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Severity of thermal burn injury 
is associated with systemic 
neutrophil activation
Maria Laggner1,2, Marie‑Therese Lingitz3, Dragan Copic1,2, Martin Direder1,2, 
Katharina Klas1,2, Daniel Bormann1,2, Alfred Gugerell1,2, Bernhard Moser1, Christine Radtke4, 
Stefan Hacker4,5, Michael Mildner6, Hendrik Jan Ankersmit1,2,8* & Thomas Haider7,8*

Burn injuries elicit a unique and dynamic stress response which can lead to burn injury progression. 
Though neutrophils represent crucial players in the burn‑induced immunological events, the dynamic 
secretion pattern and systemic levels of neutrophil‑derived factors have not been investigated in 
detail so far. Serum levels of neutrophil elastase (NE), myeloperoxidase (MPO), citrullinated histone 
H3 (CitH3), and complement factor C3a were quantified in burn victims over 4 weeks post injury. 
Furthermore, the potential association with mortality, degree of burn injury, and inhalation trauma 
was evaluated. In addition, leukocyte, platelet, neutrophil, and lymphocyte counts were assessed. 
Lastly, we analyzed the association of neutrophil‑derived factors with clinical severity scoring 
systems. Serum levels of NE, MPO, CitH3, and C3a were remarkably elevated in burn victims compared 
to healthy controls. Leukocyte and neutrophil counts were significantly increased on admission day 
and day 1, while relative lymphocytes were decreased in the first 7 days post burn trauma. Though 
neutrophil‑derived factors did not predict mortality, patients suffering from 3rd degree burn injuries 
displayed increased CitH3 and NE levels. Accordingly, CitH3 and NE were elevated in cases with 
higher abbreviated burn severity indices (ABSI). Taken together, our data suggest a role for neutrophil 
activation and NETosis in burn injuries and burn injury progression. Targeting exacerbated neutrophil 
activation might represent a new therapeutic option for severe cases of burn injury.

Burn injury is an umbrella term for a trauma, most commonly affecting the skin or lung, caused by a variety of 
external challenges, such as thermal extremes, deleterious radiation, alkaline and acidic chemicals, or excessive 
 friction1. The respective cause and burn degree further dictate clinical management, such as surgical intervention 
and moist rewarming following heat- and cold-induced injuries, respectively. In spite of the development of new 
therapeutic approaches, burn injuries are still associated with a high mortality rate, most commonly resulting 
from multiple organ failure, sepsis, and respiratory  complications2. Morbidity and mortality can be increased 
up to 10 years after the initial  insult3.

Burn trauma elicits a unique systemic stress response characterized by increased metabolism and 
 inflammation4. The early systemic inflammatory response syndrome (SIRS) is characterized by pro-inflamma-
tory cytokines, such as interleukin 6 (IL-6), IL-8, and tumor necrosis factor alpha (TNFα) and usually lasts for 
several  days5,6. Later, the milieu is shifted towards an anti-inflammatory response syndrome (AIRS), where the 
immunosuppressant mediators TGFβ1, and IL-10  prevail6. Though inflammation is inherent and indispensable 
for normal wound  healing7, burn injuries can induce a state of distorted inflammatory response which can 
persist up to several  years8 and which can ultimately lead to host tissue damage and organ dysfunction. Vari-
ous factors orchestrate early immune reactions, such as the amount of affected body surface area, burn depth 
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and cause, inhalation injury, patient age, and chronic medical  conditions9.  Neutrophils10 and  macrophages11 
are early key players infiltrating the burn-injured area. Though these immune cells are readily activated by 
burn injury-induced damage-associated molecular patterns (DAMPs), macrophage antigen presentation and 
neutrophil-mediated killing of pathogens have been shown to be diminished following burn  injury12,13, leading to 
increased susceptibility to infections. While immunological hyper-activation entails tissue damage, exaggerated 
immunosuppression predisposes to  infections14. Hence, a delicate balance of immunomodulators determines 
clinical outcome in burn injuries.

