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Rock mass classification prediction 
model using heuristic algorithms 
and support vector machines: 
a case study of Chambishi copper 
mine
Jianhua Hu, Tan Zhou *, Shaowei Ma, Dongjie Yang, Mengmeng Guo & Pengli Huang

The rock mass is one of the key parameters in engineering design. Accurate rock mass classification 
is also essential to ensure operational safety. Over the past decades, various models have been 
proposed to evaluate and predict rock mass. Among these models, artificial intelligence (AI) based 
models are becoming more popular due to their outstanding prediction results and generalization 
ability for multiinfluential factors. In order to develop an easy-to-use rock mass classification model, 
support vector machine (SVM) techniques are adopted as the basic prediction tools, and three types 
of optimization algorithms, i.e., particle swarm optimization (PSO), genetic algorithm (GA) and grey 
wolf optimization (GWO), are implemented to improve the prediction classification and optimize the 
hyper-parameters. A database was assembled, consisting of 80 sets of real engineering data, involving 
four influencing factors. The three combined models are compared in accuracy, precision, recall,  F1 
value and computational time. The results reveal that among three models, the GWO-SVC-based 
model shows the best classification performance by training. The accuracy of training and testing sets 
of GWO-SVC are 90.6250% (58/64) and 93.7500% (15/16), respectively. For Grades I, II, III, IV and V, the 
precision value is 1, 0.93, 0.90, 0.92, 0.83, the recall value is 1, 1, 0.93, 0.73, 0.83, and the  F1 value is 
1, 0.96, 0.92, 0.81, 0.83, respectively. Sensitivity analysis is performed to understand the influence of 
input parameters on rock mass classification. It shows that the sensitive factor in rock mass quality is 
the RQD. Finally, the GWO-SVC is employed to assess the quality of rocks from the southeastern ore 
body of the Chambishi copper mine. Overall, the current study demonstrates the potential of using 
artificial intelligence methods in rock mass assessment, rendering far better results than the previous 
reports.

The rock mass is a concrete manifestation of the non-linear coupling of multiple factors in complex rock systems, 
which is directly related to the selection of construction design parameters and overall safety. The accurate assess-
ment of rock mass quality reflects the physical and mechanical properties of the rock mass and provides reliable 
bases for engineering stability analysis, disaster prediction, prevention and  control1. Therefore, it is necessary to 
develop appropriate methods to predict and evaluate the quality of rock  mass2.

Numerous studies have been performed for the assessment of rock mass quality. For instance, Terzaghi’s 
rock-load classification scheme can be considered as the first empirical rock mass classification  system3. There-
after, various other evaluation methods have also been proposed based on different engineering practices. For 
example, the classical single-index grading methods, such as the Protodyakonov coefficient f grading method, 
the tensile strength  Rt gradin g method, the compressive strength  Rc grading  method4, Deer’s RQD grading 
 method5, and the elastic wave velocity Vp  method6. In addition, there are grading methods with juxtaposition 
of indicators such as Chinese engineering rock grading standard (BQ method)7. With the development of sys-
tems engineering, the influence of multiple factors is considered in the assessment of rock quality. Bieniawski 
et al. have utilized the sum-difference method to integrate different factors and construct an RMR rock grading 
 system8. Similarly, Barton et al. have employed the product method to establish the rock tunneling index (Q) 
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grading  system9. Naithani et al. used a Q-system for tunnel rock quality grading, which supported the choice of 
support  method10. Subsequently, several other rock classification systems were built on this basis. For example, 
Laubscher combined RMR values and adjustment parameters for different factors under mining conditions to 
build MRMR  systems11. The M-RMR system as developed by Unal is also based on the RMR system and includes 
additional features for the characterization of weak, stratifified, anisotropic and clay bearing rock  masses12. As 
the study progresses, the utilization of fuzzy theory has significantly improved the generalization performance 
and accuracy of classification  methods2. Daftaribesheli constructed the M-SMR system using the mamdani fuzzy 
algorithm and the SMR system, which quantifies the fuzziness in the rock  system13. Chen et al. have proposed 
a classification method for the quality of surrounding rocks based on hierarchical analysis and fuzzy Delphi 
 method14. Zhou et al. have improved the classification distinction by the grey clustering method, which enhanced 
the applicability of the classification method and improved the positive assessment rate of rock mass  quality15. Hu 
et al. have established the RS-TOPSIS model and applied it for the mass classification of rock masses in under-
ground  engineering16. Zhou et al. have effectively combined experimental expertise and multidimensionality of 
rock masses by improving RES and the uncertainty cloud theory to obtain a novel assessment method, which 
does tendentious  evaluation17. Nowadays, big data and artificial intelligence are developed rapidly and neural 
network models, based on prior knowledge, are proposed and applied in the geotechnical fields. Feng and Wang 
have described a novel approach to predict probable rock bursts in underground openings based on learning and 
adaptive recognition of neural  networks18. Alimoradi et al. learned Tunnel Seismic Prediction (TSP-203) data 
by ANN model. The trained ANN successfully predicted the poorer geological regions in the  tunnel19. Klose 
et al. learned six seismic features by Self-Organizing Mapping (SOM) model to describe the complex relation-
ship between geological conditions and seismic parameters. The results show that the trained SOM model can 
predict the geological conditions well from the seismic monitoring  data20. Jalalifar et al. used the fuzzyneural 
inference system and predicted RMR-value. They used three types of fuzzy-neural networks and showed that the 
subtractive clustering method is more efficient in predicting RMR-value21. Rad et al. successfully implemented 
the prediction of the RMR system output values by coupling the Chaos-ANFIS  model22. More pertinent work 
about rock mass classification prediction using AI methods is tabulated in Table 1.

These studies have improved the theory and methods of rock mass grading to a certain extent. For instance, 
the traditional single-indicator or multi-indicator comprehensive evaluation method is easy to operate, but the 
way is idealized and does not match with the actual complex rock system. The majority of models are unpopular 
and have been restricted to specific geological environments or countries. On the other hand, the selection of 
factor levels and weights in the fuzzy mathematical theory is a challenging task and different models may result 
in different classification results, limiting the generalization performance of the proposed model. And third, 
the mining of relevant data is difficult when AI-based methods are used to assess rock mass quality, limiting 
the accuracy of the proposed model. At the same time, traditional methods such as neural networks are less 
capable of learning small sample data, and the trained models are prone to extreme cases such as poor accuracy 
or overfitting. Hence, based on a large number of rock mass classification results, it is necessary to organize 
existing cases, establish a rock mass quality database and train an efficient rock mass classification model based 
on a small sample classification algorithm.

