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A novel method for causal structure 
discovery from EHR data and its 
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Modern AI‑based clinical decision support models owe their success in part to the very large number 
of predictors they use. Safe and robust decision support, especially for intervention planning, requires 
causal, not associative, relationships. Traditional methods of causal discovery, clinical trials and 
extracting biochemical pathways, are resource intensive and may not scale up to the number and 
complexity of relationships sufficient for precision treatment planning. Computational causal structure 
discovery (CSD) from electronic health records (EHR) data can represent a solution, however, current 
CSD methods fall short on EHR data. This paper presents a CSD method tailored to the EHR data. 
The application of the proposed methodology was demonstrated on type‑2 diabetes mellitus. A large 
EHR dataset from Mayo Clinic was used as development cohort, and another large dataset from an 
independent health system, M Health Fairview, as external validation cohort. The proposed method 
achieved very high recall (.95) and substantially higher precision than the general‑purpose methods 
(.84 versus .29, and .55). The causal relationships extracted from the development and external 
validation cohorts had a high (81%) overlap. Due to the adaptations to EHR data, the proposed 
method is more suitable for use in clinical decision support than the general‑purpose methods.

Diagnostic tools based on artificial intelligence (AI) have recently demonstrated human-like  performance1–4, 
owing their high performance to their ability to synthesize information from many features. Consistent with 
this observation, national initiatives such as the Precision Medicine  Initiative5 and the Learning Health  Systems6 
encourage the inclusion of a wide-range of information about the patient into the decision making process. 
Increasingly, clinical decision support systems start to include treatment planning and selection  tools7. Such tools 
require causal knowledge, not merely the associations (correlations). Intervening on correlates rather than causal 
factors of the disease leads to lack of efficacy, under- or overtreatment, and in worst case, to iatrogenic  harm8.

The gold standard for discovering causal relationships is conducting a randomized clinical trial or eluci-
dating the underlying biochemical pathways. In many cases, clinical trials are impractical, unethical, if not 
outright impossible. Computational causal structure discovery (CSD) methods to discover causal relationships 
have demonstrated great success in many  domains9–11 and their application to EHR data could offer a solution 
for causal discovery from observational real world medical data. However, to unlock their full potential, these 
general-purpose algorithms need to be adapted to address study design and data quality challenges specific to 
the EHR data.

We propose an algorithm with three adaptations. First, we incorporate study design considerations. EHR data 
as it exists in the system does not follow any study design. Billing codes in particular are recorded for reimburse-
ment purposes and do not distinguish between new incidences and pre-existing conditions. Understanding 
this difference is critical for study design. Second, time stamps can be unreliable. The time stamp of a diagnosis 
often does not coincide with the onset time of the disease, but rather reflects the documentation time. In some 
cases, the temporal ordering of diseases may be reversed. Partly for this reason, general purpose CSD algorithms 
applied to the EHR data occasionally report “causal” relationships that are in the opposite direction of the natural 
disease progression. Third, general-purpose CSD methods sometimes fail to orient edges. Even when a clear causal 
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direction exists and is not masked by data artifacts, CSD algorithms can have difficulty distinguishing the cause 
from the effect due to statistical  equivalence12. Leveraging the longitudinal nature of EHR data and incorporat-
ing time information as part of the causal discovery process can enhance the identification of edge orientation.

In this paper, (1) we propose a data transformation procedure that distinguishes new incidences from pre-
existing conditions, which allows us to determine the temporal order of the disease-related events despite the 
inaccurate (or rather noisy) timestamps in the EHR data. (2) We then present modifications to an existing CSD 
method, (Fast) Greedy Equivalence Search (GES)13,14, to infer the direction of causal relationships more robustly 
using longitudinal information and takes the above study design considerations into account.

We demonstrate this methodology through the clinical example of type-2 diabetes mellitus (T2D), its risk 
factors and complications. T2D is an exceptionally well-studied disease with numerous clinical trials having 
produced a vast knowledge base, making the evaluation of the methodology possible. The goal of this work is 
not to uncover new causal relationships in diabetes, but to present a novel methodology for discovering causal 
relationships from EHR data that are sufficiently robust to support model development for clinical decision sup-
port tools. While we use T2D as our use case, we expect our methods to generalize to other diseases, typically 
chronic diseases, that exhibit similar characteristics and suffer from the same EHR shortcomings.