A commonly observed phenomenon of burn victims is secondary burn  progression15. While tissue necrosis 
and ischemia are immediate results of burn injury, tissue damage is often aggravated long after the initial trauma. 
Formation of red blood cell aggregates and microthrombi and subsequent occlusion of the microvasculature have 
been identified as the underlying cause of burn  progression16. Though secondary burn progression substantially 
promotes tissue damage, its role in the post injury tissue response is often underestimated.

Neutrophils are implicated in the host defense against pathogens, whereby antimicrobial activity is exerted by 
phagocytosis, release of effector molecules, and formation of neutrophil extracellular traps (NETs)17. Activated 
protein-arginine deiminase 4 (PAD4) catalyzes citrullination of histones, which results in chromatin deconden-
sation. Granule proteins, such as myeloperoxidase (MPO) and neutrophil elastase (NE), further promote DNA 
de-compaction and intracellular DNA together with granule proteins are released following plasma membrane 
 rupture18,19. It was further demonstrated that neutrophils contain intracellular stores of  C3a20, which might be 
self-synthesized or absorbed from the  serum21. Moreover, C3a was reported to induce neutrophil  activation22. A 
role for neutrophils in coagulation and microvascular obstruction has been described at several  occasions23–27. 
The amount of neutrophil-derived circulating, free DNA was proposed as a predictor of mortality in severely 
burnt  patients28 and elevated human neutrophil elastase DNA and nucleosomes were detected in burn and sepsis 
 patients29. Though previous studies have reported a role for neutrophils and NETs in burn  injury30,31, systemic 
surrogate markers indicating NETosis have not been comprehensively studied so far. Our group was previously 
able to show activation of the soluble suppressor of tumorigenicity 2 (sST2)/IL-33 axis in  sepsis32 as well as ther-
mal burn  injury33 and found increased soluble ST2 to be a predictor of mortality. In the current study, we aimed 
to delineate the dynamics of neutrophil-derived immunomodulators to deepen our understanding of NETosis 
in the post-burn injury immune response.

Materials and methods
Ethical statements. This study was approved by the institutional review board of the Medical University 
of Vienna (Vienna, Austria) (vote 593/2011) and was conducted in accordance with the Declaration of Helsinki 
and applicable local regulations. Written informed consent was obtained from all donors.

Patient cohort and serum sample acquisition. Samples used in the current study have already been 
analyzed for sST2 and IL-3333. Patients > 18 years who were admitted within 24 h post trauma to burn inten-
sive care unit and presented with a burn injury covering > 10% of the total body surface area (TBSA) at pri-
mary survey were included in this study (Table 1). To determine TBSA, affected areas were marked on a blank 
human body diagram and were subsequently quantified. Patients displaying 3rd degree burns were defined as 
3rd degree-positive, irrespective of the affected area. Patients with chronic infectious diseases or autoimmune 
disorders were excluded. Eight healthy volunteers served as controls. Exclusion criteria for healthy donors were 
chronic medication and chronic conditions. All volunteers displayed an unremarkable previous medical history.

The first serum sample was immediately collected upon patient admission. For all other time points, blood 
was routinely drawn in the morning. To assess the early dynamics in a detailed manner and to investigate 

Table 1.  Study group demographics. ABSI abbreviated burn severity index, APACHE II acute physiology 
and chronic health evaluation II, F:M female to male ratio, LOH length of hospitalization, LOS length of stay 
at intensive care unit, SOFA sequential organ failure assessment, TBSA total body surface area. *Indicated are 
mean (median) ± SD [interquartile range]. § Indicated are n (SD).