Zheng et al. established a small database containing 80 sets of tunnel rock samples and conducted a study on 
tunnel rock mass classification based on the SVM algorithm, which verified the excellent small sample learn-
ing ability of the SVM  algorithm30. It has many attractive properties such as a strong mathematical foundation, 

Table 1.  Previous work about rock mass quality prediction using AI techniques. Th Thrust, Tor Torque, RPM 
revolutions per minutes, UCS Uniaxial compressive strength, DPW Distance between planes of weakness, 
α  orientation of discontinuities, RQD Rock quality designation, RMR Rock mass rating, GW Groundwater 
condition, Js Joint spacing, Jc Joint condition, Vp P-wave velocity, n% Porosity, Rn Rebound hardness, Is point 
load index, γ Density, w Water absorption, MAPE Mean absolute percentage error, MSPE Mean squared 
percentage error, R2 Coefficient of determination, RMSE Root mean square error, VAF Variance accounted for.

Reference Technique Input Output Performance

Liu et al.23 SA-BPNN Th, Tor, PR, RPM UCS, DPW, α MAPE

Liu et al.24 SST-SVR Th, Tor, RPM UCS, DPW, α MSPE,  R2

Mutlu et al.25 DF-HFIS UCS, RQD, spacing of discontinuities, conditions of 
discontinuity, GW, RMR RMSE,  R2, VAF

Hou et al.26 RF TBM operation parameters Rock mass classification Accuracy

Barzegar et al. 27

SVM

n, Rn, Vp UCS R2
ANFIS

SFL

MLP

Asheghi et al.28

ICA-GFFN

Is,  Rc, γ, n, Vp, w UCS R2
MLP

RBF

GFFN

Jalalifar et al.29 ANFIS UCS, RQD, Js, Jc, GW RMR RMSE, MAPE, VAF  R2
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few tuning parameters, fast classification and high generalization capability. The success of SVM relies on the 
selection of key parameters (c, g). In general, the machine learning models, without combining optimisation 
algorithms, are  inefficient31. The traditional SVMs are often paired with the traversal method, such as the grid 
search (GS) method, to perform optimal computations. The traversal method is computationally intensive and 
renders low accuracy. Fayed propose a new method to prune the data by removing those data points that have 
a very small chance of becoming support vectors to ensure shorter search time and the acquisition of globally 
optimal  parameters32. A disadvantage of the methods is that they are highly sensitive to the initial parameters. If 
they are far from the global optimal solution, they often converge to a local optimal  solution33.

Recently, heuristic algorithm have been widely used and considered to have a big chance to converge to the 
global  optimum34. Ren and Bai too offered twin methodologies for constraint refinement in SVM: particle swarm 
optimization PSO-SVM and GA-SVM35. Zhou et al. coupled the GA algorithm and PSO algorithm for parameter 
selection to reduce the parameter finding time and improve the  accuracy36. Hussein used the simulated annealing 
(SA) algorithm to find the parameters of the SVM and validated it using data from the UCI machine learning 
repository, experimentally verifying that the accuracy of the SA-SVM algorithm is greater than that of the SVM 
 algorithm37. Li established GA-SVR model, PSO-SVR model, and salp swarm algorithm SSA-SVR model, and 
used the models to predict fber-reinforced CPB strength, and the study showed that the heuristic algorithm can 
capture the hyperparameters of SVR model better than the grid search  algorithm38. In geotechnical engineer-
ing, Arsalan et al. developed an SVR model to successfully obtain dynamic RQD values of rock mass during 
tunnel  excavation39. Li uses the uckoo search algorithm-improved support vector machine method is applied 
to slope stability analysis and parameter inversion, which proves the advantages of hybrid heuristic algorithm 
in parameter  optimization40. The above study proves that the SVM algorithm meets the needs of small sample 
rock mass classification. The heuristic algorithm can better balance the state of global search and local search 
and effectively escape from local optimum. The combination of heuristic algorithm and SVM can better exploit 
the advantages of SVM algorithm. Meanwhile to the best knowledge of the authors, currently, the application 
of heuristic algorithm combined with SVM in improving the performance of machine learning models for rock 
mass classification has not been reported.

This paper will focus on the development and application of support vector machine in rock mass classifica-
tion, and try to study the heuristic algorithms in the support vector machine parameter optimization, algorithm 
improvement of the application, and MATLAB as a programming platform, to achieve the method. The main 
work of this study is as follows:

• In this study, we collected 80 groups of rock mass quality datasets from different studies to build a database 
to improve the problem of small and single-source data sets in previous studies.

• The support vector machine (SVM) models are utilized as the main classification tools combined with three 
optimization algorithms, i.e. GA, PSO, grey wolf optimization (GWO) to find key SVM parameters (c, g). 
Meanwhile, cross-validations are employed to examine the classification capability of different models.

• Five mathematical indices, i.e. accuracy, precision, recall,  F1 value, and computational time, are used to assess 
the classification performance. The sensitivity analysis is implemented to understand the sensitivity of each 
input parameter on rock mass quality grade.

• Finally, the trained model is used for rock mass quality grading of the southeast ore body of the Chambishi 
copper mine.

Support vector machines and heuristic algorithms
Support vector machines (SVM). Support vector classification model (SVC). SVM is a statistical learn-
ing method based on Vapnik–Chervonenkis theory (VC) and structural risk minimization principle of the sta-
tistical learning  theory41. SVM mainly learns, classifies and predicts the small datasets. SVM can map data that 
are not linearly classifiable in low-dimensional space to high-dimensional space by kernel functions. Then, the 
mapped data are classified and regressed. SVM possess strong generalization ability and can find a superior bal-
ance between complex non-linear mapping relations of limited data and generalization ability. The traditional 
support vector classification (SVC) is a typical binary classification model. The principle of the model is shown 
in Fig. 1. The mathematical theory can be given  as42:

Suppose there are n-dimensional sample vectors in a region, then there is wT · x + b = 0 hyperplane, which 
divides the sample into two categories. The hyperplanes may exist in different forms and the one that satisfies 
the minimum distance between two types of samples is called the optimal hyperplane. The above condition can 
be given as Eq. (1):

where wT represents the weight vector, b denotes the bias of sample fitting deviation and yi ∈ {−1, 1}.
Figure 1 shows that the sum of two types of sample distances from the hyperplane is 2/||w|| and the hyper-

plane margin is equal to 2/||w||. Also, any training tuples that fall on hyperplanes  H1 or  H2, i.e., the sides defining 
the margin, are the support vectors, as shown in Fig. 1. Thus, the problem is the maximization of margin by 
minimizing the ||w||/2 value, which is a convex quadratic programming (QP) problem and can be solved with 
the help of Lagrangian operators.

