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Non-Alcoholic Fatty Liver Disease (NAFLD) affects about 20–30% of the adult population in developed 
countries and is an increasingly important cause of hepatocellular carcinoma. Liver ultrasound (US) 
is widely used as a noninvasive method to diagnose NAFLD. However, the intensive use of US is 
not cost-effective and increases the burden on the healthcare system. Electronic medical records 
facilitate large-scale epidemiological studies and, existing NAFLD scores often require clinical and 
anthropometric parameters that may not be captured in those databases. Our goal was to develop 
and validate a simple Neural Network (NN)-based web app that could be used to predict NAFLD 
particularly its absence. The study included 2970 subjects; training and testing of the neural network 
using a train–test-split approach was done on 2869 of them. From another population consisting 
of 2301 subjects, a further 100 subjects were randomly extracted to test the web app. A search was 
made to find the best parameters for the NN and then this NN was exported for incorporation into 
a local web app. The percentage of accuracy, area under the ROC curve, confusion matrix, Positive 
(PPV) and Negative Predicted Value (NPV) values, precision, recall and f1-score were verified. After 
that, Explainability (XAI) was analyzed to understand the diagnostic reasoning of the NN. Finally, in 
the local web app, the specificity and sensitivity values were checked. The NN achieved a percentage 
of accuracy during testing of 77.0%, with an area under the ROC curve value of 0.82. Thus, in the 
web app the NN evidenced to achieve good results, with a specificity of 1.00 and sensitivity of 0.73. 
The described approach can be used to support NAFLD diagnosis, reducing healthcare costs. The 
NN-based web app is easy to apply and the required parameters are easily found in healthcare 
databases.

Abbreviations
US  Ultrasound scan
NAFLD  Non-alcoholic fatty liver disease
WC  Waist circumference
HP  Hips
FLI  Fatty liver index
ML  Machine learning
AVI  Abdominal volume index
GGT   Gamma-glutamyl transferase
NASH  Non-alcoholic steatohepatitis

OPEN

1Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S de Bellis” Research 
Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy. 2Laboratory of Nutritional Biochemistry, National Institute 
of Gastroenterology, “S de Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy. 3Scientific and 
Ethical Committee, Polyclinic Hospital, University of Bari, Piazza Giulio Cesare, 11, 70124 Bari, BA, Italy. 4Human 
Nutrition Research Center (CenINH), School of Nutrition, Faculty of Medical Sciences, Universidad Nacional 
de Córdoba, Córdoba, Argentina. 5Clinical Nutrition Outpatient Clinic, National Institute of Gastroenterology, 
“S de Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy. 6San Giacomo Hospital, Largo 
S. Veneziani, 21, 70043 Monopoli, BA, Italy. 7Department of Engineering Sciences, Guglielmo Marconi University, 
Via plinio 44, 00193 Rome, Italy. 8Department of Electrical and Information Engineering, Polytechnic of Bari, Via 
Re David, 200, 70125 Bari, BA, Italy. *email: arosella@irccsdebellis.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99400-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20240  | https://doi.org/10.1038/s41598-021-99400-y

www.nature.com/scientificreports/

NN  Neural network
MRI  Magnetic resonance imaging
BP  Blood pressure
TP  True positive
TN  True negative
FP  False positive
FN  False negative
CSS  Cascading style sheets
HTML  HyperText markup language
AUC   Area under the curve
PPV  Positive predictive value
NPV  Negative predictive value

Non-alcoholic liver steatosis (NAFLD) is the leading cause of chronic liver disease in Western countries. This 
condition increases the risk of cardiovascular disease, type 2 diabetes mellitus and chronic kidney disease and 
leads to increased  mortality1,2. The condition is estimated to affect about 20–30% of the adult population in 
developed  countries3. NAFLD is defined as an accumulation of Triglycerides in the hepatocytes (> 5% of liver 
volume) of patient with low alcohol intake (< 20 g/day in women or < 30 g/day in men), diagnosed once causes 
due to viral infections or other specific liver diseases have been  excluded4. NAFLD is becoming more common 
among adults between 40 and 60 years of age, but the disease is also seen  children5. A meta-analysis published 
in 2016 reported that this disease has an average prevalence of 23.71% in  Europe6. Population-based studies 
conducted in our geographical area (district of Bari, Apulia Region, Italy), estimated a prevalence of NAFLD of 
around 30%, males and the elderly are most commonly  affected7.