Burn patients Controls

n 32 8

Age in years* 51.9 (46.5) ± 21.9 [33–74] 40.5 (36) ± 19.9 [23–56]

F:M ratio (%) 10:22 (31.3:68.7) 3:5 (37.5:62.5)

TBSA (%)* 32.5 (30.0) ± 19.6 [16.3–39.5]

LOH (days)* 37.2 (27.5) ± 33.9 [10.5–61.5]

LOS (days)* 29.7 (19.5) ± 33.0 [7.3–35.3]

SOFA* 6.8 (6.5) ± 3.6 [5–9]

APACHE II* 19.7 (18.0) ± 9.3 [13.5–28.0]

ABSI* 7.91 (8.0) ± 2.8 [5–9]

Deceased (%)§ 6 (18.8)

3rd degree burn (%)§ 22 (68.8)

Inhalation trauma (%)§ 7 (21.9)
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potential long-term effects, sera were obtained daily within the first week after admission, and weekly up to day 
28 after admission. For controls, samples were obtained in the same manner. Whole blood was incubated for 
thirty minutes at ambient temperature and centrifuged at 2850 relative centrifugal force for 17 min. Sera were 
separated and cryopreserved below -70 °C.

Intensive care management including fluid resuscitation was performed according to institutional guidelines 
and was not affected by this study. Inhalation trauma was assessed on primary survey and deemed present in 
cases of visible signs of thermal injury within the upper airway. Mortality was defined as all-cause in-hospital 
mortality. Depending on the time of death, the elapsed time between sample acquisition and decease varied 
between < 1 and 23 h.

Analyte quantifications. Serum MPO, CitH3, NE, C3a, and lactadherin (milk fat globulin protein E8, 
MFG-E8) were quantified by enzyme-linked immunosorbent assay (ELISA) using commercially available kits 
as recommended by the manufacturers (human MPO, human neutrophil elastase, human MFG-E8 Immunoas-
say Quantikine, all R&D Systems, Bio-Techne, Minneapolis, MN, USA; human CitH3, clone 11D3, Cayman 
Chemical, Ann Arbor, MI, USA; human complement C3a, Invitrogen, Thermo Fisher Scientific, Waltham, MA, 
USA). Colorimetric measurements were performed using Tecan F50 infinite microplate reader (Tecan Group, 
Männedorf, Switzerland) with Magellan software (version 7.2, Tecan). Analyte concentrations were determined 
by external standard curves. Samples were measured once and arithmetic means show averages of biological 
replicates.

Laboratory measurements of clinical parameters. Complete blood counts were determined during 
routine clinical tests and reference values were adopted from in-house reference ranges used for routine patient 
diagnosis. The reference ranges for absolute leukocytes were 4–10 G/L, for absolute platelets 150–350 G/L, for 
absolute neutrophils 2–7.5 G/L, for relative neutrophils 50–75%, for absolute lymphocytes 1–4 G/L, and for rela-
tive lymphocytes 25–40%. As controls were not hospitalized, these data were only available from burn victims. 
Sequential organ failure assessment (SOFA)  score34, acute physiology and chronic health evaluation II (APACHE 
II)  score35, and abbreviated burn severity index (ABSI)36 were assessed on the day of admission. Median values 
of severity scores were used to assign values to low and high groups. As the SOFA score of our study population 
displayed a median of 6.5, we chose ≤ 6 and ≥ 7 as cut-off values.

Statistical analyses. Data were statistically evaluated and visualized using SPSS Statistics (version 25, IBM, 
Armonk, NY, USA) and GraphPad Prism (version 5.01, GraphPad Software Inc., La Jolla, CA, USA). Continu-
ous variables were compared by the Mann–Whitney test. One-way ANOVA and multiple comparison post hoc 
tests with Sidak’s or Dunnett’s correction were calculated. For correlation analysis, Pearson’s correlation coef-
ficients were calculated. Data are presented as arithmetic means ± standard error of the mean.