(1)[(wT · xi)+ b]yi ≥ 1

(2)L(w, b,α) =
�w�2

2
−

k
∑

i=1

αi[yi(w
T · xi + b)− 1]
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where: αi > 0 is Lagrange coefficient. In order to simplify the prediction calculation, the original problem is 
transformed into a mathematical dual problem by solving the partial differential of w , b with the above formula.

The constraints of the above equation can be given as:

When α∗
i  is the optimal solution of the equation, then the optimal weight vector can be given as: 

w∗ =
k
∑

i=1
α∗
i yixi.

A unique solution under the given constraints exists when the problem satisfies αi[yi(wT · xi + b)− 1] = 0 . 
The optimal classification plane function can be obtained by solving the question described as Eq. (5), where 
sgn() is a symbolic function.

The relaxation variable ξi ≥ 0 is introduced in the case of linear indistinguishability of the corresponding 
samples so that the maximum number of misclassified samples at the maximum classification interval can be 
satisfied under the given condition, as shown in Fig. 1. Then, Eq. (1) can be rewritten as:

The penalty variable C is inserted in the constraint.

For non-linear classification, the kernel function can map the sample data to K(xi , xj) high-dimensional 
space and, then, the problem of finding optimal hyperplane in the new space is simplified. Hence, the non-linear 
classification is realized. The Gaussian radial basis (RBF) is one of the mapping functions and, after selecting the 
kernel function, the problem can be given as Eq. (8):

where K(xi , xj)= exp
(

−g
∥

∥xi − xj
∥

∥

2
)

 . The corresponding classification function can be given as Eq. (9):

(3)MAX(α) =

k
∑

i=1

αi −
1

2

k
∑

i,j=1

αiαjyiyj(xi · xj)

(4)s.t.







�k

i=1
yiαi = 0

αi ≥ 0
i = 1, · · · , k

(5)f (x) = sgn

[

k
∑

i=1

α∗
i yi(x · xi)+ b∗

]

(6)[(wT · xi)+ b]yi ≥ 1− ξi

(7)s.t.







�k

i=1
yiαi = 0

C ≥ αi ≥ 0
i = 1, · · · , k

(8)MAX(α) =

k
∑

i=1

αi −
1

2

k
∑

i,j=1

αiαjyiyjK(xi · xj)

Figure 1.  Schematic illustration of the SVC classification algorithm.
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SVC multi‑classifier. In practice, the simple binary classification problems are less applicable and the rock mass 
classification is a typical multiclassification problem. Traditional SVC often utilizes a one-against-rest classifica-
tion method in multiclassification problems. The basic principle is that each classification and remaining classifi-
cations form a binary calculation, and the n classifications build n sets of sub-classifiers. This multi-classification 
method utilizes the basic principle of SVC to achieve multi-classification, but the one-against-rest classification 
may bring too large non-distinguishable regions, resulting in an inferior generalization model, as shown in 
Fig. 2a. Therefore, the current study adopts the one-against-one classification method, as shown in Fig. 2b, which 
reduces the non-separable regions and enhances the generalization ability of the proposed  model43,44.

Heuristic optimization algorithm. In general, the SVM algorithm alone is inefficient. Hence, the opti-
mized algorithms, such as Genetic Algorithm (GA) and Particle Swarm Optimisation Algorithm (PSO), were 
applied by some researchers to optimize the initial parameters of machine learning models and the increase in 
both predictive accuracy and convergence、speed of the constructed machine learning models after combin-
ing optimization algorithms has been  demonstrated45. Grey wolf optimiser (GWO) is one of the latest heuristic 
algorithms. This new optimization method has shown a great result in optimizing problems and has successfully 
beaten the well-known methods such as the PSO in engineering design  problems46. Therefore, this study uses 
three heuristic algorithms to optimize the SVM algorithm to explore the classification ability of different com-
binations of algorithms.

Optimization of SVC parameters using metaheuristic algorithms requires the construction of fitness functions 
to achieve optimal parameter selection. In SVM, classification accuracy (AR) and mean square error (MSE) are 
often used as fitness functions; AR or 1/AR is often used as a fitness function for classification models, and MSE 
is often used as a fitness function for prediction  models47.

Genetic algorithms (GA). At the University of Michigan, John and Bagley first proposed the genetic algorithm 
(GA), an optimization algorithm based on genetics and evolution  theory48. GA is widely used in the field of 
optimization and optimal solutions. The core idea in GA is to utilize relevant information generated in the evo-
lutionary history of a population to guide the search for results, leading to simplified application and excellent 
 robustness49. The algorithm encodes the dataset, i.e., the population, and utilizes genetic operators to cyclically 
perform selection, crossover and mutation operations to generate new individuals, and constructs and calculates 
a reasonable fitness function for the selection of new populations to generate individuals, which satisfy the end 
conditions. Herein, the key parameters (c, g) in SVM are optimized using the genetic algorithm, as given below 
Table 2.

The fitness function of the classification problem is:

where  Tn = The number of accurate classifications in the training and test sets; and M = Total number of samples 
in the training and test sets.

(9)f (x) = sgn

[

k
∑

i=1

α∗
i yiK(xi · x)+ b∗

]

(10)Ffitness =
Tn

M
(n = I, II, III, IV, V)

Figure 2.  The schematic illustration of the SVC multi-classification algorithm (a, b).
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Particle swarm optimization (PSO). Eberhart and Kennedy proposed the principle of bird flocks foraging in 
 199550. This theory evolved into an optimization algorithm for group intelligence. PSO is often used in the opti-
mization of algorithms through cooperation and competition between particles in a population. PSO renders 
efficient parallel search capabilities, tracks in real-time, and adjusts the search methods in real-time. PSO opti-
mizes the SVM in a similar way to GA using the following algorithmic steps, as given below Table 3. The PSO 
algorithm optimizes the fitness function of the SVC algorithm in the same way as Eq. (10).