Methods
Study source and population. This retrospective cohort study utilized EHR data sets from two inde-
pendent health systems, Mayo Clinic (MC) in Rochester, Minnesota and M Health Fairview (FV) in Minneapo-
lis, Minnesota. Two 2-year time windows 2003–2004 and 2006–2007 for MC; and 2008–2009, and 2011–2012 
for FV were defined. Dates for the time windows differed between MC and FV due to data availability. We 
extracted diagnoses, prescriptions, laboratory results, and vital signs from the two EHR data sets with the same 
inclusion and exclusion criteria: patients must have at least two blood pressure measurements, one before the 
first time window and one after the second time window; aged 18 + at the end of the first time window; and sex 
and age must be known. Figure 1A shows an overview of the study design of MC EHR (the study design for FV 
is similar). We used the MC EHR as the development cohort.

Variables. Diagnosis codes are aggregated into the disease categories of obesity, hyperlipidemia, pre-diabe-
tes, type 2 diabetes mellitus, coronary artery disease, myocardial infarction, heart failure, chronic renal failure, 
cerebrovascular disease, and stroke based on ICD-9 and codes following our previous  work15. Medications indi-
cated for the above conditions were rolled up into NDF-RT therapeutic subclasses. Relevant laboratory results 
and vital signs were categorized based on cutoffs from the American Diabetes Association  guidelines16.

Figure 1.  Study design and evaluations. (A) Overview of the study design for Mayo Clinic (MC) EHR. (B) The 
workflow of the internal evaluation. Three methods FGES + raw, FGES + transf, and the proposed algorithm 
were compared using stability, precision, and recall. Orange color highlights the proposed method (Method 3). 
(C) The workflow of external comparison. The proposed method was applied to two datasets, MC and M Health 
Fairview (FV), and the resulting graphs were compared.
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Causal structure discovery. A relationship between two events is causal if manipulating the earlier event 
causes the other (later) event to change. For example, prescribing a medication reduces the probability of down-
stream events (complications). Causation differs from association. For example, blood sugar is associated with 
risk of stroke: diabetic patients with higher blood sugar have a higher risk of stroke; however, this relationship is 
likely not causal in diabetic patients since attempts to reduce the risk of stroke by reducing blood sugar consist-
ently failed in clinical  trials17,18. If two events share a common cause (a confounder) and are not otherwise caus-
ally related, then manipulating one event will not affect the other variable as long as the common cause remains 
unchanged. The confounder can be observed or latent. The term causal structure refers to the set of all existing 
causal relationships among all events and can be visualized as a graph. The causal graph consists of nodes, which 
corresponds to events, and the nodes are connected by edges that denote causal relationships. General-purpose 
CSD methods are designed to work with observational data to derive a causal structure that are consistent with 
the joint probability of the data.

Several general-purpose CSD algorithms have been proposed and the interested reader is referred to the 
Supplements II where we present an overview of the major methods. In this work, we focus on (Fast) Greedy 
Equivalence Search (FGES) as the comparison method, because we previously found it to outperform other CSD 
 methods19. Briefly, FGES finds the optimal causal graph by a greedy search guided by a goodness-of-fit score (e.g. 
BIC or BDeu) over all possible graphs. Particularly, it starts with an empty graph, and iteratively adds individual 
edges that maximize the score given the current graph, until adding edges no longer improves the score. Then, 
FGES iteratively removes individual edges that maximizes the score, until edge removal ceases to improve the 
score. The output of FGES is a pattern, which can contain undirected edges, where the causal effect direction 
could not be determined due to statistical equivalency. FGES has good mathematical properties and been shown 
to be consistent under a set of  assumptions14,20.

Proposed methods. The workflow of the proposed methods is described in Fig. 1B, method 3 (colored 
in orange). We propose two methods, a data transformation and a causal search method. The former method 
transforms the longitudinal EHR data into disease-related events, so that we can determine the temporal order-
ing of events (diseases) despite inaccuracies in the EHR data and extracts all pairs of diseases where a clear 
precedence ordering exists. The search method constructs the causal graph using the transformed data and the 
set of precedence pairs.

