all studies displayed in 
Supplementary Fig. S9b–e). Overall false negative studies had smaller infarct sizes compared to true positive 
studies (mean averaged reader volume 12.3 mL for false negatives and 26.4 mL for true positives; Spearman 
correlation between classification probability and volume of 0.764, p < 0.001; Fig. 4a). The false positive studies 
mostly reflected ‘mimics’ of acute infarct including hemorrhage and tumor (Supplementary Fig. S10). We found 
one ‘false positive’ punctate infarct that the readers labelled negative, but on review was more evident on an MRI 
performed three days later and should have been labelled positive (Supplementary Fig. S10d); its ground truth 
was not updated given the ground truth interpretations were locked prior to comparison with model outputs.

We also obtained the National Institutes of Health Stroke Scale (NIHSS), last seen well time (when a patient 
last had no symptoms) and symptom onset time (when a patient first had symptoms) for patients with an infarct, 
in order to stratify model performance by these clinical variables (Fig. 4b–d). Overall false negative studies were 
more likely to have a lower NIHSS (average NIHSS 5.1 for false negative studies and 8.7 for true positive stud-
ies; Spearman correlation between classification probability and NIHSS of 0.442, p < 0.001), shorter duration 
between the MRI and last seen well time (average interval 8.2 h for false negative studies and 17.5 h for true 
positive studies; Spearman correlation 0.291, p < 0.001), and shorter duration between the MRI and symptom 
onset time (average interval 6.8 h for false negative studies and 14.4 h for true positive studies; Spearman cor-
relation 0.271, p < 0.001).

International test set performance.  To further demonstrate the generalizability of our model, we tested 
it on 171 MRI studies, including 70 positive studies (40.9%), obtained from Brazil. The initial dataset contained 
an additional 6 studies that were excluded (2 with no DWI/ADC series; 4 non-diagnostic with significant motion 
or metal artifact). The model performed with AUROC 0.998 (95% CI 0.993–1.000), sensitivity 100% (95% CI 
100–100%) and specificity 98.0% (95% CI 94.9–100%) for classification (Fig. 5a). The model volume quantifica-
tion had Pearson correlation 0.980 compared with the averaged reader volume (Fig. 5b; Supplementary Fig. S11). 
The Bland–Altman analysis between the averaged reader and model volumes provided a difference of − 1.6 mL 
(95% CI − 8.1 to + 4.9 mL) for infarcts less than 70 mL and − 3.9 mL (95% CI − 23.1 to + 15.4 mL) for all infarcts 
(Supplementary Fig. S12). The overlap of segmented regions was similar for the model compared to each reader 

Table 1.   Dataset details: the properties of the datasets that were used for model training and testing.

Training set Validation set Primary test set Stroke code test sets

International 
test setClassification Segmentation Classification Segmentation Classification Segmentation

Training 
hospital

Non-training 
hospital

Number of 
studies 6657 377 725 34 792 62 381 247 171

Number of posi-
tive studies (%) 3314 (49.8%) All 372 (51.3%) All 384 (48.5%) All 168 (44.1%) 128 (50.2%) 70 (40.9%)

Time period of 
studies

01/2004–
05/2018

01/2004–
05/2018

01/2007–
05/2018

02/2007–
05/2018

01/2007–
05/2018

03/2007–
05/2018

07/2018–
01/2019

07/2018–
12/2018

01/2017–
07/2019

Number of stud-
ies on female 
patients (%)

3445 (51.8%) 176 (46.7%) 374 (51.6%) 17 (50.0%) 404 (51.0%) 26 (41.9%) 193 (50.7%) 129 (52.2%) 101 (59.1%)

Mean age in 
years ± stand-
ard deviation 
(range)

60.7 ± 18.0 
(18–104)

68.1 ± 14.6 
(18–102)

60.8 ± 17.7 
(18–101)

67.4 ± 18.4 
(26–96)

60.5 ± 18.4 
(18–102)

68.2 ± 15.8 
(26–99)

65.9 ± 16.5 
(19–98)

67.6 ± 17.2 
(22–97)

46.7 ± 21.1
(18–95)

Median infarct 
volume in mL 
(interquartile 
range; range)

–
6.42 
(0.61–33.28; 
0.02–333.06)

–
6.38 
(1.42–36.03; 
0.06–276.38)

–
5.57 
(0.78–56.88; 
0.03–308.78)

2.73 
(0.47–12.98; 
0.04–403.16)

6.12 
(1.03–43.47; 
0.10–442.80)

3.01 (0.75–14.54; 
0.07–255.20)

Number of 
studies on GE 
scanners

5233 349 568 31 618 57 345 52 Unavailable

Number of stud-
ies on Siemens 
scanners

1424 28 157 3 174 5 36 196 Unavailable
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Table 2.   Results summary: The model results obtained during training and testing. As there were two ground 
truth readers for the stroke code and international test sets, there are three Dice coefficients (reader 1 vs model 
[R1 vs M], reader 2 vs model [R2 vs M] and reader 1 vs reader 2 [R1 vs R2]); the Pearson coefficient for these 
test sets is calculated for averaged reader volume vs model volume.

AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Median Dice coefficient for region 
correlation (IQR)

Pearson coefficient for 
volume correlation

Training modifications (performance on validation set)

Segmentation studies only 
(no classification studies) 0.982 (0.972–0.990) 95.4% (93.2–97.4%) 93.8% (91.1–96.2%) 0.776 (0.584–0.857) 0.988

ADC series only (no DWI 
series) 0.954 (0.939–0.968) 85.5% (81.8–89.0%) 95.2% (92.9–97.3%) 0.598 (0.444–0.736) 0.951

DWI series only (no ADC 
series) 0.991 (0.985–0.996) 95.7% (93.5–97.7%) 96.9% (94.9–98.6%) 0.787 (0.650–0.863) 0.984

Final model 0.995 (0.992–0.998) 96.5% (94.5–98.2%) 97.5% (95.6–98.9%) 0.797 (0.642–0.861) 0.987

Test set performance

Primary test set 0.998 (0.995–0.999) 98.4% (97.1–99.5%) 98.0% (96.6–99.3%) 0.813 (0.727–0.863) 0.987

Training hospital stroke code test set

     GE 0.962 (0.938–0.982) 88.2% (82.7–93.1%) 95.3% (92.2–98.0%)

R1 vs M 0.726 (0.563–0.801)

0.987R2 vs M 0.705 (0.551–0.792)

R1 vs R2 0.727 (0.590–0.811)

     Siemens 0.997 (0.981–1.000) 100.0% (100.0–100.0%) 90.0% (75.0–100.0%)

R1 vs M 0.727 (0.622–0.810)

0.994R2 vs M 0.742 (0.594–0.802)

R1 vs R2 0.752 (0.634–0.838)

     Overall 0.964 (0.943–0.982) 89.3% (84.5–93.9%) 94.8% (91.7–97.6%)

R1 vs M 0.726 (0.568–0.803)

0.968R2 vs M 0.709 (0.551–0.793)

R1 vs R2 0.727 (0.598–0.813)

Non-training hospital stroke code test set

     GE 0.988 (0.960–1.000) 100.0% (100.0–100.0%) 78.3% (60.0–94.4%)

R1 vs M 0.660 (0.509–0.811)

0.978R2 vs M 0.667 (0.468–0.791)

R1 vs R2 0.683 (0.587–0.822)

     Siemens 0.979 (0.960–0.993) 94.9% (90.2–99.0%) 88.5% (81.8–94.5%)

R1 vs M 0.649 (0.461–0.732)

0.989R2 vs M 0.637 (0.488–0.765)

R1 vs R2 0.681 (0.594–0.755)

     Overall 0.981 (0.966–0.993) 96.1% (92.3–99.2%) 86.6% (80.2–92.3%)

R1 vs M 0.658 (0.480–0.750)

0.986R2 vs M 0.652 (0.473–0.770)

R1 vs R2 0.682 (0.592–0.770)

International test set 0.998 (0.993–1.000) 100.0% (100.0–100.0%) 98.0% (94.9–100.0%)

R1 vs M 0.686 (0.503–0.776)

0.980R2 vs M 0.683 (0.519–0.762)

R1 vs R2 0.714 (0.604–0.813)

Figure 2.   Model performance on primary test set: (a) Receiver operating characteristic curve for the primary 
test set including operating point of 0.5. (b) Volume plot comparing true (radiologist annotated) with predicted 
(model output) volumes for the primary test set.
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as it was between readers: the median Dice coefficient was 0.686 (IQR 0.503–0.776) for model versus reader 1, 
0.683 (IQR 0.519–0.762) for model versus reader 2, 0.714 (IQR 0.604–0.813) for reader 1 versus reader 2.

Discussion
We sought to develop a machine learning algorithm that would both detect and segment acute infarcts on MRI 
imaging. We then demonstrated the effectiveness of this algorithm in three clinical scenarios including two stroke 
code test sets (at training and non-training hospitals) and an international test set.