Results
Neutrophil‑derived factors are systemically elevated following burn injury. To study the role of 
burn injury-induced NETosis, we tracked the neutrophil-derived factors MPO, CitH3, NE, and C3a in sera of 
burn victims up to 4 weeks post trauma. We found that NETosis-associated factors were significantly increased 
compared to healthy controls (Fig. 1). MPO was remarkably increased in the early days post burn injury (Fig. 1A). 
While CitH3 did not differ from controls on admission day and day 1, serum CitH3 concentrations showed a 
delayed increase, peaking on day 4 post admission (Fig. 1B), indicating a potential ‘second burn’ hit. Intriguingly, 
NE levels were elevated on admission day and in the early stress response to burn trauma before approximating 
levels detected in healthy controls (Fig. 1C). Serum C3a was strongly elevated in burn victims compared to con-
trols (Fig. 1D). To test a potential connection between systemic C3a levels and liver parameters in burn victims, 
we furthermore assessed gamma-glutamyltransferase (γ-GT) levels. γ-GT started increasing 2 weeks post injury, 
but did not correlate with C3a (Supplemental Figure S1). Since lactadherin promoted survival of septic  rats37 
and lactadherin prevented coagulopathy following traumatic brain  injury38, we addressed the question whether 
lactadherin might also be involved in the burn injury-induced immune response. When assessing serum lac-
tadherin levels, we observed no difference between burn victims and healthy controls (Supplemental Figure S2). 
We furthermore aimed to investigate the relationship between neutrophil-derived factors and found a positive 
correlation between MPO and NE, but not between CitH3 and NE or between CitH3 and MPO (Supplemental 
Figure S3). These data suggest a role for NETosis in the systemic post burn injury immune response.

Burn injury induced leukocytosis and relative lymphopenia. Next, we assessed immune cell status 
in our patient cohort. We found that absolute leukocyte and neutrophil numbers were strongly increased in burn 
victims (Fig. 2A, C, D). In detail, cell numbers were elevated in the early days post injury, decreased within the 
first week before incrementing again. While platelet counts of burn victims were below those of healthy controls 
within the first week post injury, we observed a remarkable increase in platelet numbers 3 weeks post trauma 
(Fig. 2B). These data suggest a delayed, immunological ‘second hit’ and burn injury progression even weeks after 
primary injury. Absolute lymphocyte counts showed no difference between controls and burn victims, while 
relative lymphocyte levels were strongly decreased in the first 7 days after injury (Fig. 2E, F). Together, these data 
indicate an intricate systemic effect of burn injury on immune cell status.

3rd degree burns are associated with increased CitH3 and NE. We aimed to test whether our set of 
serum markers might be associated with mortality, inhalation trauma, or 3rd degree burn injury. Our battery of 
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neutrophil-derived factors did not predict mortality, and C3a was even strongly reduced in deceased burn vic-
tims (Supplemental Figure S4). We furthermore compared burn victims with inhalation trauma to those without 
respiratory damage and observed no effect of lung injury on serum levels of neutrophil-derived factors (Sup-
plemental Figure S5). Similarly, serum MPO levels displayed no difference when comparing 3rd degree burn 
victims with patients suffering from 1st and 2nd degree burns (Fig. 3A). By comparison, we observed elevated 
serum CitH3 and NE levels on days 3 and 4 of 3rd degree burns compared to first and second degree burns 
(Figs. 3B, C). Of note, the delayed increase of serum CitH3 3 and 4 days post injury were exclusively detected 
in 3rd degree burns. Surprisingly, C3a levels were strongly reduced in higher degree burns on day 3 (Fig. 3D). 
These findings suggest that the degree of burn injury determines the extent of neutrophil activation and NETosis.