NAFLD is strongly associated with the metabolic syndrome and is considered the hepatic manifestation of the 
metabolic  syndrome8. It can manifest as pure fatty liver disease (hepato-steatosis) or as non-alcoholic steatohepa-
titis (NASH), an evolution of the former in which steatosis is associated with inflammation and hepatocellular 
damage, and with fibrogenic activation that can lead to cirrhosis and the onset of  hepatocarcinoma9. In general it 
has been established that early diagnosis of cirrhosis and elimination of the cause can stop further liver damage, 
increase the chances of transplant success and also reduce mortality  rates10. According to recent EASL—EASD—
EASO  guidelines11, at the individual level the gold standard for identifying steatosis in individual patients is 
magnetic resonance imaging (MRI), although ultrasound scanning (US) is considered a good alternative being 
more widely available and cheaper than MRI. In addition, for large-scale screening studies, serum biomarkers and 
steatosis score indices have been preferred because their easy availability and low cost has a substantial impact 
on the feasibility of screening. One of the best validated indexes is the Fatty Liver Index (FLI)12, although other 
anthropometric indices or measurements work together with FLI in predicting NAFLD  risk13.

In recent years, due to the increasing prevalence of NAFLD, there has been a research trend towards identi-
fying low cost, diagnostic methods, and Machine Learning has been acknowledged as a valuable tool. Machine 
Learning (ML) is a branch of artificial intelligence aimed to enable machines to operate using intelligent "learn-
ing"  algorithms14. Using the data sets supplied, the machine is able to process them through algorithms that allow 
it to develop its own logic in order to perform the required function or task. Machine Learning has already been 
used as a support tool for the diagnosis of different diseases, and for risk quantification, such as cardiovascular 
risk in patients with diabetes  mellitus15,16, ischemic heart  disease17 and  tumors18.

Nowadays, NAFLD diagnosis is made by performing  Ultrasound19 and MRI with lipid content  quantification20. 
Besides some biochemical and/or anthropometric parameters alone or in combination are used to perform the 
 diagnosis21,22. This implies to refer patients to more specialized health center with the consequent healthcare 
system  burden23. Many studies have used ML for the diagnosis of NAFLD but they were predominantly focused 
to identify particular aspects of NAFLD such as quantification of lipid content, staging, fibrosis,  etc24–27. and no 
longer simply ascertain the absence of disease, for example, in a large cohort of subjects avoiding in that way the 
use of non-invasive diagnostics for screening and monitoring NAFLD.

As imaging technologies such as ultrasound, magnetic resonance imaging (MRI), transient elastography 
(TE), and computed tomography (CT) are expensive and time consuming, they are generally impractical for 
most serial  assessments28 or when large-scale population studies are considered. In addition to high cost, other 
limitations of imaging-based diagnosis of liver damage such as operator dependence, lower sensitivity and range, 
radiation exposure and limited availability need to be  considered29. Moreover, ML-based models have also been 
used to classify liver diseases into distinct categories with ~ 80%  accuracy30,31, highlighting that biomarker-based 
diagnostic methods meet the requirements for  diagnosis32.

Then, our purpose was to develop a simple web app which permits to perform the diagnosis of absence of 
NALFD with high accuracy to reduce waiting list and costs for the National Health System, as. most studies on 
NAFLD diagnosis are based on images or laboratory parameters that are not always  available26,33.

The aim of our study was to develop and validate a simple Neural Network (NN), using easily available labo-
ratory parameters which had been identified in our previous  study34, in order to build a web app incorporating 
the NN, trained to apply them to identify subjects at greater risk of NAFLD to be scheduled for ultrasound 
assessment. We also checked the performance of the trained NN by analyzing Explainability (XAI)35; to evalu-
ate its reliability and ease of use and validate the results on a randomly selected sample subset extracted from a 
population-based study.