Grey wolf optimizer (GWO). The gray wolf algorithm was proposed by Mirjalili et al.  in51. The algorithm mim-
ics wolf hunting hierarchy and works on simple computational principles and few control parameters. Mirjalili 
et al. have compared GWO with PSO, GSA, DE, EP and ES based on 29 well-known test functions, showing the 
promise of  GWO51. The optimization process is given below Table 4. The fitness function of the classification 
problem  is47:

where  ARtr = classification accuracy of training sets in the training process; and  ARva = classification accuracy 
of validating sets.

(11)Ffitness =
1

ARtr
+

1

ARva

Table 2.  Genetic algorithm.

Algorithm: genetic algorithm

(1) Data set processing

(2) Coding of initial population

(3) Computational fitness

(4) Population retention with excellent fitness

(5) Selection, crossover and mutation

(6) If the termination condition is satisfied, decoding is performed. If the termination condition is not satisfied, the algorithm returns to step 
3

(7) Decode; output optimal solution (optimal c, optimal g)

Table 3.  Particle swarm optimization.

Algorithm: particle swarm optimization

(1) Data set processing

(2) Determination of fitness function

(3) Particle initialization and PSO parameters setting

(4) Computing the fitness function value of each particle

(5) If the termination condition is satisfied, output is the optimal solution. If the termination condition is not satisfied, step 6 is executed

(6) Speed update; individual update

(7) If the termination condition is satisfied, output is the optimal solution. If the termination condition is not satisfied, step 6 is re-executed

(8) Output optimal solution (optimal c, optimal g)

Table 4.  Grey wolf optimizer.

Algorithm: grey wolf optimizer

(1) Initialize search space, set the number of wolves N, set the maximum number of iterations, random initialization (c, g).

(2) Traverse the gray wolf population, calculate the degree of individual adaptation, establish social order of population according to the 
degree of adaptation, and classify the gray wolves with higher degrees of adaptation into α-wolf, β-wolf, δ-wolf, and the remaining into 
ω-wolf.

(3) Calculate the spatial distance of each ω-wolf from α, β and δ wolves and update the spatial position of α, β, and δ wolves and the cor-
responding prey.

(4) If the termination condition is satisfied, output is the optimal solution; if not, return to the third step to update the position.

(5) Output optimal solution (optimal c, optimal g)
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Database description and SVC-based model development
Rock mass quality characterization factors. The selection of input parameters is the first step in build-
ing an assessment model for rock mass quality using the AI models. Santos et al. applied a technique of multi-
variate statistics, the factor analysis, to select a set of variables commonly used in rock mass classifications. The 
most important variables for describing the rock mass quality were kept in the model, and the removal of less 
important variables was justified. Studies have demonstrated that several factors affect the rock mass quality, 
such as rock strength, integrity of the rock mass and rock environment (including the groundwater seepage)52. 
Therefore, firstly, in this paper, we refer to the three major variables in the literature and select rock saturated 
compressive strength  (Rc), etc. as rock strength characterization parameters, RQD value and rock mass integrity 
factor  (Kv) as rock discontinuities’ characteristics, unit roadway water inflow (ω/(L(min 10 m)−1)) as the char-
acterization parameter of groundwater. The input parameters should reflect the characteristics of rock strength, 
degree of rock fragmentation, degree of structural surface development of rock body, and weakening effect of 
groundwater on rock body. Meanwhile, the above four parameters are used as the input parameters of the model.

Database creation and analysis. Artificial intelligence can establish non-linear relationships between 
multiple factors by learning from a large dataset. Therefore, the samples used as a training set must be represent-
ative of all the categories. Currently, many case data for rock mass classification are documented in the literature. 
Thus, mining the results of previous studies can yield a large number of valid samples. Furthermore, the model 
accuracy can be improved by expanding the sample size.

Herein, we investigate and analyze the relevant work throughout the past years. The available data were filtered 
to obtain 80 sets of tagged data, which were assembled into the database for SVC model training (Table 5). All 
data were obtained from the available literature. It contains rock samples from different geographical areas and 
engineering types in China. For example, the sample sources include power station underground works, tunnel 
envelope, roadway envelope, etc. The established database satisfies the model training requirements. The samples 
are divided into two parts, where 64 groups are randomly selected as a training set and the remaining 16 groups 
are set as a testing set. The better training samples were determined after several random training sessions. The 
markers of the training and prediction samples are shown in Table 5.

Most of the rock mass grades in Table 5 are based on traditional rock mass classification methods. The dif-
ferent rock mass quality is qualitatively described as the following Table 6 1.

Then, the numerical analysis was performed on input parameters in the database and the analysis results are 
shown in Table 7. The single-factor analysis results of each input parameter are shown in Fig. 3. Figure 3 contains 
line box plots and violin plots for each factor, where the line box plots reflect the data interval, interquartile 
range and median data for each indicator, and the violin plots highlight the distribution of dataset. As shown in 
Fig. 3, the median value of each indicator is not in the center of the data box, which indicates the asymmetrical 
data distribution. At the same time, we conducted a correlation analysis of the factors in the dataset, and the 
correlation matrix is shown in Fig. 4. Figure 4 shows that the p-values of each factor and rock mass quality grade 
are all greater than 0.5. Among them,  Rc, RQD, and  Kv show a negative correlation trend with rock mass quality 
grade, indicating that the larger the three parameters are the lower the grade is, the better the rock mass quality 
is. On the contrary, ω showed a positive correlation. In general, the selected factors showed a good correlation 
with rock mass quality. Moreover, the density deviation of ω distribution is large, which indicates the specific-
ity of sample data. In general, the sample set constructed in this paper meets the model training requirements.

SVC-based model development. In underground projects, such as mining and tunneling, the safety of 
production and control of construction cost are highly dependent on the quality of rock  mass58. Therefore, we 
must classify the rock mass according to the project needs. To ensure a smooth project, different rock mass qual-
ity classes correspond to different construction methods and support measures. Several factors reflect the quality 
of rock masses in actual projects. Therefore, the researchers refer to different grading criteria and factors when 
building the rock mass quality assessment models, leading to a poor generalization of the results. Moreover, the 
continuous work on new models resulted in a lot of duplication research and bad utilization of the existing data.

