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Specific gut bacterial responses 
to natural diets of tropical birds
Kasun H. Bodawatta  1*, Irena Klečková  2, Jan Klečka  2, Kateřina Pužejová2,3, 
Bonny Koane4, Michael Poulsen  5, Knud A. Jønsson  1 & Katerina Sam  2,3

The composition of gut bacterial communities is strongly influenced by the host diet in many 
animal taxa. For birds, the effect of diet on the microbiomes has been documented through diet 
manipulation studies. However, for wild birds, most studies have drawn on literature-based 
information to decipher the dietary effects, thereby, overlooking individual variation in dietary intake. 
Here we examine how naturally consumed diets influence the composition of the crop and cloacal 
microbiomes of twenty-one tropical bird species, using visual and metabarcoding-based identification 
of consumed diets and bacterial 16S rRNA microbiome sequencing. We show that diet intakes vary 
markedly between individuals of the same species and that literature-based dietary guilds grossly 
underestimate intraspecific diet variability. Furthermore, despite an effect of literature-based dietary 
guild assignment of host taxa, the composition of natural diets does not align with crop and cloacal 
microbiome similarity. However, host-taxon specific gut bacterial lineages are positively correlated 
with specific diet items, indicating that certain microbes associate with different diet components 
in specific avian hosts. Consequently, microbiome composition is not congruent with the overall 
consumed diet composition of species, but specific components of a consumed diet lead to host-
specific effects on gut bacterial taxa.

The composition of gut microbial communities of animals is driven by a multitude of intrinsic (i.e., host genetics, 
immune system)1,2 and extrinsic (i.e., diet, environment)3–6 factors. In many animal taxa, the establishment of the 
initial microbiome is facilitated by the inoculation of microbial consortia from parents (parental transmission)7,8. 
However, the colonisation and persistence of these microbes can be influenced by both the host immune system 
and gut physiology2,9,10. Throughout host life, ecological and environmental factors (environmental filtering) 
such as diet, habitat, and social interactions further affect composition and stability (i.e., individual variation 
and turnover rates) of bacterial communities5,6,11–15. Thus, to understand the evolution and the long-term asso-
ciations between hosts and their gut microbes, we need to disentangle the relative importance of these factors.

Of the ecological and environmental factors, diet has been shown to have a strong influence on shaping the gut 
microbiomes of many wild animals3,4,6,16. This is particularly true in birds4,10,11,13. However, most studies on gut 
microbiomes in wild birds have relied on the literature to assign bird taxa to particular dietary guilds10,17–19, with 
a few exceptions where stable isotope ratios of nitrogen and carbon have been used to characterize the nutrient 
composition of natural diets20,21. The utilisation of literature-based dietary guilds ignores individual and seasonal 
natural variation in diet intake22, which may be important for the gut microbiome composition11,21. Furthermore, 
overall dietary guild assignments to e.g., frugivore and insectivore tend to strongly associate with host taxonomy 
(closely related species tend to belong to similar feeding guilds)23, hindering the ability to determine the realized 
separate effects of host taxonomy and diet. Thus, to elucidate the realized effect of diet on structuring wild bird 
gut microbiomes, it is necessary to examine naturally consumed diet items of individuals, which is currently 
lacking in wild avian gut microbiome research.

In an attempt to reduce this knowledge gap, we examine how natural diets (as opposed to expected diets 
based on the literature) of wild birds influence the crop (the food storing pouch) and the cloacal bacterial com-
munities of tropical forest birds in Papua New Guinea. Through the collection of regurgitated crop samples, we 
characterised specific consumed diet contents and crop microbiomes. These microbiomes could represent both 
incoming microbes of the ingested diet and the microbes that are already present in the crop. Utilising cloacal 
swabs, we then investigated the cloacal microbiomes of the same individuals. Diet identification in the crop was 
conducted using two commonly utilised approaches: DNA metabarcoding and visual identification, while crop 
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and cloacal microbiomes were characterized through sequencing the v4 region of the bacterial 16S rRNA gene. 
First, we tested two alternative hypotheses related to the effect of diets on crop and cloacal microbiomes (Fig. 1). 
If consumed diet similarity is a strong determinant of wild avian gut microbiomes, we expected individuals 
consuming compositionally similar diets to harbour similar crop and cloacal microbiomes, irrespective of host 
taxonomy (Fig. 1a). However, if host taxon is the main driver, and diet only secondarily influences community 
structure10, we did not expect microbiome similarity to align with diet similarity across host taxa. Instead, we 
expected significant correlations between specific microbes and diet items across hosts (Fig. 1b). Secondly, we 
compared the crop and cloacal microbiomes of the same individuals, testing the assumption that the avian 
stomach acts as a barrier for passage of microbes from the foregut to the hindgut24, expecting that microbial 
communities in the crop and the cloaca would be compositionally different. Anatomical gut modifications asso-
ciated with powered flight has led to gut microbial restrictions in birds (e.g., increased individual variation and 
less stability of gut microbiomes in smaller birds)9,10, and we therefore further predicted that smaller birds with 
shorter digestive tracts10 would have more shared bacterial sequences in the two regions.