In the first part of this paper the population under study the variables and formula on which the AVI param-
eter is built have been described, then. Next, a first analysis with the t-SNE36 technique was performed and then 
we switched to an approach based on NN to search for optimal parameters to build the NN with the parameters 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20240  | https://doi.org/10.1038/s41598-021-99400-y

www.nature.com/scientificreports/

identified. Subsequently, the NN performance and XAI are evaluated. Finally, we illustrate the development of 
a simple local web app tested on a population sample.

Methods
Population. The subjects included in the were drawn from two different cohort studies conducted at the lab-
oratory of Epidemiology and Biostatistics of the National Institute of Gastroenterology, Research Hospital "Save-
rio de Bellis" (Castellana Grotte, Bari, Italy). Subjects participating in the MICOL study and NUTRIHEP study 
were eligible. Details on the MICOL and NUTRIHEP study populations have been published  elsewhere7,13,37. 
The MICOL study is an ongoing randomized study of subjects drawn from the electoral list of Castellana Grotte 
(aged ≥ 30 years) in 1985 and followed up in 1992, 2005–2006 and 2013–2016. The study included a total of 2970 
out of 3000 selected subjects; 56.5% were male. By 1985, 2472 subjects had been enrolled. In 2005–2006, 1697 
of the original cohort were still present. In 2005–2006 this cohort was added with a randomized sample of 1273 
subjects (PANEL study) aged between 30 and 50 years, to compensate for the cohort  aging38,39. All subjects gave 
prior informed written consent to participate.

All procedures were performed in accordance with the ethical standards of the institutional research com-
mittee (IRCCS Saverio de Bellis approval for research and the ethics committee for the MICOL study (DDG-
CE-347/1984; DDG-CE-453/1991; DDG-CE-589/2004; DDG-CE 782/2013) and, with the Helsinki Declaration 
of 1964. The NUTRIHEP study was conducted at the National Institute of Gastroenterology Saverio de Bellis 
(Castellana Grotte, Bari, Italy) in collaboration with 12 General Practitioners (GPs) operating in Putignano (Bari, 
Italy). The study period was from July 2005 to January 2007. By means of systematic random sampling of 1 of 
every 5 procedures, a sample from the general population aged ≥ 18 years had been obtained from the General 
Practitioners lists. Instead, we used records from a census design, because no significant difference was found 
between the age-sex distribution of the general population from Putignano and the subjects listed in the general 
practitioners’ registers. Therefore, 2550 subjects were invited to participate in the survey and, 2301 (90%) agreed. 
NUTRIHEP subjects were followed-up in 2015–2017 then, 951 of them were included. All subjects provided 
written information and consent according to the 1964 Helsinki Declaration.

The subjects participating in the MICOL and NUTRIHEP studies underwent anthropometric measurements, 
blood sampling and hepatic ultrasound. They were weighed wearing underwear, on an electronic scale, SECA; 
weight was approximated to the nearest 0.1 kg. Height was measured with a SECA wall stadiometer, approximated 
to the nearest 1 cm. Blood pressure (BP) measurements were performed following international  guidelines40. 
The mean of 3 BP measurements was calculated.

ML algorithm development
Data acquisition and pre-processing. The initial database for the MICOL III trial contained 2970 sub-
jects. The sample declined to 2869 as for 101 subjects there were no data on at least one of the values among Waist 
Circumference (WC), Hips (HP) (variables for the constitution of AVI), Gamma-Glutamyl Transferase (GGT), 
Glucose. These 2869 subjects constituted the new database used for training and testing the NN using a train-
test-split approach. From the NUTRIHEP database, initially composed of 2301 subjects, we randomly extracted 
a further 100 subjects to constitute the validation sample.

Variables used. The Variables used to develop the NN were: Sex, Age, Gamma-Glutamyl Transferase (GGT), 
Glucose, Abdominal Volume Index (AVI)41 and NAFLD condition.

We have previously highlighted that the best model to detect the NAFLD condition is based on the above 
variables. These variables were identified starting from a sample of 27 variables and exploiting a subset selection 
approach in order to identify the model with fewer variables and better  performance34. Table 1 shows the formula 
employed to build the AVI index.