Data transformation method. A disease-related event is defined as a diagnosis, a prescription, an abnor-
mal lab result, or abnormal vital sign. An event is incident if it occurs in the second time window but is not 
present in the first time window although the patient is observed in the first time window. Conversely, a disease 
event is pre-existing if the patient presented with it in or before the first time window. An event A precedes 
another event B if among patients who have both A and B in the second time window, B is significantly more 
likely to be incident than A. Note that precedence implies neither causation nor association; however, if a causal 
effect exists, it must follow the precedence direction. Formal mathematical definitions of these concepts can be 
found in the Supplement I. The output from this step is (i) an event-based data set consisting of the incident and 
pre-existing conditions for each patient in each of the two time windows, (ii) a set C of precedence relationships 
of all pairs 

(

vi , vj
)

 of events for which event vi clearly precedes vj.

The proposed CSD search Algorithm. Given C , we construct the causal graph G by iteratively adding 
edge 

(

vi , vj
)

 from C that maximizes the goodness of fit of G . The orientation of this edge must be consistent with 
the precedence relationship, namely from vi to vj . The goodness of fit is defined by the BIC criteria. Let X(1),X(2) 
denote the data sets collected in the two distinct time windows, where X(2) follows X(1) . The likelihood of the G is

where x(t)s  is the observation vector for subject s at the cross-section t; v(t)s  is the observation of variable (event) 
v for subject s at the cross-section t; and pa(v,G)(1)s  is the observation vector for the parents of v in the causal 
structure G , at cross Sect. 1 for subject s.

The algorithm estimates P
(

v
(2)
s |pa(v,G)(1)s

)

 using logistic regression on the subjects that do not have v at the 
first cross section and are under observations for both cross sections. For subjects who have v at the first cross 
section, the probability of having v at the second cross section is 1. Since G represents the transition graph, the 
term P

(

x
(1)
s |G

)

 is a constant.
Finally, the BIC score is

where n is the number of observations that are common in the two cross sections, and |G| is the number of edges 
in the causal structure G.

Algorithm 1 describes the proposed algorithm for constructing the causal graph G . G is a directed acyclic 
graph (DAG), with nodes representing variables and edges representing causal effects between a pre-existing 
and an incident variable.
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Statement of human rights and informed consent. The study was approved by both Mayo Clinic and 
University of Minnesota Institutional Review Board (IRB). Informed consent was obtained from all patients. All 
relevant guidelines and regulations were followed.

Evaluation
Clinical evidence. The standard way to evaluate CSD methods is to compare the resulting graph to a 
gold standard graph. However, such a gold standard graph does not exist and possibly many relationships are 
unknown. However, there exists (1) Associative Evidence: a large body of observational studies documenting 
risk factors and outcomes for diabetes. Results from these studies have already been distilled into  summaries21. 
(2) Clinical trials can support both the existence (positive) and also the lack (negative) of hypothesized causal 
relationships. We compiled a list of causal relationships from clinical trials considering 175 clinical trials with a 
primary endpoint of any of the conditions we studied, including composite end points. We excluded trials with 
inclusion criteria that are too strict (trial results would not generalize to our population) and the interventions 
that are out of the scope of our study. 14 trials remained yielding 19 positive and 18 negative causal relationships. 
These trials and the evidence they produced are listed in Supplement III, Table S1. These relationships are used 
as causal evidence to compute recall.

Internal evaluation. We evaluated the method and the resulting graphs from the following four perspec-
tives.

Stability. We run 1000 bootstrap replicas on the development cohort. An edge has ambiguous orientation if it 
is present in at least half of the 1000 graphs (edge is not noise) and both orientations appear in at least 30% of the 
graphs that contain this edge (it does not have a dominant direction). We report the percentage of ambiguous 
edges.

Precision. Based on the causal graph derived from the training cohort, an edge is incorrect if there is no asso-
ciative evidence of a relationship between the two events; or if causal evidence specifically indicates the lack of 
a causal relationship. We define precision as one minus the proportion of incorrect edges among the discovered 
edges.

