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Current research on DNA storage usually focuses on the improvement of storage density by 
developing effective encoding and decoding schemes while lacking the consideration on the 
uncertainty in ultra‑long‑term data storage and retention. Consequently, the current DNA storage 
systems are often not self‑contained, implying that they have to resort to external tools for the 
restoration of the stored DNA data. This may result in high risks in data loss since the required tools 
might not be available due to the high uncertainty in far future. To address this issue, we propose 
in this paper a self‑contained DNA storage system that can bring self‑explanatory to its stored data 
without relying on any external tool. To this end, we design a specific DNA file format whereby a 
separate storage scheme is developed to reduce the data redundancy while an effective indexing is 
designed for random read operations to the stored data file. We verified through experimental data 
that the proposed self‑contained and self‑explanatory method can not only get rid of the reliance on 
external tools for data restoration but also minimise the data redundancy brought about when the 
amount of data to be stored reaches a certain scale.

With the prevalence of big data-based applications, the massive quantities of data created across the globe each 
year are increasing in an exponential  fashion1, and it is expected that the global data storage demands will rapidly 
rise to  175ZB2 by 2025, with 2.5 Exabytes per day, far exceeding the world’s capacities that traditional storage 
technologies can  afford3.

On the other hand, given the uniqueness of gathered big data, it is often desired to archive them in external 
storage devices for value extending over a long period of time. To address these challenges, DNA is emerging as a 
novel  storehouse4–8 of information as it is not only potential to be orders of magnitude  denser9 than contemporary 
cutting-edge techniques but also extremely stable to retain the information for hundreds or even thousands of 
 years10, compared to hard drives which might last in only several  decades11,12.

Although it is a distinguished medium to store enormous data over millennia by virtue of its inherent high 
 density12–15and durable  preservation16,17, DNA is still hardly practical as of today to store more than several 
hundred megabytes because of the high cost of DNA  synthesis18. Consequently, most current research efforts 
are inspired to explore effective encoding and decoding schemes to facilitate the improvement of DNA storage 
density with reduced DNA synthesis cost as a  goal15,19–25 For example, a common practical scheme is to compress 
a digital file before it can be transcoded into DNA sequence with added error  correction15,19,20,26,27 as the payload 
sent to the synthesis module so that the sequence payload can be instantiated into physical DNA molecules.

Despite that they are beneficial to storage density improvement, these schemes might result in high risks in 
data loss for ultra-long-term retention since the DNA storage systems are not self-contained anymore in the 
sense that the restoration of the stored DNA data has to rely on external tools, say decompression program in our 
example, which might not be available due to the high uncertainty in the far future. As a result, without solving 
this external reliance issue, it is unlikely for DNA storage to become a viable option for storing and retaining 
data in ultra-long terms.

In this work, to address the external reliance issue while improving the storage density, we propose a self-
contained DNA storage system that can bring self-explanatory to its stored data without relying on any external 
tool. To this end, we allow the external tool (the corresponding decompression program) to be encoded with the 
compressed file together into a unified DNA sequence payload. However, unlike the one-to-one mapping between 
the compressed file and its corresponding decompression program in traditional cases, we deliberately make it 
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possible to share a single decompression program among a set of compressed files for minimising the information 
redundancy. Although this strategy is not difficult to implement in traditional storage, it is hard to implement 
for the DNA storage given its random read hurdles and high sequencing cost during the data restoration. To 
address these issues and achieve our goal, we design a specific DNA file format whereby a non-continuous stor-
age scheme is developed to reduce the data redundancy on the one hand, and combine with traditional storage 
media on the other hand to obtain effective indexing for random read operations to the stored data file while 
minimising the cost with an one-off sequencing.

In summary, we made the following contributions in this paper: 

1. For ultra-long-term data storage, we propose a self-contained and self-explanatory concept for DNA storage 
with an attempt to address the far-future uncertainties in DNA data restoration.

2. To realise the concept of the self-containment, we take data compression tool as an example to develop a 
DNA-based storage method that can not only minimise the cost of DNA synthesis and sequencing but also 
support random read operation from the DNA data.

3. To implement the storage method, we define a new file format to facilitate the self-explanation with read and 
write operations from/to the information stored inside the DNA file.