Therefore, the current study establishes the SVC classification model of rock mass by a large number of prior 
cases. We expect to replace the complex and repetitive modeling, and classification work by optimized SVC with 
artificial intelligence algorithms in engineering practice. It is worth emphasizing that the prediction results will 
become more accurate with the continuous use of the proposed SVC model. The implementation processes of 
the traditional rock mass classification model and AI classification model are compared in Fig. 5. The process 
represented by the yellow arrows in Fig. 5 is the steps of rock mass classification using conventional methods. 
First, the rock mass quality characterization factors are determined by the actual conditions. Secondly, obtain 
the grade interval of each factor. Third, the values of each factor are obtained. Fourth, obtain the rock mass 
quality grade by a classification model. The process represented by the blue arrow in Fig. 5 is the step of rock 
mass classification using SVC methods. When using the SVC model, the rock mass quality grade is obtained by 
simply inputting the values of the characterization parameters into the trained model. It is worth emphasizing 
that the complex process needs to be repeated each time the traditional method is used. In contrast, it is much 
easier to use SVC classification. As the model continues to be used, its accuracy and generalization capabilities 
are continuously improved.

The optimized SVC model for rock mass classification is established based on SVC theory and database. 
The model is built and trained using the MATLAB software and the main part is based on the SVM algorithm 
using the LIBSVM  toolbox59,60. Herein, the heuristic algorithms, such as GA, PSO and GWO, are utilized to 
optimize SVC, reduce prediction error, and improve computing efficiency and generalization ability. By compar-
ing the classification performance of three algorithms, the heuristic algorithm with SVC, which renders a better 
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No. Cases Rc/(MPa) RQD% Kv ω/[L (min 10 m)−1] Actual grade References Remarks

1.

Surrounding rock of underground engineering area of 
Guangzhou Pumped Storage Power  Station15

90.1 71.8 0.57 0 II

Zhou et al. (2016)15

Training sample

2. 40.2 51 0.38 10.5 III Training sample

3. 25 52 0.22 12 III Training sample

4. 90 68 0.38 21 III Test sample

5. 45 51 0.15 5 III Training sample

6. 95 76 0.7 12 II Training sample

7. 95 87 0.7 9.8 II Training sample

8. 90 76 0.57 11 II Test sample

9. 70.5 35 0.35 10 III Training sample

10. 35 50 0.3 20 III Training sample

11. 90 68 0.57 18.5 III Training sample

12. 95 82 0.7 0 II Training sample

13. 87.3 75 0.3 0 II Training sample

14. 70.5 52.5 0.6 15 III Test sample

15. 8.4 30.2 0.18 50 V Training sample

16. 36 26 0.22 5 IV Training sample

17. 40.2 50 0.5 10 III Test sample

18. 90 71 0.35 18 III Training sample

19. 95 75 0.7 0 II Test sample

20. 90 77.5 0.57 10 II Training sample

21. 20 31.5 0.23 46 IV Training sample

22. 34 50.9 0.32 21 III Training sample

23. 90 75.5 0.45 8 II Test sample

24. 95 80 0.5 0 II Training sample

25. 92 78.5 0.55 6 II Training sample

26. 93 85 0.6 0 II Training sample

27. 70 30.2 0.4 10 III Training sample

28. 95 87 0.5 0 II Training sample

29. 96 82 0.75 0 II Test sample

30.

Surrounding rock of tunnel in underground engineering 
 area16

130.5 78 0.75 10 III

Hu et al. (2012)16

Training sample

31. 28.6 52.5 0.38 23 IV Training sample

32. 200 100 1 0 I Training sample

33. 180 97.5 0.94 1.3 I Training sample

34. 160 95 0.88 2.5 I Test sample

35. 105 86.3 0.68 6.3 II Training sample

36. 75 78.8 0.53 8.8 II Training sample

37. 60 75 0.45 7.5 III Training sample

38. 52.5 68.8 0.41 13.8 III Training sample

39. 37.5 56.3 0.34 21.3 III Training sample

40. 26.3 43.8 0.28 50.6 IV Test sample

41. 18.8 31.3 0.23 100 IV Training sample

42. 11.3 18.8 0.15 169 V Training sample

43. 7.5 12.5 0.1 213 V Test sample

44. 0.8 6.3 0.05 256 V Training sample

45. 70 50 0.5 5 III Test sample

46. 34 50.9 0.32 21 III Training sample

47.

Rock mass engineering of underground stope in Sijiaying 
Iron  Mine53

181.73 58.13 0.47 17 II

Hu et al. (2017)53

Training sample

48. 101.73 34.97 0.54 109 III Training sample

49. 98.35 32.28 0.51 18 III Training sample

50. 82.17 39.93 0.53 168 IV Training sample

51. 105.23 53.3 0.37 223 III Training sample

Continued
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No. Cases Rc/(MPa) RQD% Kv ω/[L (min 10 m)−1] Actual grade References Remarks

52.

No. 2 diversion tunnel at left abutment of Manwan Hydro-
power  Station54

140.0 92.5 0.81 3.8 I

Yang et al. (1999)54

Training sample

53. 120 90 0.75 5 II Training sample

54. 90.0 82.5 0.60 7.5 II Training sample

55. 45.0 62.5 0.38 17.5 III Training sample

56. 37.5 56.3 0.34 21.3 III Training sample

57. 30 50 0.30 25 III Test sample

58. 26.3 43.8 0.28 50.0 IV Training sample

59. 22.5 37.5 0.25 75.0 IV Training sample

60. 15 25 0.20 125 IV Training sample

61. 3.8 6.3 0.05 256.3 V Training sample

62. 40 25 0.22 20 IV Training sample

63. 72 90 0.57 10 II Training sample

64. 51 40 0.38 10 III Training sample

65. 28 40 0.32 20 IV Training sample

66. 51 25 0.15 20 IV Training sample

67.

An underground project in  Liaoning55

185.5 0.12 0.89 6 II

Lijian et al. (2014)55

Training sample

68. 176.4 0.27 0.8 8 II Test sample

69. 158.2 0.08 0.94 6 II Training sample

70. 201.1 0.04 0.97 5 I Training sample

71. 181.9 0.24 0.92 9 II Training sample

72.

Deep rock mass of Sanshandao Gold  Mine56

95 79.8 0.65 5 III

Liu et al. (2011)56

Training sample

73. 95 88.6 0.4 70 III Training sample

74. 95 85.6 0.65 25 III Test sample

75. 118 90.1 0.7 10 II Training sample

76. 118 89.5 0.55 45 IV Training sample

77. 80 82.5 0.5 35 IV Training sample

78.