The majority of published MRI acute infarct machine learning models focus on segmentation with Dice 
coefficients between 0.57 and 0.8621–30,35. Our model performed similarly with median Dice coefficients between 
0.652 and 0.813 for the four test sets. Importantly, the median Dice coefficients between our model and radiolo-
gists were also within 5% of the median inter-reader Dice coefficients suggesting concordance with radiologist 
segmentations. Classification is reported less frequently amongst published models; a recent study reported 
sensitivity 91% and specificity 75% while our model had sensitivity between 89.3 and 100.0%, and specificity 
between 86.6% and 98.0% for the test sets35.

A key clinical benefit of this model is rapid interpretation of MRI studies performed for acute stroke to 
enable rapid treatment decisions. This interpretation includes infarct volume quantification, which is a selec-
tion criterion for extended window endovascular thrombectomy7,8. The model may also be used for real-time 
study interpretation to prioritize studies for interpretation by a radiologist or to suggest additional studies, such 
as magnetic resonance angiography, while a patient remains in an MRI scanner. A possible future application 
involves registering the infarcted regions to an anatomic atlas to investigate whether infarcts in specific brain 
regions impact prognosis.

This paper used two types of annotation as part of the machine learning model design. The slice-level infarct 
segmentations were time intensive to create but provided the model with explicit regions of interest from which 
to learn. The study-level classifications took less time to create and could be performed for a greater number of 
studies. The classification performance of the model improved when classification annotations were included 
in addition to segmentations (AUROC 0.982 to 0.995 on the validation set). Remarkably the segmentation per-
formance of the model also improved (median Dice coefficient 0.776 to 0.797) without the addition of further 
segmentation studies. This strategy could be further explored for the development of imaging-based algorithms 
to overcome extensive annotation needs, which are often a rate-limiting step.

Another important strategy involved using both the DWI and ADC series, as others have also reported24,30. 
In our results, it improved both the classification and segmentation performance when compared to only one of 
these series. We see this technique of combining spatially aligned series that provide complementary informa-
tion as being crucial for providing more complex machine learning interpretations of MRI studies. For example, 
evaluation of tumors could benefit from interpretation of T2-FLAIR and T1 post-contrast series concurrently 
for better differentiation of findings such as edema and necrosis.

One of the biggest limitations with machine learning models is their ability to generalize to new types of 
data including geography, demography and technical parameters (such as scanner manufacturer and model). 
We sought to address this concern through demonstrating the model performance on an international test set. 

Figure 3.   Model performance on stroke code test sets: (a, b) Training hospital stroke code receiver operating 
characteristic curve (a) and volume plot comparing averaged reader volume with model output volume (b; 
with magnified view of 0–70 mL on the right). (c, d) Non-training hospital stroke code receiver operating 
characteristic curve (c) and volume plot comparing averaged reader volume with model output volume (d; with 
magnified view of 0–70 mL on the right).
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Figure 4.   Model performance based on clinical scenario for stroke code test sets: (a–d) Histograms 
demonstrating the number of true positive (TP) and false negative (FN) studies for different ground truth 
volumes (a), NIH Stroke Scales (b), time intervals between last seen well and MRI (c), and time intervals 
between symptom onset and MRI (d). The images from the false negative studies with ground truth 
volume > 1 mL are included in Supplementary Fig. S9. As an example of the time intervals, a patient who 
presents at 8 am having gone to sleep without symptoms at 10 pm and woken with symptoms at 6 am will have 
time from last seen well of 10 h and time from symptom onset of 2 h.

Figure 5.   Model performance on international test set: (a) Receiver operating characteristic curve for the 
international test set. (b) Volume plot comparing averaged reader volume with model output volume for the 
international test set.
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The model actually performed better on this test set, which we attribute to fewer small strokes (with subsequent 
fewer false negatives) and fewer stroke mimics (with subsequent fewer false positives) compared to the stroke 
code test sets. Prior to clinical use, the model will require more rigorous evaluation on further data in addition 
to obtaining market clearance by global regulators.

Conclusions
This model provides accurate detection and segmentation of acute infarct that should enhance the interpretation 
of MRI studies in the acute stroke clinical environment.

Methods
Institutional review board.  This retrospective study was HIPAA-compliant and approved with waived 
patient consent by the Partners HealthCare System (now Mass General Brigham) Institutional Review Board 
and the Centralized Brazilian Human Research Ethics Evaluation System (Plataforma Brasil) through Hospital 
Geral do Grajaú—Associação Congregação de Santa Catarina. This study was conducted in accordance with 
relevant local guidelines and regulations.

