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Multi‑scale guided feature 
extraction and classification 
algorithm for hyperspectral images
Shiqi Huang1,2*, Ying Lu1,2*, Wenqing Wang1,2 & Ke Sun1,2

To solve the problem that the traditional hyperspectral image classification method cannot effectively 
distinguish the boundary of objects with a single scale feature, which leads to low classification 
accuracy, this paper introduces the idea of guided filtering into hyperspectral image classification, 
and then proposes a multi‑scale guided feature extraction and classification (MGFEC) algorithm for 
hyperspectral images. Firstly, the principal component analysis theory is used to reduce the dimension 
of hyperspectral image data. Then, guided filtering algorithm is used to achieve multi‑scale spatial 
structure extraction of hyperspectral image by setting different sizes of filtering windows, so as to 
retain more edge details. Finally, the extracted multi‑scale features are input into the support vector 
machine classifier for classification. Several practical hyperspectral image datasets were used to verify 
the experiment, and compared with other spectral feature extraction algorithms. The experimental 
results show that the multi‑scale features extracted by the MGFEC algorithm proposed in this paper 
are more accurate than those extracted by only using spectral information, which leads to the 
improvement of the final classification accuracy. This fully shows that the proposed method is not only 
effective, but also suitable for processing different hyperspectral image data.

With the rapid development of aerospace technology, the spectral resolution of remote sensing imaging technol-
ogy has been greatly improved. Hyperspectral remote sensing is a kind of continuous imaging technology for 
ground target information using imaging spectrometer. Compared with other remote sensing images, hyper-
spectral images can more accurately reflect the state of the target in the image space and the characteristics in 
the spectral space. Moreover, the spectral data can be analyzed and processed more reasonably and effectively. 
Therefore, hyperspectral imaging technology has more advantages in ground object recognition and classifica-
tion, and it has been widely used in many  fields1–8. However, hyperspectral images also have many bands with 
strong correlation and high data redundancy, and feature extraction is one of the main methods to effectively 
solve these problems.

The purpose of feature extraction is to use different methods to select bands or features that contain large 
amount of information to reduce the redundancy of data. The common spectral feature extraction algorithms 
include principal component analysis (PCA), independent component analysis (ICA) and linear discriminant 
analysis (LDA)9. These dimensionality reduction methods all extract spectral features of hyperspectral images 
through linear transformation. Among them, PCA is the most commonly used linear feature extraction method. 
In this method, the input data is transformed by using the transformation matrix, and the feature with the largest 
contribution of the corresponding variance in the data is retained, and then the data dimension is reduced. On 
this basis, a series of PCA improved algorithms were  proposed10–15. For example, PCA algorithm was applied to 
hyperspectral image, and the method of selective principal component analysis was  proposed10. This method 
has very good prediction results for pixels with small number of features. According to the high correlation of 
hyperspectral images, a more advanced segment using PCA dimension reduction method was further  proposed11. 
The morphological principal component analysis was proposed and applied to hyperspectral image feature 
 extraction14. Similarly, ICA theory is considered as an extension of PCA, which is based on the assumption that 
data are independent of each other, and is also used to extract features and make classification for hyperspectral 
 images16–19. For example,  the19 used PCA and ICA to obtain PCA features and edge features of hyperspectral 
remote sensing images, and then used deep convolution neural network to realize the fusion and classification 
of spatial-spectral features.

The above method only considers the spectral information of the image and ignores the existence of spatial 
features when extracting features. Image spatial features mainly include regional shape features, texture features 
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and morphological filtering features. Since hyperspectral images have the characteristics of space-spectrum 
integration, if the spatial information and spectral information of hyperspectral images are used to extract their 
features at the same time, the effect will be better. At present, the method of feature extraction combining spatial 
and spectral information of hyperspectral image is a hot field in hyperspectral remote  sensing20–23. The commonly 
used spatial feature extraction methods include discrete wavelet transform, Gabor filtering, sparse representa-
tion and local binary pattern. The local binary pattern (LBP) is a texture feature extraction method, and it is also 
widely used in spatial-spectral feature extraction of hyperspectral  images24. A hyperspectral image classification 
method based on the combination of dual channel CNN and LBP was proposed, and good classification results 
were  obtained24. The hyperspectral image classification algorithm based on super-pixel and multi-core sparse 
representation was proposed, and achieved the expected classification  effect25.