AVI is the only compound index used, and this formula is easy to compute and the component variables are 
easily available as they consist of anthropometric measurements.

The array composed by Sex, Age, Gamma-Glutamyl Transferase (GGT), Glucose, Abdominal Volume Index 
(AVI) represents the X of our algorithm and the condition of NAFLD the Y.

NAFLD diagnosis was performed using an ultrasound scanner Hitachi H21 Vision (Hitachi Medical Corpo-
ration, Tokyo, Japan). Examination of the visible liver parenchyma was performed with a 3.5 MHz transducer.

Data exploration. Data were explored by using a t-Distributed Stochastic Neighbor Embedding (t-SNE)36. 
It is an unsupervised and nonlinear technique used primarily for data exploration and visualization of high-
dimensional data; its output shows how the data are organized in a high-dimensional space. This technique has 
not performed in optimal way failing to clearly discriminate the two classes 0 (No NAFLD), 1 (NAFLD), Fig. 1 
shows data displayed with the t-SNE.

Table 1.  Index formula and its structure. WC waist circumference, HC hip circumference.

Reference Name Formula

Guerrero-Romero Abdominal volume index (AVI)
AVI =

[

2∗(WC)2+0,7∗
(

WC

HC

)2
]

1000



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20240  | https://doi.org/10.1038/s41598-021-99400-y

www.nature.com/scientificreports/

Hyperparameter tuning for the neural network. Initially, a NN was created using the Open Source 
library “scikit-learn”42 by Python.

For the interaction with the csv file containing the database, the library “numpy” (np)43 by python was used.
The NN is an MLPClassifier (Perceptron Multilayer Classifier)42 and a supervised machine learning 

 algorithm44. The first fundamental step was to split the considered database using the “Train_test_split” (func-
tion present in scikit-learn) in order to divide the sample into two subsets (80% of the data used for NN training 
and the remaining 20% for the testing).

GridSearchCV42 was used to search for optimal parameters for the NN.
The GridSearchCV is included in the scikit-learn library.
We have performed the NN optimization for the following parameters:

• Activation function: searched among (‘identity’, ‘logistic’, ‘tanh’, ‘relu’)
• Solver type: limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (lbfgs)45 Stochastic Gradient 

 Descent46,  Adam47, (‘lbfgs’, ‘sgd’, ‘adam’). "lbfgs" is an optimizer in the family of almost Newtonian  methods48. 
We selected "lbfgs" because for small data sets it can converge faster and get better performance.

• Learning rate: searched among (‘constant’, ‘invscaling’, ‘adaptive’)
• the Maximum number of iterations looking for it in a defined range of values (max_iter’: [1000,1100,120

0,1300,1400,1500,1600,1700,1800,1900,2000, 3000,4000,5000,6000,7000, 8000,9000],) Maximum number 
of iterations. The solver iterates until convergence (determined by "tol") or until the maximum number of 
iterations.

• The alpha value searched for in a set of defined values (alpha’: 10.0 ** -np.arange(0, 10),) Penalty parameter 
 L249.

• The number of hidden layers of the network ’hidden_layer_sizes’: np.arange(0, 20), searched in a range from 
0 to 20

• And the value of ’random_state’: [0,1,2,3,4,5,6,7,8,9,10] searched in the range from 0 to 10 to make sure the 
results were replicable.

MLPClassifier performs iterative training because at each time step the partial  derivatives50 of the loss 
 function50 are calculated with respect to the model parameters, in order to update the parameters. It can also 
have a regularization term added to the loss function that reduces the Model Parameters to prevent overfitting. 
The values obtained at the end of the NN optimization were:

• activation: ’logistic’
• alpha: 1.0
• hidden_layer_sizes: 19
• learning_rate: ’constant’
• max_iter: 9000
• random_state: 10
• solver: ’lbfgs’

Training session and neural network test. The algorithm was trained using as target variable the 
NAFLD condition and as features Sex, Age, GGT, Glucose and AVI values.