CitH3 is elevated in patients with higher severity scores. We sought to determine whether neutro-
phil-derived factors were associated with clinical severity scoring systems and dichotomized SOFA, APACHE 
II, and ABSI scores into low and high values. We observed increased MPO and CitH3 levels in patients with 
APACHE II scores above 18 (Supplemental Figure S6) and NE was significantly higher in SOFA scores ≥ 7 (Sup-
plemental Figure S7). Intriguingly, CitH3 and NE levels were elevated in patients with ABSI scores above 9, 
while MPO and C3a showed no difference (Fig. 4). These data suggest that specific NETosis-associated factors 
are elevated in more severe burns.

Burn injury immune cell signature is independent of severity. Finally, we investigated whether the 
burn injury-induced alterations in immune cell levels were associated with severity of burn injury. Therefore, 
cell counts were compared between 3rd degree and lower degree burn victims and furthermore between patients 
with higher and lower clinical severity scores. A trend towards increased leukocyte and neutrophil counts in 
more severe cases was found on admission day, while no difference in platelet and relative neutrophil counts 
was observed (Supplemental Figures S8—S11). Absolute and relative lymphopenia was more pronounced in 
the early days following burn injury when comparing low versus high SOFA scores (Supplemental Figure S10), 
indicating that immune cell counts are time- and score-dependent.

Discussion
Burn injuries trigger a complex immune response characterized by a unique cytokine secretion pattern and 
immune cell activation. Exaggerated burn-induced immune activation can lead to tissue damage and organ 
dysfunction, while immunosuppression can predispose to infectious diseases. Activation of neutrophils and 
secretion of neutrophil-derived factors add another piece to the complex picture of immunological reactions in 
response to burn injuries. We were the first to track systemic levels of neutrophil-derived immunomodulators up 
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Figure 1.  Elevated neutrophil-derived factors and C3a in burn sera. Systemic levels of (A) MPO, (B) CitH3, (C) 
NE, and (D) C3a were quantified in sera of burn victims (n = 8–19) and healthy controls (n = 4–6) up to 4 weeks 
post injury. Data were compared by mixed effects analysis and Sidak’s multiple comparisons post hoc test. Data 
are presented as means ± s.e.m. Asterisks indicate p values < .05.
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to 4 weeks post trauma and were able to demonstrate that the NETosis surrogate markers MPO, CitH3, NE, and 
C3a were increased in burn victims compared to healthy controls. Several studies have already suggested a role 
for neutrophils in the immune response elicited by burn injuries. Circulating DNA in plasma has been identi-
fied as a prognostic marker for mortality and an early biomarker of sepsis in burn-injured  patients12,28, though 

Figure 2.  Immune cell counts up to 4 weeks post injury. Patient data in relation to established in-hospital 
reference standards (n = 1–31). Data are presented as means ± s.e.m.
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free DNA does not exclusively originate from  NETs39 and is therefore considered a rather indirect evidence of 
neutrophil involvement. Further studies investigated more neutrophil-specific factors. Bacteriostatic effects of 
topically administered MPO were demonstrated in Staphylococcus aureus-infected burn  wounds40 and increased 
MPO activity was observed following burn injury in  rats41. Intriguingly, burn injury reduced NETosis, indicated 
by diminished CitH3 levels, via pulmonary  immunosuppression31. A role for NE in the proteolytic degradation 
of fibronectin in burn wound  fluids42 and in burn-blast-induced lung injury in  rats43 has been reported and 
inhibiting NE activity exerted cytoprotective  effects43.These studies investigated local levels of MPO, CitH3, and 
NE in burn wounds, burn fluids, or lung tissues. Systemic concentrations of these factors have not been com-
prehensively described to date. Our data with a 4 week follow up time post burn injury therefore add valuable 
information to the role of NETosis in the burn injury-induced stress response.