Causal recall. Causal recall is computed on a single graph discovered from the training cohort, quantifying the 
percentage of the known causal relationships discovered. A known causal relationship from A to B is discovered 
if there is a node in the graph that maps to A, another node that maps to B and (a) a direct causal relationship 
A → B in the graph exists or (b) a causal path A → X → B exists and no causal evidence states that in patients with 
X, A does not cause B. For example, if the evidence states that blood pressure (without specifying whether it is 
systolic or diastolic) increases the risk of stroke, then the path sbp → cevd → stroke would satisfy this relation-
ship.

Associative recall. Associative recall is also computed on a single graph discovered from the training cohort 
and it quantifies the percentage of known associative relationships that can be explained by the discovered causal 
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graph. An associative relationship between A and B is explained by the graph if there is a node in the graph that 
maps to A, another node that maps to B, and a path between A and B exists in the graph.

External validation. We performed 1000 bootstrap replications on both data sets independently using the 
proposed method. On each data set, all edges from the 1000 graphs were pooled, resulting in two sets of pooled 
edges. We compared these two sets and pointed out the edges that were discordant between the MC and FV data, 
as shown in Fig. 1C.

Method comparison. Figure 1B depicts an overview of the method comparison. Three methods are com-
pared, (1) FGES + raw FGES is applied directly to the raw data; (2) FGES + transf data is transformed using the 
proposed transformation method and FGES is applied to the transformed data; and (3) Proposed the proposed 
search algorithm is applied to the transformed data. Comparing FGES + raw and FGES + transf isolates the effect 
of the proposed transformation method, and comparing FGES + transf and Proposed highlights the effect of the 
proposed search algorithm.

Results
Baseline characteristics. Table 1 presents descriptive statistics for the MC and FV data sets at the end of 
the first time window and incidence rates for the diseases in the second window. Differences between datasets 
are tested through the t-test (for age) and the chi-square test (all other variables).

Directional stability. The proposed data transformation reduced the percentage of ambiguously oriented 
edges from 45 to 24%, and finally, the proposed search method eliminated ambiguously oriented edges (Table 2).

Correctness and completeness. Table 3 shows the precision, associative recall and causal recall of the 
graphs discovered by the three methods. All three methods achieved almost perfect recall; FGES + raw achieved 
the lowest precision of 0.294: less than third of the events reported as causally related are even associated. By 
using the proposed transformation, the precision increased to 0.55, but almost half of the reported causal rela-
tionships are still incorrect. Finally, the proposed method achieved a precision of 0.838. We present the causal 
graph discovered by the proposed methods in the Fig. 2. Incorrect edges are colored in red.

External validation. We compared the graphs discovered from the MC and FV data sets. There are 74 
distinct edges that were discovered from at least one of the data sets. Sixty (81%) edges coincided across the two 
datasets, while 14 (19%) differed. Table 4 shows the discordant edges, the percentage of bootstrap iterations in 
which the edge was present and the main reason for the discordance.

There are three broad reasons for differences in edges. The main reason, affecting half of the edges was that 
of policy differences. These include preferred lab results (A1C vs FPG) and decisions regarding therapeutic 
interventions. The second reason, affecting four edges, is a lack of clear precedence in the relationships among 
the events. For example, the abnormal Trigl → HL treatment edge was not discovered at FV because the first 
abnormal Trigl precedes or follows the HL treatment in statistically equal proportions. The final reason, affect-
ing the remaining three edges, is differential degree of confounding between the two sites. For example, SBP is a 
confounder of CHF and MI. When the algorithm fails to detect the SBP → MI edge, the effect of SBP on MI was 
shown through CHF (which depends on SBP more than MI). For the HL diagnosis → Trigl edge, the common 
cause is BMI, and for the HL treatment → CAD edge, it is LDL. The reason for differential confounding was likely 
a combination of population and institutional differences as well as data artifacts.

Discussion
We proposed a new data transformation method and a new search algorithm specifically designed for EHR data. 
We showed how the resulting graph achieved close to 90% precision (90% of the edges were correct), almost 
100% recall (the graph could explain all known associations and almost all known causal relationships), and the 
graph was remarkably stable in face of data perturbation (no edge disappeared or changed direction). Due to its 
built-in facility, our method outperformed general purpose methods by a large margin.