The dataset used for the training and the test of the algorithms was the MICOL subjects, subdivided into 
the Test and Training subsets: 80% of the dataset was dedicated to the training phase while the remaining 20% 
was used in the model testing phase. The output reported the accuracy during training and testing, the value of 
the area of the Roc curve (AUC)51,52 in the training and testing phase, the Confusion  Matrix53 and the value of 
Precision, Recall and F1-score in the testing phase.

Figure 1.  Visualizing data with t-SNE.
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Results
Participants characteristics and the performance of AVI indexes in MICOL subjects are shown in Table 2. The 
NAFLD prevalence was 31.7%, the condition being, as expected, more prevalent among men. Subjects with 
NAFLD were a little older, with increased levels of Glucose and GGT.

In Table 3 are shown Participants characteristics and the performance of AVI indexes in the NUTRIHEP 
study. In the original study NAFLD prevalence was 24.3% and, as expected, more prevalent among men.

Neural network performance analysis. The first parameter considered to evaluate the performance of 
the NN was the accuracy defined  as54:

More specifically, the accuracy of a model is calculated with the following  formula54:

where TP = True Positive, TN = True Negative, FP = False Positive and FN = False Negative.
Accuracy was measured during both the NN training and the testing phase.
Another performance index that we considered was the value of the ROC  curve52. The area under the ROC 

(AUC, "Area Under the Curve") is a measure of accuracy and indicates the diagnostic power of the test.
In Figs. 2 and 3 the ROC curves with the AUC value obtained during the training phase and testing phase 

are shown.
In addition to the accuracy and ROC curve values, we evaluated the confusion matrix to verify the reliability 

of the NN. Figure 4 shows the confusion matrix values in the test phase.
In addition, the Positive (PPV) (0.57) and Negative (NPV) (0.86) predictive values were calculated. It is worth 

to note that the NN is able to identify subjects without the condition with a very high precision.
Table 4 shows the Accuracy and AUC values obtained during training and testing of the NN.
The values obtained for AUC and Accuracy (both for the training phase and for the test phase) show that 

the NN implemented does not present overfitting or underfitting problems, because the values of the two ROC 
curves and the values related to the accuracy differ very slightly. Additionally, in order to validate the perfor-
mance of the NN precision, recall and f1-score values during the test phase were evaluated. In Table 5 are shown 

Accuracy =
Number of correct preditions

Total number of preditcions
∗ 100

Accuracy =
TP + TN

TP+ TN+ FP+ FN
∗ 100%

Table 2.  Sample subset characteristics by NAFLD condition. MICOL study, Castellana Grotte (BA), Italy, 
2005. Cells reporting subject characteristics contain mean (± SD) or n (%).

Variables

NAFLD

p-valueAbsent Present

N (%) 1961 (68.3) 908 (31.7)

Sex

Female 968 (49.4) 278 (30.6)  < 0.001

Male 993 (50.6) 630 (69.4)

Age 53.80 (15.37) 55.00 (13.43) 0.042

AVI 15.96 (4.25) 21.17 (4.99)  < 0.001

GLUCOSE 105.27 (23.31) 117.34 (32.75)  < 0.001

GGT 14.63 (15.29) 20.63 (19.93)  < 0.001

Table 3.  Sample subset characteristics by NAFLD condition. NUTRIHEP study, Castellana Grotte (BA), Italy, 
2015. Cells reporting subject characteristics contain mean (± SD) or n (%).

Variables

NAFLD

p-valueAbsent Present

N (%) 487 (51.2) 464 (48.8)

Sex

Female 298 (61.3) 231 (49.8)  < 0.001

Male 188 (38.7) 233 (50.2)

Age 49.02 (13.42) 59.39 (13.11)  < 0.001

AVI 14.01 (3.66) 23.53 (88.04) 0.017

GLUCOSE 90.20 (10.08) 100.54 (20.86)  < 0.001

GGT 15.29 (8.18) 19.99 (15.26)  < 0.001
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values of Precision, Recall, f1-score of No NAFLD and, NAFLD subject, Macro average and Weighted average 
during test phase.