We detected increased serum concentrations of complement C3a in burn-injured patients compared to con-
trols. Elevated C3a levels have already been reported previously in plasma of burn  victims44 and in subdermal 
tissues of second-degree thermal  wounds45. Interestingly, expression of complement receptors on neutrophils was 
increased following burn  injury46 and it was previously demonstrated that neutrophilic elastase promotes com-
plement  amplification47. Hence, an intricate crosstalk between the complement system and neutrophils occurs 
in the immune response to burn injury. Though intracellular stores of C3a have been found in  neutrophils20, 
numerous other cell types and tissues, such as the  liver48, are conceivable to contribute to serum C3a levels post 
burn injury. Our C3a levels did not correlate with γ-GT, indicating that complement activation is not associated 
with liver disease in our settings. Delineating the exact cellular origin of systemic C3a in burn victims will be 
subject of future studies.

We observed remarkably increased absolute leukocyte counts in burn victims compared to healthy con-
trols, while absolute lymphocyte counts remained largely unaltered. In addition, absolute neutrophil levels were 
strongly increased post burn injury. These data are in line with data reported by Mulder et al.49 and it is tempting 
to speculate that the elevated neutrophil amounts detected in our patient cohort might serve as a potential cel-
lular source for MPO, CitH3, NE, and C3a. We furthermore observed that the increase of absolute leukocyte and 
neutrophil counts was even more pronounced in more severe cases. Intriguingly, relative lymphocyte levels were 
remarkably decreased in patients with burn injury and lower in patients with higher SOFA score. Lymphopenia 
has already been reported in septic and burn victims, which might contribute to post-injury immunosuppres-
sion, morbidity, and  mortality50–52. Platelet levels were decreased in the early stress response and re-elevated 
starting 14 days after burn injury. These dynamics are in accordance with previous reports, where a sustained 
pro-coagulant state of burn patients was  described53. Together, these data connect the systemic factors with 
clinical blood parameters and contribute to a better understanding of the cellular and molecular processes in 
the concerted burn injury response.

Figure 3.  Increased levels of neutrophil-derived factors and C3a in higher degree burns. Serum concentrations 
of (A) MPO, (B) CitH3, (C) NE, and (D) C3a in 3rd degree burn victims (n = 7–15) compared to lower degree 
burns (n = 1–6). Data are presented as means ± s.e.m. * indicates p values < .05.
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While exaggerated NET release might be associated with deteriorated conditions, neutrophil activation and 
NETs might also exert beneficial effects following burn trauma. One of the primary functions of NETs is captur-
ing  pathogens17 and a reasonable level of local NETosis might help to reduce risk of infectious diseases and to 
prevent pathogen entry at sites with compromised barrier function due to burn injury. In addition, neutrophils 
are sentinels of the immune system. NETs exert immunomodulatory actions and are capable of instigating 
other immune cells to induce sterile  inflammation54 and are involved in the early phase of wound  healing55. It is 
therefore tempting to speculate that burn injury-induced NETs prime the immune system as part of the normal 
wound healing process. Whether NETs are involved in promoting post-burn trauma wound healing or whether 
they aggravate medical conditions remains the subject of future studies.

Microvascular obstruction was reported as the leading cause of burn injury progression and red blood cell 
aggregates, microthrombi, and ischemia have been described to promote secondary tissue  damage16. NETs serve 
as a scaffold for platelets, induce platelet aggregation and  coagulation23,24 and have furthermore been shown to 
exert pro-coagulant activities in  sepsis25. Moreover, neutrophil activation and CitH3 were induced by myocar-
dial ischemia/reperfusion injury and showed pro-thrombotic and cytotoxic features, while eliminating NETs 
by DNase I treatment exerted cardio-protective  effects26. In addition, elevated CitH3 levels were reported in 
various inflammatory conditions with a role of microvascular  thrombosis27,56. Though lactadherin levels remain 
unaltered, we observed systemic CitH3 elevation 2–5 days post burn injury and detected abnormal immune cell 
counts even several weeks after burn injury. These findings corroborate the concept of burn injury progression 
following initial damage. We hypothesize that injury-induced elevation of neutrophil counts and concomitant 
neutrophil activation contribute to burn injury progression. NETosis and systemic neutrophil-derived factors 
are induced in the course of a delayed immunological response, provoke microvascular obstruction, and thereby 
promote secondary tissue damage.