Pingzitou tunnel rock  mass57

68 75.4 0.55 30 III

Huang et al. (2012)57

Training sample

79. 50 55.6 0.4 20 IV Training sample

80. 15 16 0.2 125 V Training sample

Table 5.  Basic data for rock mass classification of some underground projects around the world.

Table 6.  Classification reference table.

Rock mass quality grades Qualitative description of rock quality

I Extremely hard rock and intact rock masses

II Extremely hard or hard rock and intact rock masses
Relatively hard rock and intact rock masses

III
Extremely hard or hard rocks and relatively broken rock masses
Relatively hard or soft-hard rock and relatively intact rock mass
Relatively soft rocks and intact rock masses

IV
Extremely hard or hard rock and broken rock
Extremely hard or hard rock and broken rock
Relatively soft rocks and relatively broken or intact rock masses

V
Soft rock and intact or relatively intact rock masses
Relatively soft rocks and fractured rock masses
Soft rock and relatively broken or fractured rock masses
Extremely soft rock and extremely fractured rock masses

Table 7.  Descriptive statistics of input parameters with the range, mean, standard deviation and skew for SVC 
modeling.

Parameter Mean Median Min Max Standard deviation

Rc 77.99 81.09 0.8 201.1 49.67

RQD 55.95 55.95 0.04 100 27.81

Kv 0.48 0.485 0.05 1 0.23

ω/[L (min 10 m)−1] 35.48 12 0 256.30 58.47
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Figure 3.  The database violin diagram.

Figure 4.  The database correlation matrix.
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optimization effect, is selected to construct the rock mass classification model. The model training input metrics 
are the rock mass quality characterization parameters, as identified in “Rock mass quality characterization fac-
tors”. The output index is the rock mass quality grade. The optimized SVC model comparison and construction 
process are shown in Fig. 6.

Cross-validation is a useful method for assessing the model robustness and generalization. It can avoid over-
fitting the model when the samples are small. In this study, we use the fivefold cross-validation, where we divide 
the training set into five samples, one for training and four for testing. This process is operated five times, and the 
average classification accuracy is the model accuracy. A general display of fivefold cross-validation is shown in 
Fig. 7. In this figure, P1, P2, P3, P4 and P5 represent the prediction results of the corresponding fold, respectively.

Results and discussion
SVC- based model classification performance. For the multi-classification problem, two main param-
eters affect the SVC classification effect, i.e., the error penalty parameter (c) and the kernel function parameter 
(g). The role of penalty parameter c is to adjust the learning confidence range and empirical risk ratio in a 
defined data subspace, rendering better generalization. The optimal c differs in different data subspaces. The 
kernel function parameter g mainly influences the complexity of the degree of distribution of sample data in 
high-dimensional space. The three models are trained and tested according to the database and the optimization 
ability of three heuristics is evaluated based on the test results. The performance classification metrics in the 
multi-classification model, such as accuracy, precision, recall,  F1 value and model operation time consumption, 
are used to evaluate the model. Among them, accuracy is a direct response to the model prediction performance. 
The model computation time reflects the ease of model running. The rest of the metrics reflect the classification 
ability of the model itself. The initial process of self-organization-based heuristic optimization-seeking algo-
rithm is stochastic, which means that the combinatorial model first obtains a certain key parameter value and 
search it within the fitness criterion to obtain the optimal parameter. The combined rock mass classification 
model was subjected to the training parameter settings.

(1) GA-SVC: Set the maximum number of iterations of the genetic algorithm to 100, set the maximum num-
ber of populations to 20, and set both c and g to [0, 100] for the merit search range. The mutations are 
performed to alter the binary code from 0 to 1 or vice versa. Hence, the rate of mutation is set at 0.05 and 
the crossover probability is 0.9.

(2) PSO-SVC: Set the number of search groups to 20 and the maximum number of iterations to 100; set the 
search range of both c and g to [1, 100]; and set the personal factor  c1 to 1.5 and the social factor  c2 to 1.5.

(3) GWO-SVC: The number of wolf packs is set to 20, the maximum number of iterations is 100, and the range 
of key parameter penalty coefficient c and the kernel parameter coefficient g are both searched in the range 
of [1, 100].

The current study normalizes the training data to eliminate the effect of dimension. The parametric search 
is conducted using the processed data and the model is validated using a fivefold-cross-validation of training 
samples to determine the SVC key parameters c and g. According to the previous studies, the choice of RBF 

Figure 5.  The prediction case flow chart.
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Figure 6.  The research architecture for the proposed SVM-based approach with GWO, GA and PSO 
optimization method.

Figure 7.  A schematic diagram of fivefold cross-validation.
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kernel function can lead to better model training results. One should note that different kernel function choices 
are available in the LIBSVM tool.

GA, PSO and GWO optimization selected the key parameters of SVC. The results reveal that the genetic 
algorithm determines Optimal c = 4.734 and Optimal g = 3.7127; the particle swarm algorithm determines Opti-
mal c = 62 and Optimal g = 0.5501, and the gray wolf algorithm determines Optimal c = 22.1397 and Optimal 
g = 2.8339. The SVC models were trained using the resulting optimal parameters and the results of three combined 
models for database classification are shown in Figs. 8, 9, and 10 and Table 8. The box in the figure represents 
the real rock mass quality grade, the red-colored dot represents the model prediction grade, the left side of the 
black-colored vertical line presents the prediction result of the training set, and the right side shows the predic-
tion result of the test set. The results demonstrate that the three heuristic algorithms possess different abilities to 
optimize SVC. In terms of training set validation accuracy, all three combined models are more than 80% accurate 
and render superior performance. Among them, the GWO-SVC algorithm results in optimal performance with 
90.6250% (58/64) accuracy of the training set prediction, followed by PSO-SVC with 87.5000% (54/64) accuracy 
of the training set prediction and GA-SVC with 82.8125% (53/64) accuracy of the training set prediction. This 
shows that all three models can achieve the rock mass classification function with reasonable accuracy and reli-
ability through training. The training results of GWO-SVC algorithm with the current training set outperform 
the other two optimization-seeking algorithms. The trained model was used to test the classification of 16 datasets 
and the classification results are presented in the right-hand panels (Figs. 8, 9, 10). The GWO-SVC rendered 
the highest model classification accuracy (93.7500%, 15/16), whereas both PSO-SVC and GA-SVC exhibited 

Figure 8.  GA-SVC: predicted sample vs. actual sample.