Evaluating Explainability using SHAP. After verifying the behavior of the NN by comparing the various 
indices considered, we performed with the analysis of Explainability (XAI) using  LIME55 and the  SHAP56 library 
of Python to compare any inconsistencies. We initially proceeded to the evaluation by performing a relevance 
analysis of the features in order to verify whether the anthropometric and biochemical variables considered gave 
a real and consistent contribution in the diagnosis of NAFLD. Figures 4 and 5 show the contribution given by 
each feature used in the diagnosis of NAFLD within the NN during the Training and Test.

Figures 5 and 6 shows the importance of AVI, GGT and Age as already highlighted in previous  studies34 are 
more important than sex and glucose in the diagnosis of this pathology but still combining them all together 
they lead to a good diagnostic result in a NAFLD diagnosis.

In Figs. 7 and 8 we report the previous graph seen in another way, more specifically we can understand:

Feature importance: variables ranked in descending order of importance.
Impact: horizontal position shows whether the effect of that value is associated with a higher or lower pre-
diction.
Value: color shows whether that variable is high or low for that observation. Red color deducts the high value 
and blue for the lower value. The change in color of the dot shows the value of the feature. Correlation: Of 
each characteristic with the pathology being examined.

Evaluating Explainability using LIME. Subsequently exploiting the LIME library, it has been verified 
how the NN has reasoned in order to obtain a diagnosis verifying both the case of diagnosis of "sick subject" and 
that of "healthy subject".

Figure 2.  ROC curve and AUC neural network in training.

Figure 3.  ROC curve and AUC neural network in test phase.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20240  | https://doi.org/10.1038/s41598-021-99400-y

www.nature.com/scientificreports/

Figure 9 shows which characteristics had a greater impact on a diagnosis of disease present and which had 
a greater impact on a diagnosis of disease absent with relative final diagnosis. Regarding subjects diagnosed as 
sick, the features that contributed most to directing the NN toward a diagnosis of sick subject were AVI, age, 
and GGT value demonstrating how the NN performs optimal reasoning.

Figure 10 shows what concerns the characteristics that contribute to the identification of healthy subjects, 
the NN took into consideration the values that from the clinical diagnosis are standard values of GGT, Glucose 
and a low value of the AVI index.

Figure 4.  Confusion matrix values during the test. 0 indicates no presence of NAFLD, 1 indicates presence of 
NAFLD.

Table 4.  Accuracy and AUC values in the training and test phase. a NN neural network, AUC  area under the 
ROC curve.

Phase Accuracy (%) AUC a

Training  NNa 79.1 0.84

Testing  NNa 77.0 0.82

Table 5.  Value of precision, recall and F1-score on test set. a avg average.

Precision Recall f1-score Support

No NAFLD 0.86 0.82 0.84 416

NAFLD 0.57 0.65 0.61 158

Macro  avga 0.72 0.73 0.72 574

Weighted  avga 0.78 0.77 0.77 574

Figure 5.  Histogram of feature relevance of anthropometric and biochemical parameters considered during 
training.
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Figure 6.  Histogram of feature relevance of anthropometric and biochemical parameters considered during 
test.

Figure 7.  Global interpretation using Shapley values of anthropometric and biochemical parameters considered 
during training.

Figure 8.  Global interpretation using Shapley values of anthropometric and biochemical parameters considered 
during test.

Figure 9.  Application of LIME for diagnosis of sick subject during the test.
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Also, in the diagnosis of healthy subjects the NN has produced an optimal reasoning correctly directing the 
diagnosis.

Export of the trained algorithm and incorporation into the web app. After the NN training and 
testing and the XAI analysis we exported the already trained model. In this way it is possible to avoid repeating 
the training every time we want to perform a new forecast. The model export was done using the “pickle” tool 
by  Python57, which allowed the generation of a file with the extension “.pkl”. This file is then loaded by means of 
another python program which can be used to make a new forecast. Another important function implemented is 
the creation of a web application written using the HTML  languages58,  CSS59 and  JavaScript60. This web applica-
tion can interface with the trained NN to test it on new data, different from those used to train the original NN. 
The interface of the web application with the trained algorithm was implemented through the “flask library”61 
by python. A flask object receives a request from the web and displays the HTML file that allows it to interface 
with the NN.

The user can fill in the form present in a web page and after clicking the submit button, the flask object 
receives a request, extracts the input, runs it through the template and finally displays the HTML page with the 
result of the prediction.