Results
Natural diets of tropical birds vary within species.  We collected 62 regurgitated samples (using the 
tartar emetic method 22) from multiple tropical bird species representing four bird orders (Columbiformes–
Pigeons, Coraciiformes–Kingfishers, Psittaciformes–Parrots, and Passeriformes–Passerines). First, we charac-
terized diet components visually and then through metabarcoding of 52 of these samples using universal prim-
ers targeting invertebrates (Cytochrome c oxidase subunit I: COI gene) and plants (Internal transcribed spacer 
2: ITS2 gene) (Table S1 and Fig. 2). Through visual identification, we identified plant material in 26 samples. The 
most common visually identified invertebrate orders were Araneae (spiders—27 samples), and Coleoptera (bee-
tles—27 samples) (Table S2). Metabarcoding sequences were analysed using the OBITools software25. Overall, 
we found 47 plant operational taxonomic units (OTUs—97% sequence similarity threshold) and 180 inverte-
brate OTUs (Table S3). Plant items were dominated by the orders Rosales (27.7% OTUs), Fabales (8.5% OTUs), 
and Sapindales (8.5% OTUs). Except for four OTUs, all plants were identified to the genus level. Of the inverte-
brate OTUs, 54 belonged to feather mites (known feather symbionts), endoparasites, and rotifers (likely due to 
accidental consumption along with drinking water), and these OTUs were removed from further analyses, leav-
ing 126 potential dietary invertebrate OTUs. Invertebrate samples were dominated by the classes Insecta (67.5% 
OTUs) and Arachnida (28.6% OTUs). At the order-level, dietary items were mainly represented by Araneae 
(spiders—28.6% OTUs), Hemiptera (true bugs—15.9% OTUs), Diptera (flies—14.3% OTUs), and Lepidoptera 

a b

Figure 1.   A conceptual overview of the investigated diet-related hypotheses. (a) Hypothesis 1: gut microbiome 
similarity is strongly associated with consumed diet similarity across all bird species irrespective of host 
phylogeny. (b) Hypothesis 2: host species-specific gut microbes are associated with certain diet (three different 
diets depicted) items, where different bird species (three different species depicted) harbour different microbial 
taxa that are associated with the same diet items. Red boxes represent significant correlations between diet 
components and gut microbes, while white boxes represent no associations.
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Figure 2.   Natural diets of wild birds vary between individuals of the same species and the results of the two 
identification methods of dietary components (visual identification and metabarcoding). Relative abundances based on 
the presence/absence of data of different dietary components are indicated in colours. Only invertebrates are separated 
into taxonomic orders as visual identification is unable to identify plant orders. Individuals depicted with asterisks 
had both crop microbiome and diet samples (dataset 1), while black font represents individuals with both cloacal 
microbiomes and diet samples (dataset 2). Individuals are clustered according to the species (each species is given a 
six-letter code name) and their literature-based dietary guilds. The order of the species is indicated with illustrations 
(Columbiformes–Pigeons, Coraciiformes–Kingfishers, Passeriformes–Passerines and Psittaciformes–Parrots), while ‡ 
represents diet samples with a complete consensus between the two identification methods.
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(moths and butterflies—10.3% OTUs). However, 77% of the invertebrate OTUs could not be identified to genus 
level, highlighting the limited research on genotyping invertebrate communities in Papua New Guinea.

Diet item identification differed markedly between visual and metabarcoding methods (Fig. 2, Tables S2 and 
S3). The diet components of individuals also varied notably within species (Figs. 2 and S1). Only diets of 12 out 
of 52 individuals were fully congruent between the two methods (Fig. 2). Of these 12 samples, eight had only 
plant material. Identification of invertebrate orders also differed between the two methods (Fig. 2, Table 1). Both 
methods identified the arthropod orders Hemiptera, Diptera, Orthoptera (crickets and locusts), and Araneae 
in the same samples (Fig. 2 and Table 1), while metabarcoding detected lower proportions of Coleoptera than 
the visual identification (Table 1).

Comparison of microbiomes and consumed diet items.  For subsequent comparisons of diets and 
microbiomes, we utilised individual datasets from both visual identification (diet components identified at the 
order level) and metabarcoding (both OTU and order level), and a combination (order level) of both approaches 
(for details see “Methods” section on identifying prey items). Due to differences between the diet identifica-
tion methods, a combination of the results was used to circumscribe the full diversity of consumed diets and 
to account for inherent biases associated with the two methods (i.e., the inability to identify plant material and 
smaller body parts of invertebrates visually, and extraction and sequencing biases associated with metabarcod-
ing). We separated the microbiome dataset into three datasets due to sequencing limitations: dataset 1 included 
12 birds with successfully sequenced crop microbiomes and diets identified using both methods, dataset 2 
included 27 birds with successfully sequenced cloacal microbiomes and diets, and dataset 3 included 17 birds for 
which we obtained successfully sequenced crop and cloacal microbiomes (Table S1). Prior to subsequent analy-
ses, each microbiome dataset was rarefied to even sequencing depths using the sample with the lowest number 
of sequences26 (Fig. S2).

Crop microbiome similarity did not align with the consumed diet similarity (dataset 1).  Out 
of the collected crop samples (N = 62), samples from only 19 individuals were successfully sequenced for their 
microbiomes. Of these individuals, we acquired diet samples for 12 individuals. Bacterial 16S rRNA MiSeq 
sequences were analysed using the DADA2 pipeline27 within QIIME228. There were 351,867 bacterial sequences 
(mean ± SD: 29,322 ± 33,009) in the crop microbiomes prior to rarefaction (Table S4). After rarefaction, bacterial 
sequences were identified to 615 amplicon sequence variants (ASVs—100% sequence similarity). Crop microbi-
omes were dominated by Proteobacteria (53.6%), Actinobacteria (18.9%), and Firmicutes (17.9%). Alpha diver-
sities of individual microbiomes were calculated using the diversity function in the microbiome package29 and 
they did not differ significantly between host orders [Chao1 richness: Kruskal Wallis (KW) χ2 = 4.559, df = 3, 
p = 0.2271; Shannon’s diversity index: χ2 = 2.853, df = 3, p = 0.4149], or literature-based dietary guilds (Chao1 
richness: KW χ2 = 4.317, df = 2, p = 0.1155; Shannon’s diversity index: KW χ2 = 2.852, df = 2, p = 0.2403) (Fig. S3).