The spatial features extracted in the above research are generally single scale features. Because it is very 
difficult for using single scale feature to accurately express the differences between object categories, and can-
not well distinguish the boundary of objects, the idea of multi-scale feature extraction has been widely used in 
the field of hyperspectral image  processing26–29. The core idea of multi-scale feature extraction is to realize the 
abstraction of image information at different scales. Among them, the control of scale parameters has the fol-
lowing situations, such as the designed filter banks, different sizes of structural elements and different sizes of 
processing windows. For example, morphological filtering, which used circular structural elements of different 
sizes to perform open and close operations on images, could better smooth  noise30. However, the traditional 
morphological filtering cannot effectively keep the information of the edge structure of the ground object while 
realizing the smooth of the ground object. The guided filtering algorithm not only has better filtering ability, 
but also has better edge preserving  ability31, so it has been widely used in image fusion, image enhancement and 
image feature  extraction32–37. For example, a very high-resolution remote sensing image classification method 
based on guided filtering multi-scale super-pixel features was proposed in  literature37, which could obtain multi-
scale feature information by setting different filter window sizes, so as to improve the classification accuracy and 
calculation efficiency of detail information. On this basis, this paper introduced the idea of guided filtering into 
hyperspectral image feature extraction, and proposed a multi-scale guided feature extraction and classification 
(MGFEC) algorithm for hyperspectral images. Several hyperspectral remote sensing image datasets were used 
to verify the experiment, and good classification results were obtained.

The current paper makes several contributions to the field. The first is the conceptual design for multi-scale 
guided filtering to get features; the second is that random blocks are extracted as convolution kernel, and features 
are further extracted for the deep level feature.

Guided filtering
Guided filter (GF) is a very efficient edge-preserving filter with better performance than bilateral filter. Through 
local linear model, the information of guiding image is skillfully added to the input image, so that the output 
image can obtain some enhanced features, such as edge preservation and enhancement. Its core technology is a 
linear shifting filtering  equation31,38. Guided filtering algorithm guides the input image to complete the filtering 
process. In the process of realization, it is considered that there is a linear processing relationship between the 
pixel points of the guided image and the output image, and there is a spatial filtering relationship between the 
input image and the output image. Therefore, the final output image is similar to the input image in structure, 
and similar to the guided image in texture details.

Usually, it can be considered that an image is composed of background layer and foreground layer (target or 
detail). Therefore, the filtering and enhancement of the image are almost to suppress the background layer infor-
mation and to enhance the detail layer information. In most cases, it is a compromise between them. Similarly, 
the guided filtering process also follows this thinking. Assume that I is the input image to be filtered, G is the 
guided image, and F is the filtered image to be output. According to the idea of image guided filtering, there is 
a linear relationship between the guided image G and the output image F in the local filtering window Wk , and 
the relationship model can be expressed by Eq. (1).

It can be seen in Eq. (1) that as long as the values of the linear coefficients ak and bk are calculated, and then 
the pixel value Fi(m, n) of the filtered image can be obtained through the pixel value Gi(m, n) of the guide image.

In the filtering window Wk , to minimize the difference between the input image I and the output image F , the 
cost function E(·) can be constructed to achieve this. Its mathematical model is shown in Eq. (2).

where ε is the regularization parameter greater than zero, which is to prevent the coefficient ak from being too 
large, and it is conducive to maintaining the overall stability of the data.

The coefficients ak and bk in Eqs. (1) and (2) can be solved by the least square method, and its calculation 
equation is shown in Eq. (3).

(1)Fi = akGi + bk; ∀i ∈ Wk

(2)E(ak , bk) =
∑

i∈Wk

[

(Fi − Ii)
2 + εa2k

]

=
∑

i∈Wk

[

(akGi + bk − Ii)
2 + εa2k

]
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where µk and σ 2
k

 respectively represent the mean value and variance of all pixels in the local filtering window Wk 
of the guided image G . |ω| is the number of pixels in the window Wk , and its size is r × r . Ik is the mean value of 
all pixels of the local window with the same size of the window Wk in the input image I.