4. For the proof-of-concept, we apply 2 compression programs to 5 types of data files of different sizes to 
show the values and effectiveness of the proposed methods. The proposed methods achieved a 6–7% DNA 
nucleotide storage reduction, and the storage density reaches 90% of the ideal case.

Notably, our approach is novel in all of these aspects with a distinct aim to mitigate the challenges and risks faced 
by DNA data restoration in far future.

Methods
In order to have a full play to the advantages that DNA can store data for a ultra-long time, we propose a concept 
of self-contained and self-explanatory technology for the DNA storage and design a method to implement it.

Since data compression is an important tool in the DNA storage for cost-efficiency, we concentrate in this 
research on the proposed technology by taking compression and self-extracting as a focus. In fact, the com-
pression tool can also be stored with other data related information, such as encoding parameters, file storage 
format, etc. We describe our methodology in three steps. We first overview the DNA storage process in Fig. 1, 
and then introduce the detailed information regarding the data self-containment technology. Finally, we describe 
the data self-explanation technique by defining the format of the DNA file and DNA fragment to support the 
implementation of the functions presented in Fig. 2.

Figure 1 depicts the storage process where the input binary data file is often compressed to minimise the 
data redundancy while saving the synthesis cost. In order to achieve data self-containment, we store both the 
compressed data and the decompression program as the payloads in the DNA file. The binary data in brown 
represents the compressed data, and in blue represents the decompression program. Both types of data are 
segmented and uniformly coded as synthetic DNA sequence. Since it is necessary to distinguish between the 
data file and the program file in DNA fragments, we deliberately add a bp-length flag in the DNA fragments. The 
data self-explanatory process is reflected in the data restore process and is supported by the defined data format.

Data self‑containment. The existing DNA storage systems are in general not self-contained as they always 
resort to external tools to backup/restore the data. For example, if the compressed data needs to be restored, 
the corresponding decompression program should be available. Although the chance of unavailability of the 
external tool is very small, we may still take the risk to lose the stored data in the case that the required tool is 
unavailable due to the uncertainties after a ultra-long time period for the DNA storage, say over hundred years. 

Figure 1.  Overview of DNA storage process.
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Therefore, we hope that the data and related tools stored in DNA are as complete as possible, allowing the data 
to be self-contained.

The purpose of our self-containment and self-explanation is to make the DNA file contain more information, 
not only including the encoded data itself, but also maintaining the index information for the stored data. As 
shown in Figs. 3, 4 and 5, we take the data compression in DNA storage as an example to explain the proposed 
self-contained and self-explanatory technology. In this example, the decompression program is our tool. As 
usual, the DNA fragments are stored in pools without specifying their orders, and all the stored files are identi-
fied using primers.

Intuitive method and 1-1CS method. The most intuitive method is the one shown in Fig. 3’s first blue dotted box 
where as with the idea of executable compressed file, the different data files, together with their used program 

Figure 2.  DNA storage process. (a) Shows how the dataflow is changed at each stage of the process. The 
compressed data (b) and the decompression program constitute the self-contained data (c), which can be simply 
combined into a single continuous file. However, this change might cause some problems, we will describe them 
in details later. After encrypting, encoding, and error correcting, we can obtain a long DNA sequence (d), which 
is then split into a set of short sequences (e), which are finally stored through the artificial synthetic process. In 
contrast, (b) shows how the dataflow change with respect to the reading process. The fragments are first merged 
into a complete long sequence (b’), which is then decoded to obtain the corresponding self-contained data (c’). 
The self-contained data is split into compressed data and a compression encoded program (d’), which is used to 
decompress the compressed data to obtain the original data (e’)