The compositional differences of crop microbiomes were investigated with the adonis2 function in the vegan 
package30 using permutational multivariate analyses of variance tests (PERMANOVA). These analyses revealed 
that the bird host order did not influence the crop microbiome composition (PERMANOVA10,000 permutations: 
Bray–Curtis: F = 1.251, R2 = 0.0993, p = 0.1911; Jaccard: F = 1.154, R2 = 0.0962, p = 0.2191) (Fig. S1). The effect of 
feeding guild was masked by host order as they are strongly correlated in this dataset. Furthermore, the lack of 
an effect of host taxa on crop microbiomes may be a result of the small sample sizes.

We further investigated whether alpha diversity of the crop microbiomes was influenced by the diet item 
diversity of individuals. The Chao1 richness estimates of the microbiomes and the richness of the consumed 
diet items (number of different diet items based on the combined results) of individuals were not significantly 
correlated (Table S5), suggesting that the diet richness does not impact crop microbiome richness. However, 
Shannon’s diversity index of crop microbiomes and diet diversity were marginally significantly negatively associ-
ated (Table S5). This suggests that despite the lack of an association between diet and microbiome richness, crop 
microbiome evenness could be influenced by diet diversity.

Table 1.   Comparison between diet items identified in the regurgitated samples from the two approaches 
(visual identification and metabarcoding). Identification of plants is limited to the domain level in the visual 
method. Invertebrate identification is done at order level to enable comparison between the two methods.

Diet component Visual ID Metabarcoding
# of samples with consensus 
between the two methods

% of samples with visual ID of 
diet components matching the 
metabarcoding results (%)

Plants 26 37 22 84.6

Araneae 27 23 19 70.4

Coleoptera 27 5 4 14.8

Diptera 9 16 8 88.9

Hymenoptera 12 11 7 58.3

Hemiptera 11 15 11 100

Lepidoptera 9 9 4 44.4

Orthoptera 9 9 7 77.8
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We then explored the association between the crop microbiome composition and the consumed diets, inves-
tigating correlations between Bray–Curtis and Jaccard dissimilarities of microbiomes, and Jaccard dissimilarity 
of diets using Mantel tests in the vegan package30. The compositional similarity of the diets based on any of the 
methods (visual, metabarcoding—both OTU and order-level separately, and combined) did not correlate signifi-
cantly with crop microbiome compositions (Table 2 and Fig. S4). We observed similar non-significant associa-
tions between diets and microbiomes when investigating host orders separately (Table S6). This suggests that 
overall crop microbiomes of individuals are not completely modelled by the composition of the consumed diets.

Host‑taxon specific cloacal microbes are associated with different diet items (dataset 2).  We 
obtained 27 individuals from 15 bird species with successfully sequenced cloacal microbiomes and diet sam-
ples (based on both metabarcoding and visual identification). Prior to rarefying, we acquired 818,272 bacterial 
sequences from the cloacal swab samples (mean ± SD: 30,306 ± 20,903) (Table S7). After rarefaction, bacterial 
sequences were assigned to 1,324 ASVs that belonged to Actinobacteria (35.9%), Proteobacteria (32.6%), Firmi-
cutes (21.2%) and Tenericutes (5.0%). Cloacal microbiome alpha diversity did not differ significantly between 
different bird orders (Chao1 richness: KW χ2 = 2.624, df = 3, p = 0.4532; Shannon’s diversity: χ2 = 6.595, df = 3, 
p = 0.0861) or literature-based dietary guilds (Chao1 richness: KW χ2 = 1.128, df = 3, p = 0.7703; Shannon’s diver-
sity: KW χ2 = 1.673, df = 3, p = 0.6429) (Fig. S5).

However, cloacal microbiome beta diversity was significantly influenced by host bird order 
(PERMANOVA10,000 permutations: Bray–Curtis: F = 2.159, R2 = 0.2055, p < 0.0001; Jaccard: F = 1.749, R2 = 0.1775, 
p < 0.0001) and literature-based dietary guilds (PERMANOVA10,000 permutations: Bray–Curtis: F = 1.529, R2 = 0.1456, 
p = 0.0008; Jaccard: F = 1.341, R2 = 0.1361, p = 0.0023) (Fig. S1). The variation explained by dietary guilds was 
slightly secondary to the variation explained by the host taxon. We did not observe significant associations 
between alpha diversity of diet and cloacal microbiomes (Table S5) nor in compositional similarity of diets and 
cloacal microbiomes (Table 2 and Fig. 3). Similar to crop microbiomes, the compositional similarity of diets and 
cloacal microbiomes were not significantly associated when bird orders were analysed separately (Table S6). This 
suggests that cloacal microbiome composition does not align with the overall consumed diet similarities of hosts.

To explore whether specific gut bacterial symbionts of different host taxa are associated with different dietary 
items (Fig. 1b), we tested for correlations between the 30 most abundant bacterial genera and the proportion of 
order-level diet items in each individual using the taxa.env.correlation function in the microbiomeSeq package31. 
These analyses revealed that certain bacterial genera were positively correlated with certain dietary items (Fig. 4 
and Table S8) and that the taxonomy of bacterial symbionts associated with the same diet item differed between 
host orders, suggesting that host-taxon specific microbes are affected by the same dietary items in different bird 
taxa. For example, the relative abundance of the plant order Rosales was significantly correlated with the bacterial 
genera Ureaplasma, and Helicobacter in pigeons, while Rosales was significantly associated with Helicobacter, 
Escherichia and Acinetobacter in passerine birds. These results indicate that the overall effect of diet on cloacal 
microbiomes results from a combination of associations between certain microbes and specific dietary items in 
different avian hosts.