Primary dataset.  The cohort for model development was identified by searching for MRI brain studies in 
the radiology archive at a US academic medical center, which was a regional telestroke network hub, and its affil-
iated satellite locations. The study reports were parsed using natural language processing to identify studies that 
were positive or negative for acute infarct. Parsing methods included keyword and sentence matching, and crea-
tion of a simple text classifier based on N-grams and Support Vector Machines. The axial DWI B-1000 and ADC 
series with slice thickness ≤ 5 mm were isolated using an early version of a published series selection tool (criteria 
in Supplementary Table S4)36. A radiologist then assessed all studies to ensure correct binary classification (for 
infarct presence or absence) and appropriate series selection. Studies were excluded if they were non-diagnostic 
(for example, due to severe metal or motion artifact) or contained acute infarct mimics (non-ischemic causes of 
restricted diffusion including hemorrhage). The primary dataset was split approximately 80/10/10% into train-
ing, validation and test sets. This split was performed randomly, although a small number of > 70 mL infarcts 
were later added to only the test set to better assess its accuracy in detecting infarcts > 70 mL (the test set had a 
total of 14 infarcts > 70 mL). The dataset demographics are summarized in Table 1.

A subset of studies with infarct from the primary dataset underwent manual segmentation of the restricted 
diffusion region. Radiologists performed these segmentations on individual axial slices using Osirix MD version 
9.0 or above (https://​www.​osirix-​viewer.​com/). Both the DWI and ADC series were used for the identification 
of restricted diffusion, with prioritization of the ADC series given possible T2 shine-through effects on DWI. 
Segmentations were converted into Neuroimaging Informatics Technology Initiative (NIfTI) masks for machine 
learning algorithm training and testing.

Stroke code test sets.  Two test sets were created from stroke team activations (‘stroke codes’) at two US 
academic medical centers that were hubs for regional telestroke networks. One of these academic medical cent-
ers was the source of the primary dataset (‘training hospital’) and the other was not (‘non training hospital’). 
All consecutive stroke codes between July 1 2018 and December 31 2018 were identified using pager system 
records. Individual pager messages were matched to medical record numbers (MRNs) using radiologic and 
clinical records. The MRNs were then matched to MRI brain studies that occurred from 1 h before to 3 days 
after the pager message was sent. For patients with multiple studies, the first study during the time period was 
used. Clinical data were acquired from the electronic medical record. Studies underwent the same series selec-
tion process as the primary dataset. Each study was separately annotated by two radiologists. The annotations 
included classification for presence or absence of acute infarct, and segmentation of the infarct region when 
present. When the two radiologists disagreed on the classification of a study, the study was reviewed by a third 
radiologist who made the final decision; if a classification changed from the absence to presence of acute infarct 
then the original radiologist who had marked the study as negative was asked to reassess the image and segment 
the infarct region. The annotations used the same software and file formats as the primary dataset.

International test set.  The international test set was obtained from two large hospitals in Brazil. The stud-
ies, which were also used for a separate CT model (results unpublished), were identified by searching for paired 
head CTs and MRIs between 2017 and 2019. Studies were selected using a natural language processing tool if the 
report included clinical suspicion for stroke or finding of acute infarct. The report and images were reviewed by 
a radiologist for appropriateness. Studies were annotated by two neuroradiologists with a third arbitrating in a 
similar manner to the stroke code test sets.

Model development.  The neural network architecture used was based on the popular 3D UNet segmenta-
tion model (Supplementary Fig. S1)37,38. The input to the network was an array consisting of two channels that 
contained the DWI and ADC series. Each series was resized to 256 × 256 × n as appropriate where n was the 
original number of slices in the acquired series. The sizes of the convolutional layers are provided in Supplemen-
tary Fig. S1. The convolutional layers, with the exception of the output convolutional layer, used a 3 × 3 × 3 kernel 
and were followed by both a batch normalization layer and “leaky ReLU” activation function with α slope coef-
ficient of 0.339. The output convolutional layer used a 1 × 1 × 1 kernel and was followed by a sigmoid activation 
function. The output of the network was a 256 × 256 × n segmentation mask. During downsampling, the image 
was max-pooled by a factor of 2 in the x and y dimensions (the two dimensions within the axial imaging plane); 

https://www.osirix-viewer.com/
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the full resolution in the z dimension was maintained. The reverse pattern was used for the upsampling layers. 
The network could therefore function on images with an arbitrary number of axial slices, avoiding resampling 
in the z dimension which otherwise was found to make small infarcts less obvious. The classification prediction 
for the study, which constituted a second network output, was found with a global max-pooling operation on the 
segmentation mask (i.e. if any pixel in the segmentation mask was positive then the entire study was considered 
positive for acute infarct). The volume prediction for the study was calculated from the aggregation of positive 
pixels in the segmentation mask using the pixel dimensions.