During processing, as the window Wk moves, the pixel i will be contained in multiple different windows Wk 
that overlay it. Because the pixels and their values in different windows are different, the values of coefficients ak 
and bk in each window calculated by Eq. (3) are also different. To make the value of ak and bk more accurate, it is 
necessary to sum and average the corresponding values obtained in all windows Wk containing pixel i . Therefore, 
the final expression of the output image Fi can be obtained by transforming Eq. (1), and it is given by

where the average coefficient ak and bk can be calculated by Eq. (5).

In the process of guided filtering, the size of window r and the regularization parameter ε are the two impor-
tant parameters, and their different values will affect the final filtering results. The larger the filtering window is, 
the more obvious the smoothing effect is. The smaller the filtering window, the more details are preserved. The 
larger the regularization parameter is, the stronger the regularization ability is, but the influence on the filtering 
effect is limited.

Description of MGFEC algorithm
Hyperspectral remote sensing image data cube is characterized by many bands and high correlation between 
bands, so it usually need dimension reduction. In the MGFEC algorithm proposed in this paper, firstly, PCA is 
used to process hyperspectral image data to reduce its dimension and facilitate subsequent feature extraction 
and processing. Then, the first three principal component images are acquired and used as input images at the 
same time, while the first principal component image is used as the guided image. By setting different filter 
window sizes to complete the guided filtering processing, the multi-scale feature map of each principal compo-
nent is obtained. In each feature map, k blocks are randomly extracted as convolution kernel template, and then 
convolution operation is performed with each feature map to further extract deep multi-scale features. Finally, 
the classification of hyperspectral remote sensing image is realized by using the classifier to classify the feature 
image. The principle block diagram of MGFEC algorithm is shown in Fig. 1, and the main implementation steps 
are as follows.

(1) Input hyperspectral image data. The original hyperspectral data is denoted with X , and X ∈ R
m×n×L , m× n 

is the size of each band image and L represents the number of bands.
(2) Reduce the dimension of hyperspectral remote sensing image data. The principal component analysis 

(PCA) theory is used to process the hyperspectral image data, and each principal component feature map 
is obtained. Because the first three principal components contain more than 95% information, they are 
extracted for subsequent processing. The PCA algorithm is to transform a set of possible correlation vari-

(4)Fi = akGi + bk;∀i ∈ Wk

(5)
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Figure 1.  Schematic diagram of MGFEC algorithm.
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ables into a group of linear unrelated variables through orthogonal transformation. The converted variables 
are called the main components. The specific calculation steps of PCA algorithm are as follows.

(a) Let the original hyperspectral image data be represented by matrix X , which is shown in Eq. (6). Each 
band image is expanded into a row vector as a row of matrix X

where L is the number of bands, N is the size of the image, i.e. N = m× n.
(b) The hyperspectral image data is standardized to get matrix A , and the calculation formula is as fol-

lows.

where aij = xij − µi , i = 1, 2, . . . , L , j = 1, 2, . . . ,N . µi = (
∑N

j=1 xij)/N , it is the mean of the i th line 
in the original hyperspectral data X

(c) The covariance matrix R of standardized matrix A is calculated as follows.

where j, k = 1, 2, . . . ,N , ai = 1
L

L
∑

i=1

aij.

(d) The eigenvalues of covariance matrix R and corresponding eigenvectors are calculated. Using the 
characteristic equation |R − �IL| = 0 , we can get L eigenvalues of the covariance matrix R , which 
are arranged from big to small, namely �1 ≥ �2 ≥ · · · ≥ �L ≥ 0 , and the corresponding eigenvector 
is v1, v2, · · · , vL.

(e) The eigenvectors corresponding to the first three eigenvalues constitute matrix V , and the calculation 
formula is as follows.