Table 2.   Results of Mantel tests between the crop (dataset 1) and the cloacal (dataset 2) microbiome 
similarities (measured with both Bray–Curtis and Jaccard distances) and the consumed diet similarities 
(measured with Jaccard distances). Separate tests were conducted for visual, metabarcoding (both at diet OTU 
and order level) and the combined identification of diets.

Dataset Diet identification Microbiome distance matrix Mantel r p

Dataset 1 (Crop microbiomes and diets)

Visual
Bray–Curtis 0.1017 0.2165

Jaccard 0.0861 0.2438

Metabarcoding (order level)
Bray–Curtis 0.0373 0.3736

Jaccard 0.0186 0.4231

Metabarcoding (OTU level)
Bray–Curtis − 0.0844 0.7113

Jaccard − 0.0839 0.7064

Combined
Bray–Curtis 0.0368 0.3958

Jaccard 0.0077 0.4542

Dataset 2 (Cloacal microbiomes and diets)

Visual
Bray–Curtis 0.0586 0.1531

Jaccard 0.0449 0.1955

Metabarcoding (order level)
Bray–Curtis 0.0379 0.2176

Jaccard 0.0425 0.1947

Metabarcoding (OTU level)
Bray–Curtis 0.1285 0.0511

Jaccard 0.1159 0.0609

Combined
Bray–Curtis − 0.0284 0.6392

Jaccard − 0.0176 0.5745
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Figure 3.   Overall cloacal microbiomes were not influenced by the observed diet similarity of individuals. The 
heatmap depicts the relative abundance of the 50 most abundant bacterial genera in the cloacal microbiomes. 
The dendrogram represents the consumed diet similarity (combined dataset) between individuals based 
on Jaccard distances. Literature-based dietary guilds and the observed feeding guilds of the individuals are 
indicated below the bird order icons. Insectivore + Frugivore and Insectivore + Nectarivore dietary guilds have 
been combined since none of the diet identification methods was able to identify nectar. The species code of 
each individual is given near the host ID number (code names from Fig. 2).
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a

b

Figure 4.   Many host-taxon-specific bacterial genera are significantly positively correlated with the relative 
abundance of certain dietary components. Pearson’s correlations between the 30 most abundant cloacal bacterial 
genera and the proportion of different orders of plants (a) and invertebrates (b) in individual diets. These 
analyses were conducted only on the diet identification based on metabarcoding, as visual identification did not 
identify plants into lower-level taxonomic classifications. Significant correlations are indicated with asterisks 
(p < 0.05*, p < 0.001**, and p < 0.0001***).



8

Vol:.(1234567890)

Scientific Reports |          (2022) 12:713  | https://doi.org/10.1038/s41598-022-04808-9

www.nature.com/scientificreports/

A large portion of bacterial sequences are shared between the crop and the cloaca (dataset 
3).  For 17 bird individuals, we successfully acquired both crop and cloacal microbiomes. Overall, prior to 
rarefaction, we acquired 571,488 (mean ± SD: 33,617 ± 17,188) bacterial sequences from cloacal swab samples 
and 562,557 sequences from crop samples (mean ± SD: 33,091 ± 35,586). After rarefaction, sequences aligned 
to 1,176 bacterial ASVs (Table  S9). The microbiome alpha diversity did not differ significantly between the 
two regions (Chao1 richness: KW χ2 = 0.3633, df = 1, p = 0.5466; Shannon’s diversity index: KW χ2 = 1.759, 
df = 1, p = 0.1848) (Fig.  5a,b). Overall, the phylum Proteobacteria (43.9%) dominated the crop microbiomes, 
followed by Firmicutes (20%) and Actinobacteria (19%). In the cloaca, microbiomes were dominated by Act-
inobacteria (40.2%), followed by Proteobacteria (25.1%) and Firmicutes (21.7%) (Fig.  6). The relative abun-
dance of the bacterial phyla in both regions of the digestive tract differed markedly between bird species but we 
observed comparable microbial compositions within species (Fig. 6). Overall, bacterial community composi-
tions did not differ significantly between the two regions of the gut (PERMANOVA10,000 permutations: Bray–Cur-
tis: F = 0.9188, R2 = 0.0279, p = 0.5985; Jaccard: F = 0.8995, R2 = 0.0273, p = 0.6825) (Fig. 5c), while both the crop 
(PERMANOVA10,000 permutations: Bray–Curtis: F = 1.661, R2 = 0.2771, p = 0.0026; Jaccard: F = 1.393, R2 = 0.2432, 
p = 0.0051) and the cloacal (PERMANOVA10,000 permutations: Bray–Curtis: F = 1.721, R2 = 0.2841, p < 0.0001; Jaccard: 
F = 1.521, R2 = 0.2597, p = 0.0006) microbiomes were significantly affected by host order (Fig. 5c). The similarity 
between the crop and the cloacal microbiomes within individuals indicates that microbiomes are likely to be 
influenced by the same factors, e.g., host taxon.