Figure 3.  Storage process and three implementation methods: The general storage processing of DNA files is 
improved with the self-contained method. The red dashed box represents the design of file format while the 
first blue dashed box below represents intuitive method: combining the data files that adopt the same tool (e.g., 
using the same compression program) together. However, this method is not well suitable for DNA storage. The 
second blue dashed box indicates that each file is packaged separately which we call this method one-to-one 
continuous storage (1-1CS) method—the data and tools are stored together. In contrast, the third box represents 
discontinuous storage method where the tools and data are stored separately (separate-storage method), which 
is desired to minimise the data redundancy.
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Figure 4.  M-1CI Method: As with the previous method, data is compressed before it is stored. However, the 
compressed data files are not continuously stored in a single file as shown in the blue dashed box, instead, 
they are compressed into separate files. Next, for random read access, we index a file by adding a file primer 
to it (say, Primer1 to F1), encode the file into a base DNA sequence, then append the tool’s primer to the 
data file (say, Primer1’ to F1), and finally, perform the sequence segmentation and add tool’s primers to 
each fragment. Suppose in the reverse process if file F1 is read, Step 1© is to amplify it by Primer1, then 
in Step 2© , Primer1’ of Tool1, together with F1, can be obtained after a round of sequencing. Then, by 
using Primer1’, the tool file is amplified in Step 3© , followed by Step 4© to obtain the Tool1 file by another 
round of sequencing. After decoding, Tool1 is used to decompress F1 to obtain the original data. Overall, the 
sequencing procedure is performed twice.

Figure 5.  1-MCI Method: The procedure prior to assigning primers is the same as that of M-1CI. Logically, 
1-MCI no longer assigns a specific primer to each tool, rather, all the tools share the same universal primer and 
include all the primers used in their own data files. The specific implementation is reflected in the sequence 
after the segmentation is performed, the fragments of all the tool files contain the data file primers and the 
universal primers of the tools applied to the data files. Suppose if F1 needs to be read, Step 1© is to amplify it 
by Primer1, then in Step 2© , sequencing, decoding, and decompressing can be performed once to restore the 
original file.
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tools, are all packed into a single package. For instance, F1 and F2 are packaged into a self-extracting program 
file using compression tool Tool1, and similarly, Fk is packaged into a self-extracting file using compression 
tool Tooln. Although this method is easy to implement, it suffers from the drawback for DNA storage to lose 
the random readability—if one file (say, F1) is required, the entire package has to be read and decompressed 
to obtain the required file. This is difficult to work with DNA storage as the time and monetary cost of DNA 
sequencing could be much longer and expensive than those of data read from hard drives. As such, we have to 
enable the DNA storage system to support random read operations for specific compressed files. To address this 
issue, each file can be compressed independently as shown in the second blue frame where the decompression 
tool is appended to each compressed data, which we called 1-1CS method, where “CS” stands for continuous 
storage. Although it can solve the random read issue, this method is still wasteful in space since if multiple files 
(say, F1 and F2) use the same tool, and the tool has to be saved multiple times, one for each file. Therefore, to 
minimise the space cost, we need to reconfigure the executable compressed package by saving the data and the 
tool program in DNA separately as shown the last box in Fig. 3 and then set up the relationships between the 
data and its corresponding tool program for not only recovering the data with minimum sequencing cost but 
also supporting random read operations. We call this separate-storage (SS) method.

Basically, there are two basic ideas to design the SS method. One is to allow each of the data files being 
manipulated (say, compressed) with the same tool to have a pointer pointing to the same manipulation (say, 
decompression) tool file in DNA as shown in Fig. 4. The other is to enable a tool file to reversely point to multiple 
data files related to it as shown in Fig. 5. We call these two sub-methods Many-to-One chain indexing (M-1CI) 
method and One-to-Many chain indexing (1-MCI) method, respectively, which are described and compared in 
details in the sequel. In particular, we also show how 1-MCI is better than M-1CI in terms of sequencing cost.

M-1CI method. As described above, the basic idea of the M-1CI method is to allow each of the data files being 
manipulated with the same tool to have a pointer pointing to the same manipulation tool file in DNA with an 
attempt to minimise the space cost. More specifically, given the current used synthetic DNA for data storage is 
generally below 200 nucleotides, the stored file has to be segmented into a set of short  fragments17,19,20,22, each 
being marked with a pair of primers at both ends to indicate the data stored in between. In the design, the data 
file holds a pointer (i.e., the tool’s primers) pointing to the tool file that can be used to resolve the fragment data. 
The pointer can be obtained by adding the primers of the tool file to the end of the data file as shown in Fig. 4. 
As such, the method is fairly effective in minimisation of the space cost since the separately stored tool used to 
manipulate a set of files can be found and retrieved only once whenever one of those file is randomly read. How-
ever, some practical issues make it difficult to realise the method in an effective way given the PCR (Polymerase 
Chain Reaction) and sequencing process in the DNA storage. In particular, this design may lead to so-called 
double sequencing problem—the synthesised DNA file data needs to be first sequenced to obtain its manipula-
tion tool file’s information, and then, by which the corresponding synthesised tool file data can be derived via 
sequencing to resolve the original data file.