Our data revealed that 3rd degree burns showed higher CitH3 and NE levels and these results are in line 
with the clinical severity score ABSI, where cases with higher scoring displayed increased CitH3 and NE. These 
data suggest that the severity of burn injury dictates the level of neutrophil activation. Intriguingly, patients 
succumbing to burn trauma did not display elevated neutrophil-derived immunomodulators. While we found 
elevated CitH3 and NE levels in patients with higher degree and severity burns, future studies with larger samples 

Figure 4.  Serum concentrations of neutrophil-derived factors in low and high ABSI scores. ABSI scores 
were determined on admission day and categorized into low (≤ 8, n = 19) and high (≥ 9, n = 13) values. Serum 
concentrations of MPO, CitH3, NE, and C3a of the first 7 days post admission were compared. Data were 
statistically evaluated by Mann–Whitney test.
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sizes will be required to determine whether elevated NETosis-associated factors might serve as a prognostic 
factor for mortality following severe burn injury. Moreover, no difference between burn victims suffering from 
inhalation trauma compared to burn-injured patients without inhalation trauma was observed. Neutrophilia in 
the bronchoalveolar space upon inhalation trauma has been described and attenuating neutrophil recruitment 
improved histopathology scores and bacterial  clearance57. Though NETosis markers were not related to inhala-
tion trauma in our patient collective, a role for burn-associated lung injury in neutrophil activation cannot be 
entirely ruled  out58.

In spite of our best efforts, this study has certain limitations. Though 32 burn victims were initially included, 
the number of available specimen declined over time as patients either succumbed to their injury or were dis-
charged from the hospital. Future studies with higher sample numbers will be required to fully elucidate the 
role of neutrophil-derived factors in the burn injury response and for more elaborate subgroup studies, e.g. by 
performing patient stratification according to sepsis, pneumonia, and specific infectious diseases. Another limi-
tation of our study is the clinical assessment of burn area and TBSA. While we employed a quantitative method 
which can be rather subjective, use of objective measurement tools with higher diagnostic accuracy, such as 
laser Doppler  imaging59, might represent a preferable approach to determine burn depth. In addition, patients 
displaying 3rd degree burns were defined as 3rd degree-positive irrespective of the affected area. Performing 
more in-depth analyses of patients with severe burns considering the affected area merits future investigations. 
Our set of neutrophil-derived factors serves as a surrogate machinery to assess NETosis. Further investigations 
are necessary to provide more direct evidence of systemic NETosis in sera of burn victims, such as detection of 
cfDNA and specific neutrophil-derived DNAs.

Clinical management of burn victims involves fluid resuscitation, burn wound coverage, supportive care, and 
rehabilitation. Targeting neutrophil function in post burn injury might serve as an alternative treatment option 
in severe cases with exacerbated neutrophil activation. Beneficial effects of anti-NETs therapy have already been 
demonstrated in various neutrophil-mediated inflammatory diseases and conditions, including wound  healing60, 
inflammatory arthritis, pulmonary fibrosis, inflammatory bowel disease, and  sepsis61. Determining the full 
therapeutic potential of NETosis inhibition following burn trauma will merit future investigations.

Our study provides evidence of systemic, neutrophil-derived factors associated with NETosis in burn victims. 
As the factors tested here do not serve the ultimate proof of the exact levels of NETosis, future investigations 
further corroborating the existence of NETs in burn victims, e.g. by quantification of MPO- and NE-DNA 
together with cfDNA, are still required. More sophisticated studies will be necessary to deepen our understand-
ing of the role of NETosis following burn injury and to determine the potential prognostic and/or therapeutic 
value of NETosis.

Data availability
Raw data are available from the corresponding authors upon request.
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