The loss function used for training the model consisted of two terms, which were summed together with 
equal weight. The first term was a binary cross-entropy loss function applied between the network classification 
output and the ground truth classification label (negative or positive for infarct). The second term was a soft 
Dice coefficient loss function applied between the network output segmentation mask and the ground truth 
segmentation mask40. The second term was only applied to negative training studies (which were known to have 
empty segmentation masks) and the segmented subset of the positive training studies.

The batch size during the training process was 8 pairs of DWI/ADC series. During training, the batches were 
balanced such that every batch contained 2 positive studies with segmentation masks, 2 positive studies without 
segmentation masks and 4 negative studies. This balancing was found to stabilize training. The Adam optimizer 
was used with an initial learning rate of 1 × 10–441. Training was run for 200 epochs with the learning rate reduced 
by a factor of 10 after 100 epochs and by another factor of 10 after a further 50 epochs.

In order to normalize the pixel intensities for each series, the 3rd and 97th percentiles of the intensity dis-
tribution were calculated (denoted I3 and I97 respectively). The intensities were then mapped according to the 
following equations:

The equations used α as a constant value that was set, following initial experimentation, to α = 0 for ADC 
series and α = 1 for DWI series in order to ensure that areas of restricted diffusion with high pixel intensities 
were not saturated.

During training, augmentation was applied to the images in the form of random small rotations up to 10° 
in either direction within the x–y plane, random small translations of up to 10% of the image dimensions in the 
x and y directions, and scaling by a random factor between 0.9 and 1.1 in the x and y directions. Additionally, 
a random offset of up to 0.2(I97 – I3) in either direction was applied to the Imin and Imax values used to scale the 
intensities.

Rather than train a 3D segmentation network from random initialization, a pre-training step on a 2D seg-
mentation network was employed. The 2D network used the same network architecture except for having 2D 
convolution kernels instead of 3D kernels. Batches consisted of all axial slices from 16 pairs of DWI/ADC series 
and the optimizer used an initial learning rate of 1 × 10–3. The dataset for this pre-training consisted of all posi-
tive segmented studies and all negative studies but omitted positive non-segmented studies because labels at 
the level of a single slice were not available for them. A single training epoch consisted of all positive segmented 
studies and an equal number of negative studies randomly selected from the full set of negative studies at the 
start of the epoch. The training procedure was otherwise identical to the 3D network. After the pre-training 
step, the 2D convolution kernels provided the initialization values for the weights of the central axial plane in 
the 3D convolution kernels; the initialization values for the weights of the other planes were set to 0. The batch 
normalization parameters and convolution bias terms were also initialized from the 2D network.

The network and training process were implemented using the Keras deep learning framework with the 
Tensorflow backend. Training was performed with 4 Nvidia V100 Graphics Processing Units (GPUs). The archi-
tecture was finalized after evaluation of different architectures and training parameters on the validation set.

Evaluation of the algorithm.  Evaluation of the model classification output was performed by examining 
the AUROC, and sensitivity and specificity using specified operating points. The 95% confidence interval (95% 
CI) was calculated using a bootstrapping method with 10,000 iterations. Evaluation of the model segmentation 
output was performed on true positive studies (i.e. positive for radiologist and model outputs) by examining the 
Dice coefficient for overlap of segmentation output, and the Pearson correlation coefficient and Bland Altman 
analysis for volume output. Comparison of infarct volume and clinical variables between true positive and false 
negative studies was performed by plotting the relevant variable against the classification probability for the 
study (≥ 0.5 for true positives and < 0.5 for false negatives), then calculating the Spearman rank correlation coef-
ficient; data from the training and non-training hospitals were grouped together for this analysis.

Data availability
The data used for the primary dataset, stroke code test sets and international test were obtained from hospitals 
as described above. Data use was approved by relevant institutional review boards. The data are not publicly 
available and restrictions apply to their use.

Imin = I3

Imax = I97 + α(I97 − I3)

Iout =







Imin, if Iin < Imin

Imax , if Iin > Imax
Iin−Imin

Imax−Imin
, otherwise
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Code availability
The model and related source code are proprietary and will not be publicly released. All experiments are described 
in sufficient detail in the “Methods” to enable independent replication.
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