Only a small number of ASVs (richness) was shared between the crop and the cloacal microbiomes 
(mean ± SD: 17.1% ± 12.2%). However, they accounted for a large proportion of the total number of bacterial 
sequences (61.5% ± 32.3%) (Fig. 6). This suggests that the most abundant ASVs are shared between the crop and 
the cloacal microbiomes. We further explored the association of richness of these shared ASVs and their rela-
tive abundances with the gut length of hosts. We did not find a significant association between host body mass 
(a proxy for gut length10) and the number of shared ASVs between the two regions (lm: R2 = 0.0312, F = 0.4835, 
p = 0.4975), indicating that body size did not influence ASV sharing between the two regions. We also did not 
find a significant association between the combined relative abundance (the proportion of bacterial sequences) 
of the shared ASVs and body mass (lm: R2 = 0.1631, F = 2.921, p = 0.1081; Fig. S6). However, the relationship 
between host body mass and relative abundance of shared ASVs tended to be negatively associated, suggesting 
that larger birds (with longer digestive tracts) share fewer bacterial sequences between the crop and the cloaca.

a

b

c

Figure 5.   Alpha diversities did not differ between crop and cloacal microbiomes, but beta diversities 
demonstrated a host order-level effect. Chao1 richness estimate (a) and Shannon’s diversity index (b) of 
microbiomes in the two regions of the digestive tract. Microbiomes of the same bird individual are connected 
with a line. (c) The NMDS plot (stress = 0.2243) represents the microbial community similarity (measured with 
Jaccard dissimilarity index) of the cloacal and the crop microbiomes. Individual IDs are given near the crop 
samples and points are coloured according to the host order. Ellipses represent the 95% confidence intervals.
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Discussion
We investigated the influence of naturally consumed diets on the crop and the cloacal microbiomes of multiple 
tropical wild bird species. Aligning with previous studies10,18, we found a strong effect of host taxon (i.e., bird 
order) on the composition of both microbiomes, except for crop microbiomes in dataset1 potentially due to 
the low sample size. There was also a significant effect of literature-based dietary guilds on cloacal microbiomes 
(secondary to host taxa)10,18, but microbiome similarity did not align with the consumed diet similarity (Fig. 3, 
Table 2). We did, however, find that the most abundant bacterial ASVs were shared between the crop and the 
cloaca in bird individuals (Fig. 6), suggesting a little compartmentalisation of gut microbiomes of the bird spe-
cies included in this study.

Natural diets of bird species analysed herein differ notably from literature-based dietary guilds and showed 
marked variation between individuals of the same species (Fig. 2), aligning with previous findings from Papua 
New Guinea22. This was expected, as the literature-based dietary guilds represent the average consumption of 
dietary items of a species that naturally varies with seasonal and regional fluctuations in diet availability32–34. The 

Figure 6.   Crop and cloacal microbiomes share a large proportion of abundant bacterial ASVs. The far left and 
far right panels show the relative abundance of bacterial phyla in the crop and the cloacal microbiomes of the 
same individual. The two panels in the middle show the proportion of bacterial sequences (relative abundance) 
belonging to the shared and unique ASVs in the two regions. The number of unique ASVs are shown in black 
and shared ASVs are shown in grey.
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two methods we used to identify dietary components also yielded somewhat contradicting results35, potentially 
due to their inherent limitations. Visual identification can only allow identification of diet components to higher 
taxonomic levels (e.g., order), and cannot identify smaller or degraded invertebrate body parts, nor can it distin-
guish between plant taxa35. On the other hand, metabarcoding was suboptimal to identify the order Coleoptera 
(beetles), potentially due to limitations of extracting DNA from hard-bodied beetles or due to the potential use 
of suboptimal primers36 for New Guinean beetles. Metabarcoding can also lead to PCR biases37,38 and recover 
taxa that have been accidentally consumed along with specific diets (i.e., flower mites on figs) or secondarily 
consumed by the primary food item (e.g., plant material by an herbivorous insect)35,38. Thus, a combination of 
the two methods, accounting for inherent limitations and including manual filtering of known accidentally-
consumed diet items, may provide the best representation of the true diets of wild birds. However, one inherent 
shortcoming in both methods is the lack of quantification of diet items39. Less quantitative sampling methods 
can be problematic when attempting to utilise diet data in downstream analyses, as in our study, in which relative 
abundances of given diet items are likely to have a strong impact. This, however, should not influence studies 
investigating wild animal diets, where the main purpose is to understand the dietary niche of a species.

Literature-based dietary guild assignment significantly associated with cloacal microbial composition, but we 
did not find a strong association between the naturally consumed diets and microbiome similarity (Table 2). This 
contradiction might be a result of literature-based dietary guilds providing a rough average of the dietary niche of 
a species, without accounting for dietary intake variation. Furthermore, taxonomically similar bird species tend 
to belong to similar dietary guilds (e.g., most pigeons are frugivores and most small passerines are insectivores), 
leading to strong associations with host taxonomy23. For example, the consumed diet of individual P46 (a pigeon) 
only contained insects, while the species is categorized as a frugivore in the literature (Fig. 2). Nevertheless, the 
microbiome of this individual was similar to other pigeons (Fig. S1). This indicate that the utilisation of gener-
alized dietary guilds from the literature may not reveal actual effects of diet on gut microbiome composition, 
but rather represent an artifact of the association between the host taxonomy and dietary guilds. However, the 
observed pattern can also indicate that the long-term dietary and nutritional niche of the species have a stronger 
effect on shaping gut microbiomes than short-term changes in dietary intake18. Thus, long-term studies on diets 
and microbiomes of the same wild individuals are needed to decipher the realized effect of consumed diets on 
wild avian gut microbiomes. Diet manipulation studies have demonstrated that the effect of diet on the variation 
of gut microbiomes is driven by both compositional and macro-nutritional diet content4. We were not able to 
quantify dietary items in individual birds in this study, thus hindering an exhaustive investigation of the realised 
proportions of each dietary item and their potential influence on gut microbiomes.