(f) Output the data after dimensionality reduction, PC = VT · X , and the calculation formula is as fol-
lows.

where PC1 , PC2 and PC3 are the first, the second and the third principal component, respectively.
  Due to the strong correlation between adjacent bands in hyperspectral image data, it is necessary 

to whiten each principal component separately, so that the variance between different bands is simi-
lar, so as to reduce the redundancy between different bands, which is conducive to the subsequent 
feature extraction. The whitening process here refers to the whitening of PCA, namely, to normalize 
the variance of each one-dimensional feature of the data after PCA dimensionality reduction. In fact, 
it is to divide the data on each feature axis by the corresponding eigenvalue. Because the eigenvalue 
is equal to the variance of the dimension corresponding to the data in the rotated coordinates, the 
normalization amplitude on each feature axis is achieved. The specific calculation formula is as fol-
lows.

where �w is the eigenvalue corresponding to the w th dimension eigenvector in the matrix PC obtained 
after principal component transformation.

(3) Obtain multi-scale guided filtering feature maps. The first three principal components are respectively 
guided and filtered. Firstly, it needs to build a guided image. The first principal component PC1 in step (2) 
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is taken as the guided image, and the first to the third principal components PC1 ∼ PC3 are as the input 
image. Secondly, it needs to set the size of filter window. Here the filter window is set to four different scales, 
i.e. 2, 4, 6 and 8. Thirdly, different scale guided filtering is applied to different principal component feature 
maps. The result of guided filtering is that each principal component image can obtain four feature maps 
of different scales, and then stack all the feature maps of each principal component to form a feature set of 
multi-scale guided filtering. The calculation formula is as follows.

where f rG(PCi) represents the multi-scale filtering feature obtained by the guided image G to the i th prin-
cipal component PCi when the filtering window scale is r

(4) Acquire random patches. After multi-scale guided filter feature extraction, 12 multi-scale feature maps were 
obtained from the first three principal component images. Then, k pixels are randomly selected in each 
scale feature map, and around each pixel, the image patch with window size d × d is selected to obtain k 
image blocks. Here d is the size of the random patch.

(5) The convolution operation is performed and the feature map is obtained. The k random blocks obtained 
in step (4) are taken as convolution kernels, and they are convolved with the feature set F , respectively. 
Finally, we can get k × 12 feature maps, stack them and build the feature set F ∈ R

m×n×12×k , which will 
be classified in step (6).

(6) Set up classifiers and carry out classification processing. Support vector machine (SVM) is a very good 
classifier, especially for small sample data sets. In terms of classification accuracy, SVM is better than most 
classifiers, so it has been widely used. Therefore, in MGFEC algorithm, the efficient SVM classifier is chosen 
to classify the acquired feature sets. The classification process is as follows.

(a) Data sets are divided into different subsets. From the multi-scale feature set, 75% of the feature maps 
are randomly selected as the training sample subset, and the remaining features are selected as the 
test sample subset.

(b) The training data set is used to train the model, then the trained model is used to predict and classify 
the whole test data, and finally the classification results are obtained.

Discussion and analysis of experimental results
Experimental data. To verify the effectiveness of the MGFEC algorithm proposed in this paper, three 
groups of hyperspectral data and different feature extraction methods are compared. The basic information 
of hyperspectral image data used in the experiment is shown in Table 1. These data come from three different 
ground scene areas. Among them, Indian pine data was obtained by AVIRIS sensor. The size of image data is 145 
× 145, and the spectral imaging wavelength range is 0.4–2.5 nm. There are 224 bands, including 200 effective 
bands. Figure 2a is a false color image composed of bands 29, 42 and 89, and Fig. 2b is the real ground situation 
of the data, with a total of 16 crop categories, as shown in Table 2.

The data of Pavia university area was obtained by ROSIS sensor, with spatial resolution of 1.3 m and image size 
of 610×340. The sensor has a total of 115 bands. After processing, Pavia university data has 103 effective bands. 
The image contains nine different types of ground objects. The data is shown in Fig. 3, in which Fig. 3a is a false 

(12)F(PCi) = {f 1G(PCi), f
2
G(PCi), . . . , f

r
G(PCi)}; r ∈ [2, 4, 6, 8]

Table 1.  Basic information of experimental hyperspectral data.