To fully understand the problem, we use an example as shown in Fig. 4 where we assign Primer1 to F1, 
Primer2 to F2 and Primer1’ to Tool1. Here, PrimerX represents a pair of primers X-R and X-F at  both 
ends of the sequence, for example, Primer1 represents a pair of primers 1-F and 1-R assigned to F1. After 
the file is encoded into a long DNA sequence, it is then divided into small fragments. At this stage, each pair 
of primers is actually added to both ends of the file fragment. The big dashed box in green shows the design of 
the primer formats of F1, F2, and the tool being used. Each small box represents a collection of file fragments, 
where the Data field represents the file data (the detailed format will be introduced later).

For example, the first box represents the fragment belonging to F1. The pointers 1’-F and 1’-R of F1 to file 
Tool1 are included in the data field of F1, and may be at an end of a fragment. If the data of F1 needs to be read, 
we need to perform the PCR amplification for the sequence of F1, according to the known primer Primer1. 
In the second step, the data of F1 is obtained, and then Primer1’ of Tool1 is obtained. In the third step, 
the previous steps are repeated to amplify and sequence to get the Tool1’s data according to Primer1’, and 
finally use Tool1 to process F1 to restore the original data (e.g., decompress). With this method, one has to 
restore the data file with 2-round sequencing operations, so-called double sequencing, in which the first round 
sequencing is to use the selected primers to amplify the specified data file and then sequence it to obtain the 
primers of the tool file. As the DNA sequencing is time-consuming and costly, this double sequencing method 
is not effective in both time and expenditure.

1-MCI method. In response to the double sequencing problem, we propose a multi-primer-based method, 
named One-to-Many Chain Indexing (1-MCI) method, which uses separate storage for data file and tool file, and 
tweaks their respective primers as the pointers to each other with an aim to have only one round sequencing to 
restore the complete data file as shown in Fig. 5. To this end, we deliberately modify the data format of the DNA 
fragment so that the tool file can have a reverse pointer pointing to its data file. In contrast to M-1CI, the 1-MCI 
method has the distinct feature that allows the tool file to have all the primers of the data files that have been 
manipulated by the tool, instead of its own primer as does in M-1CI. With this design, 1-MCI can restore the 
selective data file with only one round sequencing as the data file and its manipulation tool file are available at 
the same time, which, compared with M-1CI, dramatically reduce both time and expenditure in data restoration. 
Note that in this procedure, we also need to distinguish the data file and the tool file by assigning a universal 
primer to the tool file.

An illustrative example is shown in Fig. 5 where we first assign Primer1 to F1, Primer2 to F2, and 
PrimerK to Fk, and then allow Tool1 file fragments to include both Primer1 and Primer2, ToolN to 
include PrimerK. Finally, we enable all the tools to share a common known primer PrimerU’ as the universal 
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primer. The detailed design of the primers after F1, F2 and Tool1 segmentation is shown in the large dashed 
box in Fig. 5. Now, the data of F1 and F2 no longer contain the primer of Tool1 as in the 1-MCI method, 
instead, all the fragments of Tool1 include sub-primers of Primer1 (1-F or 1-R) and Primer2 (2-F or 
2-R) and a universal primer PrimerU’, which are used to selectively amplify the file to be read as well as its 
associate tool. Specifically, with this design, when F1 is selectively read at this time, we only need to amplify the 
sequence based on the pre-known F1’s primers Primer1 (1-F and 1-R) and preset the universal primers, 
and then get 1-F and all the data fragments identified by 1-R belonging to F1 and all the fragments of Tool1 
identified by PrimerU’ and 1-R, thereby directly obtaining the original data with only one round sequencing.