The lack of an association between diet similarity and crop microbiomes suggests little influence of diet-
associated microbes on bacterial communities in the bird crops. However, microbiome transfer upwards in 
trophic networks (prey to predator) has been found in blue tits (Cyanistes caeruleus), where the microbiomes 
of specific diet items, at least to some degree, influence the host gut microbiomes40. Thus, to better understand 
the dietary transmission of bird gut bacteria, it will be necessary to investigate the microbes that enter the hosts 
with their diet. Moreover, we highlight that a large proportion of the crop samples in our study did not amplify, 
impeding a comprehensive analysis of these microbiomes and potentially driving the observed lack of an associa-
tion between diet items and crop microbiomes. We do not know the reason for this, but one possible explanation 
could be the presence of tartar emetic (the chemical compound used to induce regurgitation) in the crop samples 
that may inhibit bacterial DNA extractions. However, further investigation is required to validate if tartar emetic 
negatively affects microbial DNA extraction.

Despite the absence of a strong alignment between diet and microbiome similarity, specific cloacal bacterial 
genera of different hosts were positively correlated with qualitative proportions of dietary items. These correla-
tions varied by bird orders, suggesting that the consumption of compositionally similar diets does not necessarily 
have the same effect across bird taxa. This supports the prediction that the effect of diet on host microbiomes is 
secondary to the host taxon10 and suggests that bacterial communities can differ based on the dietary differences 
of individuals within taxa. Further, this result potentially indicates that functionally similar, yet taxonomically 
different, gut symbionts are associated with similar diet items taken by taxonomically different hosts4. However, 
we note that our analyses were conducted at the host order-level due to a lack of replicates within species. Thus, 
a thorough investigation including more species with multiple individuals per species is needed to establish how 
dietary differences impact microbiomes. Nevertheless, our results emphasize that the combined effects of different 
diet components on certain microbial symbionts drive the overall influence of diet on wild bird microbiomes.

We note that the observed results may underestimate the effect of natural diets on gut microbiomes, as our diet 
and cloacal microbiome sampling was conducted simultaneously. Diets that actually influence the composition 
of the observed cloacal microbiomes could be different from the ones we sampled, as the microbiomes could 
represent a response to previously consumed diets. However, birds have fast gut retention times (a few hours)41,42 
and avian gut microbes respond to dietary changes quickly4. Furthermore, both tropical and temperate birds 
tend to visit the same feeding areas repeatedly43,44 and are likely to find similar prey items45. This argument is 
supported by the lack of a variation of consumed diets at the order level within short time periods in tropical 
lowland birds in New Guinea (Fig. S7—based on Sam et al. 201722). However, conducting diet manipulation 
studies, where captive individuals are fed with natural food items (based on knowledge of diet data from the 
same species) will enable us to tease apart how natural diets impact microbiomes.

The comparison of the crop and the cloaca of the same individuals revealed that the composition of microbi-
omes in the two regions can differ and that only a relatively small number of ASVs are shared between the two 
(Fig. 6). However, these shared ASVs were the most abundant ASVs, indicating a bacterial abundance-driven 
sharing of microbes between the foregut and the hindgut. Furthermore, the tendency that these shared ASVs 
represent a smaller proportion of the bacterial sequences in larger birds compared to smaller birds (Fig. S6), 
highlights the importance of avian gut length on gut microbial communities9,10. Spatial compartmentalization of 
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gut microbiomes has been observed in multiple bird species24,46–48. However, species with segregated microbiomes 
belong to orders (Galliformes, Charadriiformes, and Struthioniformes)24,46–48 that have large ceca, an appendage 
in the lower gut that harbours highly diverse microbial communities and that is responsible for fermentation of 
plant-derived material49, that might play a role in compartmentalisation of microbiomes in birds. The species 
we investigated, on the other hand, included host orders (Columbiformes, Coraciiformes, Passeriformes, and 
Psittaciformes) that lack or have highly reduced (vestigial) ceca49. Previous work on compartmentalisation of 
gut microbiomes of Great tits—Parus major (a bird species with vestigial ceca) showed weak levels of spatial 
segregation of microbes along the digestive tract50, indicating potential high levels of microbe sharing between 
the proximal and distal ends of the digestive tract. Thus, our results suggest that avian taxa that have reduced 
ceca may experience increased transfer of abundant microbes from the crop to the cloaca and that the extent of 
this transfer depends on the length of the digestive tract.

Overall, our results demonstrate that the impact of diet on gut microbiomes of birds depends on the composi-
tion of the consumed diet, while the response of specific bacterial taxa to different diet items can vary between 
bird taxa. This indicates the suboptimal nature of utilizing literature-based dietary guilds that strongly align 
with the host taxonomy to disentangle the relative importance of diet on microbiomes. Species-level variation 
in diet consumption and the malleability of gut microbes to different diet components are conceivable sources 
of the high individual variation observed in wild avian gut microbiomes. A thorough examination of how dif-
ferent diet items influence the gut microbiomes and their functional profiles across multiple populations and 
bird communities is thus warranted to decipher the diet-mediated long-term associations between wild avian 
hosts and their gut bacterial symbionts.