Sensor Scene Band number Size Scene features

AVIRIS Indian Pines 200 145 × 145 Farmland

ROSIS Pavia University 103 610 × 340 Suburbs, buildings

AVIRIS Salinas Valley 204 512 × 217 Farmland

(b) True classification map of the
ground

(a) False color image synthesized
by bands 29, 42 and 89

Figure 2.  The image of Indian pines area and real classification map of ground.
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color image composed of wavelengths 29, 42 and 89, and Fig. 3b is the corresponding real ground classification 
map. The types of ground objects are shown in Table 3.

Salinas Valley data was also captured by AVIRIS sensors in Salinas Valley, California. The spatial resolution of 
the data is 3.7 m, and the size of the image is 512×217. There are 224 bands in the original data. After removing 
the bands with serious water vapor absorption, there are 204 effective bands left. The data imaging area contains 
16 crop categories, and the specific classification is shown in Table 4. Figure 4 shows the hyperspectral data, in 
which Fig. 4a is a false color image composed of 29, 42 and 89 bands, and Fig. 4b is a true situation of ground type.

Comparative experiments of different methods. In addition to the MGFEC algorithm proposed in 
this paper, there are principal component analysis (PCA), extended morphological profile (EMP)39 and random 
patch network (RPNet)40 in the comparative experiment. In the experiment, PCA theory is used to reduce the 
dimension of hyperspectral remote sensing image data. Because the first three principal components contain 
more than 95% information of the original data, the first three principal components are used as the basic image 

Table 2.  Information of ground object types in Indian pines area.

Number Class Color Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

(b) True classification map of the
ground

(a) False color image synthesized
by bands 29, 42 and 89

Figure 3.  The image and ground truth classification map of Pavia university area.

Table 3.  The classification information of ground objects in Pavia university area.

Number Class Color Samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947
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for extracting spectral features, which are used for spatial feature extraction in the subsequent methods. The 
above methods and experimental data were used to carry out comparative experiments, and the obtained experi-
mental results were shown in Figs. 5–8. In these experiments, the parameters were set as follows.

(1) MGFEC algorithm. For the guided filter, there are two key parameters to be set, namely, the size r of the 
filter window and the regularization parameter ε . In MGFEC algorithm, the regularization parameter is 
set to  10–4, i.e. ε = 10−4 , and the spatial structure information of different scales of hyperspectral data is 
extracted by controlling the size r of filter window. In order to make the results comparable, the size of the 
guided filter window is set to 2, 4, 6 and 8. In addition, when the algorithm principle and implementation 
steps are introduced in Sect. 3, the number of pixels k selected in step (4) is set to 20, that is, the number 
of randomly extracted image blocks, and the size d of each random blocks is set to 21.

(2) EMP algorithm. The EMP algorithm uses different sizes of structural elements to complete the opening and 
closing operations of the original image, so as to achieve multi-scale structural feature extraction. In order 
to facilitate comparative analysis, the size of structural elements is set to 2, 4, 6 and 8, and each structural 
element is used for morphological filtering of each principal component image.

(3) RPNet algorithm. The RPNet method based on deep learning directly extracts random blocks from the 
image as convolution kernel. In this process, no training is needed, and multi-scale convolution features 
can be obtained by convolution between the original image and different scale convolution kernel, which 
is the advantage of multi-scale of RPNet algorithm. In this paper, the number k of convolution kernels is 
set to be 20 and the size d of convolution window is 21.

Figure 5 shows a comparative experiment of multi-scale features using hyperspectral data from Indian pines. 
The first and the second principal component images obtained by PCA theory are shown in Fig. 5a. Figure 5A 
is the  PC1 feature map and Fig. 5B is the  PC2 feature map. MGFEC algorithm and EMP algorithm are used to 
extract multi-scale features from the second principal component feature map  PC2. The first principal component 
image  PC1 is only used as a guided image when MGFEC algorithm extracts features. The multi-scale features 
obtained by MGFEC algorithm and EMP algorithm are shown in Fig. 5b and Fig. 5c, respectively. In Fig. 5b, 
C-F represents the multi-scale features obtained with window sizes of 2, 4, 6 and 8, respectively. Similarly, in 
Fig. 5c, G-J represents the different features which are obtained with window sizes of 2, 4, 6 and 8, respectively.