Figure 9.  PSO-SVC: predicted sample vs. actual sample.
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similar performance, i.e., 81.2500% (13/16) and 81.2500% (13/16), respectively. The rock mass classification is 
such a multi-classification problem that the model’s ability to classify different categories should be assessed while 
considering the accuracy. Herein, the precision, recall and  F1 values are calculated for different grades (I–V) of 
the three models. By analyzing and comparing the classification capabilities of different grades of the model, it 
is possible to determine that which type of rock mass level lacks training at this stage, providing guidance for 
further model optimization. Figures 11, 12 and 13 show the discrimination accuracy, recall, and  F1 values for 

Figure 10.  GWO-SVC: predicted sample vs. actual sample.

Table 8.  The variables and summary of as-proposed models for SVC.

Algorithm Best c Best g Sample Accuracy % T (s)

GA-SVC 4.734 3.7127
Train set 82.8125% (53/64)

6.03
Test set 81.2500% (13/16)

PSO-SVC 62 0.5501
Train set 87.5000% (54/64)

4.30
Test set 81.2500% (13/16)

GWO-SVC 22.1397 2.8339
Train set 90.6250% (58/64)

1.54
Test set 93.7500% (15/16)

Figure 11.  Classification precision.
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each category of three combined models, respectively. Figure 11 and 12 show that the three combined algo-
rithms differ in their ability to classify different grades. The classification accuracy rate of all three optimization 
algorithms for Grade I rock samples is 1. The recall rate of PSO-SVC and GWO-SVC is 1, whereas the recall of 
GA-SVC is 0.6. At this stage, it indicates that the PSO-SVC and GWO-SVC judge all Grade I samples correctly 
and, instead of misclassification, the GA-SVC exhibits under-classification. Under-classification means that all 
samples of Grade I are not found. The classification precision of all three optimization algorithms for Grade I 
rock samples is 1. The recall of PSO-SVC and GWO-SVC is 1, while the recall of GA-SVC is 0.6. At this point, it 
means that PSO-SVC and GWO-SVC judge all the samples of Grade I correctly, and GA-SVC does not misclas-
sification, but there is under- classification. Therefore, the order of classification ability of Grade I samples is 
PSO-SVC = GWO-SVC > GA-SVC. For the Grade II rock samples, all three algorithms correctly identified the 
real Grade II rock samples. However, there are different degrees of misclassification. Misclassification means 
that samples of other grades are divided into Grade II. Therefore, the order of classification ability of Grade II 
samples is GWO-SVC > PSO-SVC > GA-SVC. For the Grade III rock samples, all three algorithms suffer from 
both under-classification and misclassification. From the precision and recall viewpoints, Grade III classification 
ability can be given as GWO-SVC > PSO-SVC > GA-SVC. The precision and recall of PSO-SVC and GA-SVC in 
Grade IV were the same, i.e., 0.89 and 0.53, and GWO-SVC were 0.92 and 0.73, respectively. Therefore, the order 
of classification ability of Grade IV samples is GWO-SVC > PSO-SVC = GA-SVC. The precision and recall rates 

Figure 12.  Classification recall.

Figure 13.  Classification  F1 value.
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of PSO-SVC and GA-SVC for Grade V samples are the same, i.e., 1 and 0.83, respectively, confirming that both 
algorithms do not exhibit misclassification. However, under-classification of Grade V samples still exists. The 
precision and recall of GWO-SVC were both 0.83, indicating partial under-classification and misclassification. 
Therefore, the order of classification ability of Grade V samples is GWO-SVC > PSO-SVC = GA-SVC. Combined 
with the  F1 values in Fig. 13, the  F1 values of Grades I, II, III and V of the three algorithms are better than the 
Grade IV, indicating the inferior classification ability of the given algorithms for Grade IV samples. The poor 
quality of Grade IV samples cannot sufficiently train the model and results in inferior classification ability. The 
 F1 value of PSO-SVC and GWO-SVC for Grade I samples is found to be 1, indicating the absence of misclas-
sification and under-classification. In summary, the classification ability of three algorithms on different grades 
can be ranked as: GWO-SVC > PSO-SVC > GA-SVC.

The operation speed reflects the algorithm’s optimization ability and a faster operation speed renders opti-
mal performance in training large-sized samples. Herein, the computational speed of GA-SVC, PSO-SVC and 
GWO-SVC for 100 iterations was found to be 6.03 s, 4.30 s and 1.54 s, respectively. These results reveal that the 
GWO-SVC model has an advantage in training and prediction time consumption. We have analyzed the accu-
racy, precision, recall,  F1 value and computational time consumption of the three models in detail. Overall, the 
GWO-SVC rendered the best classification performance, followed by PSO-SVC and GA-SVC.

Sensitivity analysis. For exploring and comparing the sensitivity of diferent infuenced factors on rock 
mass quality, in this section, the cosine amplitude method was  employed38 . Each input variable and one output 
variable were transformed into a single column matrix. Thus, five single column matrixes were obtained as 
Eq. (12).

where the length of each single column matrix is equal to the number of all datasets and then the sensitivity of 
diferent infuenced factors on rock mass quality can be calculated as Eq. (13)

According to the results (Fig. 14), it can be observed that the most sensitive factor is RQD and Kv, the RQD 
is more important. This result is reasonable because the degree of rock fragmentation also plays a large part in 
the traditional classification method. Finally, the sensitivity of diferent parameters on rock mass quality can be 
sorted in descending order as: RQD,  Kv, ω,  Rc.

Model verification
Validation case: chambishi copper mine. Chambishi copper mine is a major mining project of the 
China Nonferrous Metals Group in Zambia. The copper mine is located in the central part of the Zambian cop-
per belt, which is on the northern edge of the Chambishi Basin. The currently developed artificial intelligence 
model is mainly applied to the southeast orebody of the Chambishi copper mine. The southeast ore body is 
located about 7 km to the southeast of the main mining area, which is 6 km long (from east to west) and 5 km 
wide (from north to south) with an area of 30  km2. The ore body is laminated and exists in a set of shallowly 
metamorphosed muddy and sandy slates. The overall orientation of the ore body is north-west, which is basi-
cally consistent with the folded tectonic axis. The ore body trends to the north-east with a dip angle of 5°–55°, 
where the dip angle of ore body is 0°–30°. The morphology of some sections of the ore body has changed due to 
geological process, however, the ore body is stable along the strike and trend extension. The southeastern part of 

(12)xa = {xa1, xa1, ..., xan}

(13)sab =

∑80
n=1 xanxbn
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Figure 14.  Sensitivity analysis of different factors on rock mass quality.
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the Chambishi copper mine is the testing site of the National Key Research and Development Program of China 
under the project titled "Theory and Technology of Spatiotemporal Synergistically and Continuously Mining in 
a Multi-mining area of Deep Large Ore Section". The rock mass quality assessment of the Southeastern mine is 
a critical step to ensure the progress of several key technologies and the safety of industrial sites during the later 
stages of the project.