Methods
Sample collection.  Birds were captured using canopy nets spanning 0 m to 30 m above the ground at a 
lowland rainforest site in Northern Papua New Guinea (Baitabag/Kakoba site: 5.14 S, 145.76 E) during May and 
July 2019. A cloacal sample was collected from each individual immediately after the capture using a Copan mini 
Floq swab® and stored in RNAlater®. Birds were fed with 0.8 cm3 of 1.0% antimony potassium tartar (tartar 
emetic) per 100 g of bird body mass and placed in a sterile container until regurgitation, but for a maximum of 
10 minutes22. Once the bird regurgitated, half of the liquid phase (avoiding food items) of the sample was col-
lected using a swab (by dipping the swab multiple times in the regurgitated sample) and stored in RNAlater® to 
investigate the crop microbiome, while the other half, including visible food items, was stored in 95% EtOH for 
diet identification and metabarcoding. All samples were stored at − 20 °C within 12 h. Overall, we captured 155 
individuals belonging to 40 species (five orders) (Table S1). However, we were only able to collect regurgitated 
samples and cloacal swabs from 63 individuals (62 regurgitated samples and 63 cloacal samples). Species were 
also assigned to dietary guilds based on the literature22,51. We confirm that the experiment involving vertebrates 
in this study was carried out in accordance with all the relevant ARRIVE guidelines. Birds were captured accord-
ing to the Czech Republic and Australian guidelines (licenses CZ1062 and ABBBS no. 3173) and the experiment 
was approved by Papua New Guinea government-issued research permit (permit no. 9902077829). Further-
more, the experiment was approved by the University of South Bohemia, Czech Republic, and performed under 
the experimental protocol 1511-20424/2018-67. Collected samples were exported under a Papua New Guinea 
government-approved export permit no. 019422.

DNA extractions and microbiome sequencing.  DNA from swab samples (along with 100 μL RNAl-
ater®) were extracted using Qiagen DNeasy® blood and tissue kit (Hilden, Germany) following the manufactur-
er’s guidelines with an extended 12–14-h incubation period. Initial PCRs were conducted following Bodawatta 
et al. 202050. DNA from positively amplified samples was sent to the University of Michigan’s Microbiome Core 
for MiSeq amplicon sequencing of the v4 region of the bacterial 16S rRNA gene with SA511 and SP701 primer 
pair using an Illumina platform. We included two control DNA extractions to account for the potential intro-
duction of bacterial contaminants during extraction and two negative samples were sequenced to assess con-
tamination during sequencing.

Identifying prey items and metabarcoding of regurgitated samples.  We used a combination of 
morphological sorting (visual identification) of the regurgitated samples and DNA metabarcoding to identify 
the diets of individual birds. Visual identification of the samples was conducted under a stereomicroscope and 
was based on assigning identifiable remains of diet items to broad taxonomical (i.e., order level) categories22. 
Invertebrate body parts could most often be assigned to order, but many regurgitated samples contained only 
small body fragments that could not be identified to family or genus. The presence of plant remnants (seeds, 
pieces of fruits, pollen grains) was recorded, but most of them could not be identified more precisely (Table S2). 
Thus, for plant identifications we exclusively depend on DNA metabarcoding.

DNA from the full homogenised regurgitated diet samples was extracted the same way as the microbiome 
samples. We amplified two regions targeting invertebrate (COI) and plant (ITS2) components of the diet. We 
used the primers, mlCOIintF52 and Fol−degen−rev53, to amplify a 313 bp long fragment of the COI gene. This 
primer pair has very high taxonomic coverage and resolution and is among the most suitable primers for COI 
metabarcoding54. We used a standard set of primers to amplify the plant ITS2 region55. We performed a separate 
PCR for each marker.

Our DNA metabarcoding strategy followed the recommendations by Taberlet et al. 201956. We performed 
three independent PCR replicates for each sample and included blanks and PCR negative controls. The primer 
design incorporated 8 bp long tags in both the forward and reverse primer, which allowed us to tag individual 
PCR replicates of individual samples by a unique combination of tags on the forward and reverse primers. We 
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did the PCR in strips rather than plates to limit cross-contamination57. Each strip contained seven samples and 
either a blank or a PCR negative control. PCR conditions for COI included an initial period of 3 min at 95 °C, 
followed by 35 cycles of 30 s at 95 °C, 30 s at 45 °C, and 1 min at 72 °C; followed by a final extension of 10 min 
at 72 °C. PCR conditions for ITS2 followed Bell et al. 201758. We pooled an equal volume of the PCR product 
from all samples, separately for COI and ITS2, and purified the resulting amplicon pools using magnetic beads 
(Agencourt AMPure PCR purification kit). Library preparation was done by a PCR-free protocol with Illumina 
adaptors added by ligation at SEQme (Czech Republic) and the library was sequenced on Illumina NovaSeq 
6000 SP 2 × 250 bp, using 1/10 of the capacity of one sequencing lane.

We processed the sequencing data using OBITools25 according to the recommendations for filtering and 
cleaning the data following De Barba et al.59 and Taberlet et al56. Prior to taxonomic assignment, we clustered 
the sequences into OTUs with a 97% similarity threshold using the sumaclust software60. We used the central 
sequence from each cluster to assign taxonomic identity to the OTUs. We used the BOLDigger software61 with the 
“diggerhit” method of taxonomic assignment, which submits the sequences to BOLD (http://​www.​bolds​ystems.​
org/), extracts similar sequences, and infers the most likely taxonomic assignment. Identification at the level of 
species, genus, family, and order required the similarity between the cluster centre and the reference sequences 
of at least 0.98, 0.95, 0.90, and 0.85, respectively. Hence, for each marker (COI and ITS2) and each PCR replicate 
we obtained a list of OTUs with taxonomic assignment and abundance (number of reads). To filter out possible 
contaminants and sequencing errors, we retained only OTUs detected in all three PCR replicates. Finally, we 
removed any invertebrate OTUs with a taxonomic identification of known avian symbionts (e.g., feather mites 
and parasites), as these do not represent actual dietary content of a host (Table S3).

For further analyses, diets were examined at the order level (with few exceptions), as we used data acquired 
from both visual identification and metabarcoding individually and in combination for downstream analy-
ses. However, when combining the data from the two identification methods, we were only able to combine 
invertebrate identifications from visual data with the metabarcoding, as we were unable to assign plants into 
higher hierarchical groups (e.g., orders or families) through visual identification. In order to combine these two 
methods, we utilised a conservative approach by only determining the presence or absence of orders in each diet 
sample, as we were unable to gather accurate quantities or volumes of each diet component 39. For example, with 
metabarcoding we acquired different numbers of sequences belonging to each dietary taxon, while with visual 
identification we only identified different body parts of the taxa.