It can be seen in Fig. 5 that when the window size is 2 and 4, the two methods can basically extract the struc-
tural features of ground objects. However, when the window size is 6 and 8, their extraction effect is relatively 

Table 4.  The classification information of ground objects in Salinas Valley area.

Number Class Color Samples
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

(b) True classification map of the
ground

(a) False color image synthesized
by bands 29, 42 and 89

Figure 4.  The image and ground truth classification map of Salinas Valley area.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18396  | https://doi.org/10.1038/s41598-021-97636-2

www.nature.com/scientificreports/

poor. At this time, MGFEC algorithm is better than EMP algorithm, and it can also better retain the main edge 
information of the image. At the same time, it is also known that with the increase of scale, the effect of feature 
acquisition by them is getting worse and worse. Through the comparative experiment of feature extraction, the 
conclusion can be gotten that the guided filtering method has better ability to retain the edge information of 
ground objects than the morphological method. Therefore, in MGFEC algorithm, the principle of guided filter-
ing is used to extract multi-scale features.

The images shown in Fig. 6 are the results of classification of hyperspectral images of the above three regions 
by different methods. Figure 6a-c respectively represent the hyperspectral image data of different regions, cor-
responding to the data shown in Figs. 2–4 in turn. The results shown in Figs. 6A-D are the experimental results 
obtained by PCA, EMP, RPNet and MGFEC algorithms for classification of hyperspectral remote sensing image 
data in the same area, respectively. Figure 6E is the real classification map of the ground truth.

It can be seen in Fig. 6a, in the Indian pines scene, the PCA method only uses spectral features, so the clas-
sification result is not accurate, and salt and pepper phenomenon appears (as shown in Fig. 6A). This shows that 
only using spectral features cannot be a good way to classify ground objects. Therefore, researchers have proposed 
a series of space spectral feature joint classification algorithms for hyperspectral images, which have improved 
the salt and pepper phenomenon in the classification results to a certain extent. The EMP and RPNet methods 
combine the spatial features of the image, and introduce the multi-scale feature space, so the classification results 
are significantly improved, and the salt and pepper phenomenon is reduced, as shown in Fig. 6B,C. MGFEC 
algorithm not only obtains good classification results, but also has almost no salt and pepper phenomenon, which 
is shown in Fig. 6D. The reason is that MGFEC algorithm introduces the principle of guided filtering to extract 
features, which can smooth noise and preserve the edge information of the objects.

(a) 

(b) 

(c) 

Figure 5.  Results of multi-scale features extracted by different methods. (a) Dimension reduction results of 
PCA theory of Indian pines data (A. the first principal component image, B. the second principal component 
image). (b) Multi scale features extracted by MGFEC algorithm (C-F denotes feature maps with scales of 2, 4, 6 
and 8 respectively). (c) Multi scale features extracted by EMP algorithm (G-J denotes feature maps with scales of 
2, 4, 6 and 8 respectively).
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In Fig. 6b, the processed data is the hyperspectral remote sensing image of Pavia university scene. Obviously, 
the effect of PCA and EMP algorithms is very poor. They only recognize the ground objects with obvious spectral 
features, and others are regarded as background classes. The classification effect of RPNet and MGFEC algorithm 
is fairly good, which is close to the real situation on the ground.

For the Salinas Valley hyperspectral image data shown in Fig. 6c, the four methods can obtain most of the cor-
rect classification results. However, PCA and EMP algorithms have serious salt and pepper phenomenon, while 
RPNet and MGFEC algorithm have smooth and accurate classification effect, which is close to the ground truth.