While the two graphs from the two independent health systems are reassuringly similar, small differences 
exist. None of these differences implies an incorrect physiological or pathophysiological effect. Among the 14 
edges that differed, seven captured differences between the population and the institutions, such as institution-
specific triggers for prescriptions and the use of different laboratory tests for the same purpose (fasting plasma 
glucose versus A1c). Depending on the goal of the modeling, it may be desirable to include such differences. We 
believe that the discovered causal graphs offer adequate information about causal (including confounding) factors 
to support the development of clinical decision support models and can also support clinical research efforts.

The proposed algorithm achieved such high performance because it could compensate for errors in the EHR 
data and it incorporated study design considerations. Problems caused by incorrect time stamps and diseases 
appearing in the reverse order are alleviated by reducing the overall reliance on time stamps. The study design 
with its two-year windows allows for (even large) errors in the time stamp and once a disease is recognized as 
pre-existing by the data transformation method, its subsequent time stamps are irrelevant. Time stamps that 
appear in the reverse order tend to have a small gap (time to schedule and complete a diagnostic procedure), so 
they likely fall into the same two-year window. Study design considerations, namely that billing codes do not 
distinguish between incident and pre-existing conditions as well as whether a patient is under observation or not, 
are addressed through the data transformation method. The ability of the search algorithm to produce a DAG 
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is achieved through using precedence relationships to orient edges that have equal probability in both orienta-
tions. Precedence relationships in turn rely on the pre-existing/incident status of the disease as determination 
by the data transformation method.

Table 1.  Characteristics of the MC and FV data sets. For age, mean (sd) is indicated; for the disease-related 
events, percentage (%) of positive is indicated. New events rate at the second time windows is reported. BMI: 
Body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure, Trigl: triglycerides, FPG: fasting 
plasma glucose; A1c: hemoglobin  A1c.

MC (N = 57,332) FV (N = 79,486) P-value

Events in window 1 New events in window 2 Events in window 1 New events in window 2

Demographics

Age 48.1 (18.2) 50.4 (14.6) 0.000

Male 0.43 0.34 0.000

Ethnicity white 0.92 0.93 0.000

Vitals and labs

BMI ≥ 25 and  < 30 27.1 2.9 27.5 3.4 0.097

BMI ≥ 30 32.6 3.6 43.1 4.9 0.000

SBP ≥ 140 10.3 3.4 4.5 2.9 0.000

DBP ≥ 90 2.3 1.0 1.6 1.2 0.000

LDL ≥ 130 18.4 3.6 15.4 4.3 0.000

HDL abnormal 20.2 1.7 24.6 3.0 0.000

Trigl ≥ 150 22.6 3.7 17.6 4.3 0.000

FPG ≥ 100 and  < 125 24.4 7.2

FPG ≥ 125 11.9 3.7

A1c ≥ 5.7 and A1c < 6.5 6.8 0.6

A1c ≥ 6.5 7.0 0.9

Diagnoses

Hypertension (HTN) 28.4 5.6 30.6 8.4 0.000

Obesity (Ob) 11.5 1.2 11.3 1.3 0.320

Hyperlipidemia (HL) 31.9 8.3 36.4 9.4 0.000

Pre-diabetes mellitus 
(predm) 0.9 3.5 2.4 2.4 0.000

Diabetes mellitus (DM) 7.9 5.1 9.5 4.3 0.000

Chronic renal failure 
(CRF) 1.2 0.2 0.2 0.3 0.000

Congestive heart failure 
(CHF) 2.4 1.7 1.2 1.4 0.000

Coronary artery disease 
(CAD) 9.4 3.5 5.6 3.4 0.000

Myocardial infarction 
(MI) 2.4 1.2 0.9 1.6 0.000

Cerebrovascular disease 
(CeVD) 3.6 2.3 1.8 1.4 0.000

Stroke 1.2 1.1 0.6 1.0 0.000

Treatments

Hypertension 20.6 8.3 31.5 13.9 0.000

Hyperlipidemia 15.7 8.0 24.6 9.1 0.000

Diabetes mellitus 4.4 2.4 7.2 4.3 0.000

Table 2.  Directional stability. The table shows the number of distinct edges that appeared in half of the 1000 
bootstrap replications, and the percentage of ambiguously oriented edges.