Microbiome sequences analyses.  MiSeq sequences were analysed using the DADA2 pipeline27 within 
QIIME228. Sequences were categorized to ASVs with 100% similarity. ASVs were then assigned to taxonomy 
using the Silva 132 bacterial reference database62. Mitochondrial, Chloroplast and Archaeal sequences were 
removed using the QIIME2 pipeline. The two control extractions yielded only three ASVs with low number 
of sequences (four sequences in control 1 and 291 in control 2). These ASVs were only detected in a few of the 
experimental samples, and always in very low abundances (Table S10). The lack of consistent presence and the 
rarity of these ASVs imply that they could not have influenced the patterns we see in crop and cloacal microbi-
omes. Similarly, the two sequencing negative samples included three ASVs, one of which was found in relatively 
high abundance (31.8% ± 28.9%) in five experimental samples (Table S10). However, since these samples were 
placed in different locations of the sequencing plate, the ASV was not omnipresent across experimental samples, 
and only two sequences appeared in the negative control, contamination during sequencing is unlikely. To not 
bias analyses of experimental samples, we consequently did not remove this ASV from the dataset.

Samples with less than 1,000 total sequences were removed from subsequent analyses. The majority of the 
microbiome samples failed during sequencing or quality filtering, yielding only a total of 19 crop microbiomes 
and 39 cloacal microbiome samples. After quality filtering we divided the dataset into three groups: dataset 
1. individuals with both successfully sequenced crop microbiomes and diet data (12 individuals), dataset 2. 
individuals with both cloacal microbiomes and diet data (27 individuals), and dataset 3. individuals with both 
successfully sequenced crop and cloacal microbiomes (17 individuals). Statistical analyses of the data were 
conducted in R 4.0.363 and three datasets were analysed independently. Due to differences in sequencing depth, 
each dataset was rarefied to even sampling depth using the sample with the lowest number of sequences [dataset 
1 (Table S4): 1,226 sequences, dataset 2 (Table S7): 1,406 sequences, and dataset 3 (Table S9): 1,353 sequences,] 
using the rarefy_even_depth function in phyloseq package26 (Fig. S2).

Statistical analyses.  Alpha diversities (Chao 1 richness estimate, Shannon’s diversity index) were calcu-
lated using the diversity function in the microbiome package29. Statistical differences among different categories 
were investigated using non-parametric Kruskal–Wallis (KW) tests and pairwise differences were tested using 
Dunn’s post-hoc tests using the FSA package64. Microbial community differences were calculated using Bray–
Curtis (weighted) and Jaccard (unweighted) dissimilarity matrixes in the phyloseq package26. We investigated 
the effect of literature-based dietary guilds and host taxonomic order (due to limitations of multiple individuals 
per species we focused on host taxonomy at order level) using PERMANOVAs with the adonis2 function in the 
vegan package30, with “by” parameter set for “margin” to account for marginal effects of the tested variables. 
Community-level differences were visualized using non-matric multidimensional scaling (NMDS) and princi-
pal coordinate analysis (PCoA) plots in phyloseq package26.

First, we investigated whether diverse diets lead to an increase in microbial richness (Chao1) using linear 
models. Then we examined whether crop and cloacal microbiome compositions reflect the diet component 
similarities (datasets 1 and 2), using Pearson’s correlations between microbiome dissimilarity and diet dis-
similarity (individual diet data from visual identification, metabarcoding—both at OTU-level, order-level, and 
combined) measured with Jaccard dissimilarity index using Mantel tests in the vegan package30. The significance 
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of the observed correlations was assessed using 10,000 random permutations. We further explored whether diets 
influence the microbiomes of bird orders differently by conducting the same analyses individually for each order. 
To investigate whether individual dietary items impact bacterial genera differently, we examined the correla-
tions (Pearson’s correlations) between relative abundances of bacterial genera and the proportion of particular 
plant or invertebrate orders in individual diets using the taxa.env.correlation function in the microbiomeSeq 
package31. Here we conducted analyses separately for plant and insect orders and used the combined diets from 
visual and metabarcoding identifications. We grouped the hosts into orders to decipher whether associations 
between bacterial genera and diet components differ between bird orders. Significant values were adjusted using 
Benjamini–Hochberg corrections to reduce the false discovery rate of significant correlations. This was only done 
for dataset 2 as we did not have enough replicates for each host order in dataset 1.

To investigate similarities between crop and cloacal microbiomes (dataset 3), we utilised PERMANOVA 
tests30. Then to assess the magnitude of the microbiome that is shared between the crop and the cloaca, we 
investigated both the proportion of shared ASVs and bacterial sequences represented by these ASVs in the two 
microbiomes. Finally, to explore whether the microbiome sharing between the crop and the cloaca is driven by 
the gut length of the birds we investigated the association of shared ASVs and their sequence abundances with 
the bird body mass. Host body mass was utilised as a proxy for the gut length, where larger birds tend to have 
longer digestive tracts and species-level body masses were acquired from the literature65. All illustrations and 
figures were generated using ggplot266 and viridis packages67, and Microsoft PowerPoint.

Data availability
MiSeq amplicon sequencing data (microbiomes) and metabarcoding sequences of diets are submitted to the 
sequence read archive (SRA) repository at GenBank (MiSeq data: Bio project PRJNA673614, COI sequences of 
diets: Bio project PRJNA778330, and ITS2 sequences of diets: Bio project PRJNA781139).
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