In order to compare the experimental results more clearly, some experimental results are enlarged and dis-
played, such as the area marked by the red box in Fig. 6C,D. The details are shown in Figs. 7 and 8. Here Fig. 7 
shows an enlargement of some of the experimental results in Fig. 6a. Figure 7a,b) show the experimental results 
of RPNet algorithm and MGFEC algorithm, respectively. In the same way, Fig. 8 is the enlargement effect of some 
results in Fig. 6c, and its physical meaning is the same as that in Fig. 7. It can be seen in Figs. 7 and 8 that the clas-
sification results obtained by MGFEC algorithm are more accurate, smoother and purer than those obtained by 
RPNet algorithm. Especially for the area objects with obvious shape boundary, the classification result is better, 
which can better reflect the real distribution of the region.

By comparing and analyzing the above experimental results, the following conclusions can be drawn. From 
the overall classification effect, MGFEC and RPNet methods have better classification effect, which is close to 
the distribution of ground truth, while PCA and EMP algorithms have poor classification effect. For the homo-
geneous block area object with large region, the classification effect of MGFEC method is better than RPNet 
method, and the quality of classification map is higher. Therefore, MGFEC method has better classification effect 
for hyperspectral images with obvious boundary ground objects.

(a) Indian

(b) Pavia

University
data

(c) Salinas
Valley data

Pines data

(A) PCA (B) EMP (C) RPNet (D) MGFEC (E) Ground truth

(B) EMP (C) RPNet (D) MGFEC (E) Ground truth

(B) EMP (C) RPNet (D) MGFEC (E) Ground truth

(A) PCA

(A) PCA

Figure 6.  Experimental results of different methods and different data.

Figure 7.  Comparison of the amplification effect of red box area in Fig. 6a.

Figure 8.  Comparison of the amplification effect of red box area in Fig. 6c.
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Quantitative analysis experiment. The analysis of the above experimental results and the comparison 
of algorithm performance are based on the visual effect of the image. The performance of the selected experi-
mental algorithm is further analyzed and evaluated with quantitative indicators. The quantitative evaluation 
indexes include the overall accuracy (OA), the per-class accuracy (PA) and kappa coefficient.

The definition and calculation of these three evaluation parameters are based on a confusion matrix, which 
is also a square matrix. Assuming that the hyperspectral remote sensing image contains c classes of objects, it is 
a square matrix of size c × c . The element uii on the diagonal of the matrix represents the number of correctly 
classified pixels for each class of ground object. The other elements of the matrix represent the number of pixels 
that are wrongly divided into another class.

(1) Overall accuracy. The OA parameter refers to the sum of correctly classified pixels in hyperspectral images 
divided by the total number of samples. The calculation formula is as follows.

where N represents the total number of image pixels, uii represents the number of correctly classified pixels, 
and c represents the number of ground target types. The higher the accuracy of classification is, the larger 
the OA value is, and its maximum value is one.

(2) Per-class accuracy. The PA parameter of ground objects refers to the elements in each diagonal line of 
confusion matrix divided by the total number of elements in this line. Its calculation formula is as follows.

where uij is the number of pixels that are misclassified into class i by other class j . If the PA value is larger, 
the classification accuracy of the class is more accurate, and the maximum value is one.

(3) Kappa coefficient. Kappa coefficient is proposed by researchers to make up for the deficiency of OA as an 
evaluation of classification accuracy. It utilizes the information of the whole confusion matrix. The overall 
accuracy of classification only considers the number of pixels correctly classified in the diagonal direction, 
while kappa coefficient considers all kinds of missing and wrong pixels outside the diagonal, and its value 
range is [− 1,1], but it is usually greater than zero. It is a consistency test index, which is used to measure 
the accuracy of classification. The so-called consistency refers to whether the classified image is consistent 
with the reference image (the true classified image on the ground). The larger the value is, the higher the 
consistency is and the better the classification accuracy is. The calculation formula is as follows.

where N is the sum of the number of all classes of ground objects in the image. uij , uii and uji are elements 
in the confusion matrix.