The HTML page includes various fields in which to enter variables, and a submit button to pass the input 
data to the NN that will perform the prediction. At the end of the prediction, the HTML page will display the 
NAFLD status: “NAFLD Detected” or the string “No NAFLD Detected”.

The web app also includes the automatic calculation of the AVI parameter from the values for hips Circum-
ference and waist Circumference using the code implemented in Javascript.

Test of the web app on a sample of subjects with known NAFLD. To test the web app, the database 
previously formed by random extraction of 100 subjects participating in the NUTRIHEP study was used. The 
web app was passed the data: age, Sex, GGT, GLUCOSE, WC, HC.

After the input of the parameters and clicking the submit button, the values were sent to the NN. The web app 
feedback, related to the NAFLD status, was then saved in a dataset used for comparison with the true NAFLD 
condition, already known to us.

Using the saved dataset, we could calculate the accuracy, sensitivity and specificity of the web app.
In the sample considered, there were 50 subjects affected by NAFLD and 50 healthy subjects. The NN cor-

rectly identified all the healthy subjects but made 18 errors, all false negatives. On this result we calculated the 
values of Specificity and Sensitivity of the NN.

It is important to point out that many of the subjects considered healthy by the NN had anthropometric and 
biochemical values in the norm, but it is possible that these subjects were affected by mild NAFLD, although 
with values still within normal  range62.

Table 6 shows the sensitivity and specificity values for the NN in the web app.

Discussion
In this study, a NN to support NAFLD diagnosis has been developed on a model made up of easily available 
variables, as already highlighted in our previous  work34.

In particular, in this work we trained a NN to identify patients at risk of NAFLD and, developed a local web 
app for use as a tool in epidemiological studies and screening. The aim was to make a prior identification of 
healthy patients in order to ensure that only subjects really needing it are sent on for ultrasound examination.

Figure 10.  Application of LIME for diagnosis of healthy subject during the test.

Table 6.  Sensitivity and specificity values for the neural network in the web app.

Specificity Sensitivity

1.00 0.73
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Today, alternative, less expensive methods of diagnosis compared to traditional tools (MRI, Ultrasound) are 
very important in the diagnosis of NAFLD. The reorganization of the National Health System requires close 
consideration of aspects related to performance together with factors related to the reduction of costs and waiting 
times. The objective of our study was to create a NN implementing an intuitive and easy application to support 
medical decisions during the diagnostic phase using simpler and cheaper tools, thus reducing both costs and 
waiting times related to the use of instrumental methods. We highlight that it would thereby be possible to use 
simple computers to make a diagnosis of NAFLD, resulting in a faster diagnosis and thus preventing disease 
evolution and the resulting serious consequences.

Several prediction models for NAFLD in the literature have been developed to identify healthy subjects and 
subjects with NAFLD. These existing NAFLD prediction models have employed clinical and laboratory param-
eters; however, some parameters are not always routinely measured or retrievable in health  databases63,64. This 
limits the use of these models in large-scale epidemiologic studies and health database research. Specifically com-
paring the AUC of NN (0.821) with traditional methods we could verify that the performance in terms of AUC 
is superior to  LAP65 (0.79), Hepatic steatosis  index66 (0.81),  SteatoTest67 (0.79),  APRI68 (0.60), NAFLD fibrosis 
 score69 (0.82). When considering some studies exploiting AI techniques, we could verify that a new approach 
using LWA (learning by abstraction) method classifies liver ultrasound images as normal or abnormal and does 
not classify the data unless it is confident of accurate prediction. Features were extracted from ROIs within 99 
ultrasound images and were used to train NN, SVM, and LWA classifiers with fivefold cross-validation. The pro-
posed LWA method outperformed the other classifiers with an AUROC of 0.7870. In a second study, the prediction 
ability of particle swarm optimization (PSO), GA, MReg (multilinear regression), and alternative decision tree 
(ADT) algorithms were compared using medical data from 39,567 patients. Using uniform random sampling, 
the dataset was divided into training (22,690 patients) and test (16,877) sets. Four algorithms were applied for 
classification using tenfold cross-validation. The results evidenced that the ADT model had an AUROC between 
0.73 and 0.7671. In another study factors provided by the 2005 updated ATP III clinical criteria for metabolic 
syndrome (MetS) along with age and gender were used to create a NAFLD prediction model. After preprocess-
ing data from 40,637 patients they were divided into 66% and 34% for training and testing sets, respectively. The 
classification was performed by the J48 algorithm using hold-out cross-validation, and the AUROC of 0.731 was 
 achieved72. NN also performed better in these cases.