Rock mass classification based GWO-SVC model. The current study evaluated the classification 
ability of three combined models and identified that the GWO-SVC exhibits the optimal classification ability. 
Herein, the GWO-SVC model is used to evaluate the rock mass quality in different areas of the southeastern ore 
zone of the Chambishi copper mine. During the assessment of rock mass quality, the following input parameters 
are determined, i.e., rock saturated compressive strength  (Rc), RQD value, integrity factor of the rock mass  (Kv), 
and unit roadway water inflow (ω). The investigators have conducted on-site surveys of the hanging wall and 
footwall, and characterized the rocks from the exposed southern and northern mining areas to ensure the accu-
racy of rock mass classification of the southeastern ore body. The accurate field values of RQD,  Kv, and ω of the 
rock mass were obtained through on-site borehole sampling, wave velocity testing and water seepage analysis. 
The mechanical strength testing capability in Zambia is insufficient. Therefore, we have transported the ore and 
rock specimens from each sampling area of the Southeastern ore body to the China to obtain comprehensive and 
reliable physical and mechanical parameters. The index parameters of each region are shown in Table 9.

Furthermore, GWO-SVC is used to predict the quality classification of typical rock masses in Southeastern 
orebody and the prediction results are shown in Table 10. The results reveal that the rock mass quality of the 
hanging and foot wall of the southeastern ore body in the south and north mining areas of the Chambishi copper 
mine is similar. The rock mass strength of the hanging wall and footwall in the southern mining area is better 
than the northern mining area, whereas the rock mass integrity of the southern mining area is weaker than 
the northern mining area. The orebody slate quality in the southern and northern mining areas is identified as 
Grade III and Grade II, which indicates that the quality of the same ore body exhibits little variation due to dif-
ferent rock-forming conditions and environments. Except for the slate of the orebody and flint-bearing banded 
dolomite in the southern mining area, which were wet, the rest of the samples are dry and less influenced by 
the groundwater. Overall, except for the slate of the orebody and flint-bearing banded dolomite in the southern 

Table 9.  Southeast orebody rock data of chambishi copper.

Sample Rc/(MPa) RQD% Kv ω/[L (min 10 m)−1]

Quartzite of hanging wall

Quartzite of hanging wall 96.86 52 0.45 25

Quartzite of hanging wall 151.63 64 0.65 1

Quartzite of footwall 172.61 67 0.65 1

Flint-bearing banded dolomite 56.49 68 0.65 20

North mining area

Slate of ore body 127.92 72 0.65 2

Quartzite of hanging wall 98.23 74 0.65 10

Quartzite of footwall 81.06 80 0.65 0

Conglomerate of footwall 104.71 76 0.65 1

Base granite 162.36 65 0.65 0

Table 10.  The comparison of GWO-SVC model prediction results and field RMR model classification results.

Sample GWO-SVC RMR

The quartzite of hanging wall

The quartzite of hanging wall III III

The quartzite of hanging wall II II

Quartzite of footwall II II

Flint-bearing banded dolomite III III

North mining area

The slate of ore body II III

The quartzite of hanging wall II III

Quartzite of footwall II II

Conglomerate of footwall II II

Base granite II II
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mining area, which are evaluated as Grade III samples, the remaining samples belong to Grade II and the results 
reflect that the overall rock mass quality of the ore body in the southeastern region of the mine is highly stable 
and safe. Meanwhile, this study also applied traditional Rock Mass Rating (RMR) to classify the rock masses in 
the field and the classification results are shown in Table 10. The results obtained from RMR are consistent with 
the GWO-SVC results, further confirming the accuracy of GWO-SVC model.

Limitation
By utilizing SVC as the predominant strategy to predict the rock mass quality, satisfactory prediction accuracies 
are procured. However, there are still some drawbacks and limitations that need to be improved in future work. 
Firstly, the scale of data used to establish the evaluation models is still small and only 80 groups of samples are 
collected. The combined model can learn more valid information when there are more samples from different 
sources in the dataset. Therefore, the dataset of the model should be further increased. Secondly, deeply analyzing 
rock characterization parameters is significant for rock mass classification. Thirdly, more advanced metaheuristic 
algorithms are worthwhile to be combined with SVC prediction models to improve the classification accuracy. 
For instance, the extreme gradient  boosting61, are not investigated and compared in this study.

Conclusions
The classification of rock mass is an important parameter for the design of underground engineering sites. The 
rock mass quality prediction and evaluation are always influenced by many factors. The relationship between 
these factors and the rock mass quality is elusive in different regions. Therefore it is difficult to grade the rock 
mass quality in different regions by some traditional method. AI-based techniques can simulate sophisticated 
relationships between influential factors and output targets compared to the conventional methods. In this 
study, we built a dataset containing 80 sets of samples, each containing four rock mass quality characterization 
parameters. To classify the rock masses, the SVC algorithm is used in this paper. Then, three types of optimal 
algorithms are combined with SVC to optimize the hyper-parameters. As a result, it is found that GWO-SVC 
obtains the most comprehensive classification performance. The accuracy of training and testing sets of GWO-
SVC are 90.6250% (58/64) and 93.7500% (15/16), respectively. For Grades I, II, III, IV and V, the precision 
value is 1, 0.93, 0.90, 0.92, 0.83, the recall value is 1, 1, 0.93, 0.73, 0.83, and the  F1 value is 1, 0.96, 0.92, 0.81, 
0.83, respectively. According to the sensitivity analysis results, the RQD and Kv plays the most important role in 
influencing the rock mass quality. Finally, the GWO-SVC model, with optimal classification ability, is selected 
to classify the rock mass quality of the exposed area of southeastern ore body of the Chambishi copper mine in 
Zambia. The results reveal excellent consistency between GWO-SVC and RMR grading models, verifying the 
validity of GWO-SVC model for application in the field of rock mass.Therefore, the GWO-SVC rock mass clas-
sification model has good potential for application in the geotechnical field. After training with more data, the 
GWO-SVC model can become a powerful tool for engineering designers.
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