The results shown in Fig. 9 are the classification accuracy PA values of different algorithms on the Indian Pines 
dataset. In Fig. 9, the numbers "1–16" in the abscissa represent the class of the corresponding ground object on the 
dataset, the ordinate is the values of parameter PA and its unit is percentage. The images of Indian pines dataset 
contain 16 different classes of ground objects, so "1–16" in Fig. 9 corresponds to "1–16" in Table 2 in turn. Here 
different colors of the bar chart denote different methods, as shown in the legend. It can be seen in Fig. 9 that 
in the Indian pines dataset, the PA values obtained by MGFEC method and RPNet are significantly higher than 
those obtained by PCA and EMP. This shows that MGFEC and RPNet methods are better than the other two 
methods in classification effect. Moreover, for some classes of ground objects, such as class 2, class 10 and class 
11 in Fig. 9 (class 2, class 10 and class 11 in Table 2), the PA value obtained by MGFEC method is significantly 
improved compared with RPNet method. This shows that MGFEC method is better than RPNet method in rec-
ognition and classification of these three classes of ground objects, because they have obvious boundaries in the 

(13)OA =
∑c

i=1 uii

N

(14)PAi=
uii

∑c
j=1 uij

(15)Kappa =
N(

∑c
i=1 uii)−

∑c
i=1 (

∑c
j=1 uij

∑c
j=1 uji)

(N2 −
∑c

i=1 (
∑c

j=1 uij
∑c

j=1 uji))

Figure 9.  Comparison of PA values of different algorithms on the dataset shown in Fig. 2.
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image. This also fully shows that MGFEC method is suitable for classification of area objects with obvious and 
regular boundaries, and it can smooth the similar regions while preserving the image spatial edge information. 
This is the advantage of MGFEC method, because it uses the principle of guided filtering to enhance the edge 
and texture features, and uses the convolution kernel to extract abstract features, so it is conducive to improve 
the classification accuracy and quality of this kind of ground objects. For the datasets of Pavia University and 
Salinas Valley, the PA values reflect the same rule as the Indian pines dataset.

Table 5 shows the overall accuracy values and kappa coefficient values of each method classified under dif-
ferent datasets. It can be seen in Table 5 that for the three hyperspectral image datasets, the OA values obtained 
by PCA method only using spectral features are the smallest, and the kappa coefficient values are almost the 
smallest. This shows that the overall classification effect of PCA method is poor, and the consistency with the 
real type of ground is also poor. The OA values and kappa coefficients of EMP algorithm are higher than those 
of PCA algorithm, which indicates that the classification accuracy of EMP algorithm is improved. However, they 
are in the same order of magnitude and at the same level, and the difference between the effect and performance 
of them is not very big. For the remaining RPNet and MGFEC algorithms, their OA values and kappa coefficient 
values have been significantly improved, which are more than 90%, indicating that their classification perfor-
mance and accuracy are good. The reason is that spatial features are introduced into the two methods, and their 
classification accuracy has been significantly improved. In contrast, the parameter value of MGFEC method is 
slightly higher than that of RPNet algorithm. In Indian Pines, Pavia University and Salinas Valley datasets, the OA 
value of MGFEC algorithm is higher than that of RPNet algorithm by 1.591%, 1.765% and 0.741%. This shows 
that MGFEC method is suitable for hyperspectral remote sensing image data classification, and the classification 
accuracy and effect are good, and it has good consistency with the ground true classification.

Conclusions
Aiming at the problem that single scale feature cannot effectively express the differences between different objects 
and distinguish the boundaries of objects in hyperspectral remote sensing image classification, this paper utilizes 
the PCA theory to achieve the dimension reduction, abstract multi-scale features with guided filtering principle, 
and get the deep features through the convolution operation of random blocks. Finally, the SVM classifier is used 
to realize the classification of hyperspectral image. After the above processing steps, MGFEC algorithm not only 
obtains the structure information and deep-seated features of different scales of images, which is very conducive 
to the classification of hyperspectral images, but also improves the classification accuracy and quality of hyper-
spectral remote sensing images. A series of comparative experiments are carried out with actual hyperspectral 
remote sensing image data, and good experimental results are obtained. These show that the MGFEC algorithm 
proposed in this paper can not only effectively extract multi-scale features, but also better combine spatial and 
spectral information, enhance the discrimination ability between classes, and greatly improve the image clas-
sification accuracy. Therefore, it is a feasible method, and has some practical value.
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