Method Number of distinct edges Ambiguously oriented (%)

FGES + raw 125 45

FGES + transf 75 24

Proposed 64 0
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Table 3.  Metrics from clinical evidence.

Precision Associative recall Causal recall

1. FGES + raw 0.294 1.000 1.000

2. FGES + transf 0.549 0.985 1.000

3. Proposed 0.838 1.000 0.947

Figure 2.  Causal graph discovered by the proposed method. The ‘.dx’ suffix indicates diagnosis of the disease. 
The abbreviations of the diseases and lab results can be found in Table 1.

Table 4.  External validation. The ‘.tx’ suffix denotes the treatment, and ‘.dx’ suffix denotes the diagnosis of 
the disease. The abbreviations of the diseases and lab tests can be found in Table 1. The table describes the 
edges that were discordant between the Mayo Clinic (MC) and M Health Fairview (FV) data sets. It shows the 
percentage of the bootstrap iterations in which the edge was discovered at MC and FV and a brief reason for 
the discrepancy.

Edge

Discovery %

ReasonMC FV

HDL → Trigl 0 91.7 There is no clear precedence relationship, the two events often coincide

HTN.dx → CRF 88.5 0.1

Trigl → DM.dx 100 0

Trigl → HL.tx 100 0

LDL → HL.dx 72.1 0

FPG.125 → DM.dx 100 0 FV uses A1c, not FPG

Trigl → FPG.125 99.5 0.2

DBP → HTN.tx 91.5 0 The criteria for diagnosis and treatment are institution specific

SBP → HL.tx 99.3 1.7

SBP → HTN.tx 100 29.1

Trigl → HTN.tx 83.7 0

CHF → MI 0 67.6 SBP is a common cause for CHF and MI, but at FV, this effect was too weak in 68% of the bootstrap 
iterations

HL.dx → Trigl 0 87.6 While the main driver of Trigl is BMI, at FV, the diagnosis of HL helps explain the variation in Trigl

HL.tx → CAD 0 74.3 LDL drives both HL treatment and CAD
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Generalizability beyond diabetes. The proposed method was demonstrated on type 2 diabetes, but it 
can generalize to other applications as long as the target application benefits from some of the improvements: 
reducing the impact of inaccuracies in the EHR data, accounting for the temporal ordering of events and dis-
tinguishing pre-existing and incident conditions. The method assumes that pre-existing diseases persist during 
the second time window.

Future work. The algorithm requires longitudinal data with at least two time windows. Different diseases 
and their symptoms might manifest at different rates, incorporating this knowledge into the discovery pro-
cess may enhance the performance of the algorithms. Secondly, the proposed methods may be able to capture 
the effect of medication changes when a study design of multiple (more than two) time windows is applied. 
The current implementation assumes a single incidence of a disease, or that the diseases persists during the 
study period. Another possible extension could relax this assumption, allowing for transient conditions that can 
have multiple incidences in the study period. Thirdly, variable semantics (such as SBP and DBP being measures 
related to hypertension) is an essential component of the proposed algorithm, but it is not always available in a 
computable form. Further, both datasets in this study are from the Midwest with a predominantly white patient 
population. The generalizability of the discovered causal relations can be further tested by examining a broader 
patient population.

Conclusions
We have demonstrated that the graph produced by the proposed transformation and search algorithm is more 
stable across bootstrap iterations and as complete as other methods yet it contained substantially fewer errors 
(had higher precision) than graphs produced by general-purpose methods. The resulting graph was success-
fully validated using longitudinal EHR data from an independent health system. We conclude that the proposed 
method is more suitable for use in clinical studies using EHR data.

Data availability
The data that support the findings of this study are not publicly available since they contain patient health infor-
mation. Authorization to access patient data can be requested from the Mayo Clinic and University of Minnesota 
Institutional Review Board.
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