From the described results, it can be seen that the NN, using AVI plus Glucose plus GGT plus Sex plus Age, 
produced few prediction errors in the test phase, whereas the accuracy percentage was not very high. However, 
the 18% error (18 of 100 subjects) in the test phase may be open to doubt, since it is possible that these subjects 
were developing NAFLD and so merely diagnosed in advance).

It has been demonstrated that the good performance of the ML algorithms used to identify NAFLD, applying 
common anthropometric parameters and other variables, can be a valid alternative to the classic  indexes73,74.

Moreover, the NN was able to correctly identify all the subjects without NAFLD, as evidenced by the high 
VPP value (0.86). This VPP satisfies our objectives to detect subjects without NAFLD to avoid referral to perform 
more expensive diagnostic procedures.

This type of study highlights the fact that a NN can be used to find high-risk NAFLD subjects to send on for 
US. In this way, 82.6% of unnecessary US tests could be avoided (this value was calculated as the ratio of the 
total number of subjects in the web app test set, divided by the total number of subjects in the web app test set 
plus the number of false predictions).

In addition, to lighten the waiting lists, our aim was to develop a machine learning algorithm that would 
allow savings by eliminating a number of US that would otherwise be prescribed. The NN developed is therefore 
useful to exclude NAFLD and may be considered a valid diagnostic support in the context of epidemiological 
studies, not merely a smart working replacement diagnostic tool.

In conclusion, the NN can be considered a valid support for medical decision making in regard to health 
policies, in the context of epidemiological studies and screening.

Study limitations. There are several limitations to this work. The most significant is that this study was 
conducted in a single center and so has a rather limited sample size. Deep learning models in other fields have 
included millions of samples. Another problem is that the NN is strongly linked to the identification of the 
NAFLD condition only in a Mediterranean population with the characteristics on which it was formed. A second 
limitation is the low sensitivity of the NAFLD diagnostic methodology, as it fails to detect a fatty liver content as 
low as > 25%75. However, both databases were drawn from population-based studies and subjects were selected 
from electoral lists or from the physicians lists. Moreover, participants subjects did not seek medical assistance 
and participated on a voluntary basis. Therefore, the NAFLD diagnosis performed by US was the only diagnostic 
procedure that could be proposed to participants, since biopsy or H-MRS would obviously be unethical.

Future developments. In the future the NN based web app can be improved by using a SQL database 
where to save the entered data and, providing feedback to the app (correct or wrong prediction) in order to 
continue its training and make it more flexible so that it can be used on any kind of population. This could be 
done by leveraging a document classification  system76 to retrieve data from electronic medical records and then 
building an open  dataset77 in order to improve with more heterogeneous data the web app.

Conclusion
The application of ML in the diagnosis of NAFLD is an efficient approach to identify healthy subjects. The model 
we propose has that can be exploited to target only those subjects who have a real need for further investiga-
tion, thus leading to a reduction in waiting lists, costs and time required for instrumental examinations. In this 
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research we have predicted the risk of developing NAFLD in individuals using biochemical and anthropometric 
variables in a NN. The rationale behind our approach is divided into two parts: first train, evaluate performance 
and validate the result in assessing NAFLD risk in an individual. Second, development of a local web app that 
incorporates the previously evaluated NN, compare its performance applying in this way a rapid and non-invasive 
methodology in order to demonstrate that the proposed technique is suitable for optimal discrimination for 
NAFLD risk assessment. It is worthy to note that through XAI, it is possible to identify the factors that contribute 
to a given diagnosis. This facilitates the physician to do informed choices about their patients management and 
improve the health conditions of the subjects.
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