The problem with this method is that artificially synthesised DNA fragments have a certain length limitation. 
As such, if the DNA fragment contains too many program file’s primers, the effective data load for the tool file 
will be reduced. Much worse, if a large number of data files are manipulated using the same tool program, the 
DNA fragments of the tool files may not contain the primers of all the data files. Given this consideration, it is 
necessary to strike a balance between the self-contained data and the data redundant overload. Overall, even with 
this problem, the proposed 1-MCI method is still of great significance in practice not only for the correspond-
ence between the tool programs and the data files, but also for other types of file indexes in the DNA storage.

Data self‑explanation. The goal of the data self-containment is able to restore the compressed data stored 
in the DNA storage without relying on external decompression tools. In particular, when reading a data file, the 
system first finds the file and the primer sequence corresponding to its decompression tools, and then obtains 
the data and the tool files at the same time through the PCR and DNA sequencing technology. After decoding, 
the decompression tool can automatically restore the data file to its original form to realise the self-explanatory 
function of the data. Clearly, to achieve this goal, one has to embed many different kinds of information into the 
DNA file in such a way that the self-contained data is also sufficient to self-explanation, which requires a well-
defined file format.

Data file format for self-explanation. The definition of the data format is to support multiple implementations 
of data self-containment with the ability of self-interpretation. The data format should include two levels of 
metadata information. The first level of the metadata describes a format for the binary compressed file in the data 
pre-processing step while the second level of the metadata defines the format for those small fragments after the 
file is encoded into a DNA sequence.

DNA File Format: The last steps in Figs. 4 and 5 are performed to select the specified data files and and their 
associated tool files. If there are multiple files selected to read at same time, a certain data format is required to 
support the realisation of data self-extraction for these files without compromising others. To this end, we define 
the format of data file as shown in Table  1.

In our design, tool file and data file are stored in separate storage. The format of tool file is shown in Table 2.
We realise the data self-explanation mainly through the definition of the file format. The logic of file writing 

is relatively simple, which is simply to write the file in sequence, according to the field orders defined by the file 
format. The reading process is performed after the DNA data is decoded into binary data. First, the data file and 

Table 1.  Data file format. FT means file type, which is either data file or tool file. FID uniquely identifies a file 
with an 1-to-1 mapping to its file name. SM represents three kinds of storage methods—unprocessed file (OF), 
continuously processed file (CPF), and non-continuously processed file (SPF). If a file is OF, field D stores its data, 
otherwise, if it is CPF, then the next field is DL, specifying the length of the processed data, if it is SPF, the 
next field is TFID, which means the FID of the used tool file. The last field TD is variable length, if it is CPF, 
TD means tool data, else the last field length is set to 0.

Field name Address offset Size Description

FT 0 1B File type

FID 1 4B File identifier

SM 5 1B Storage method

DL or TFID 6 4B Data length or Tool file’s FID

D 10 Variable length Length of data

TD Variable length Variable length Tool’s data

Table 2.  Tool file format. As with the data file, the first field FT specifies file type, the second field FID is the 
identifier of the file, and the third field TD is a variable-length field, which stores the data of the tool.

Field name Address offset Size Description

FT 0 1B File type

FID 1 4B File identifier

TD 5 Variable length Tool’s data
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the tool file are separated according to the first field FT, and the data file is put in the datafiles array, the tool file 
in the toolfiles array. Then, Algorithm 1 for file reading is performed, which first finds the needed file according 
to FID in the datafiles array (Line 4-5), then determines the storage method of the file according to SM. If SM 
is OF, the next field is the data field, and the subsequent field is data D, which can be read directly and returned 
(Line 6-7). Otherwise if SM is CPF, the data field D could be obtained based on the data length DL of the next 
field, and the subsequent data is the tool field TD, which can be used to restore the processed data to the original 
data and return (Line 8-12). Otherwise if SM is SF, the FID of the tool file can be obtained according to 
field TFID, then the tool files array can be traversed to find TD, whereby the processed data can be restored to 
the original data (Line 14-20).

DNA Fragment Format: Due to the limitation of the length of the artificially synthesised DNA sequence, 
it is necessary to divide the encoded long DNA sequence into small fragments for synthesis. This small DNA 
fragment consists of multiple fields, as shown in Fig. 6.

DNA storage system architecture. The overall architecture of the DNA storage system is illustrated in 
Fig. 7. The data files stored on traditional storage medium is firstly pre-processed. The pre-processing procedure 
is composed of data compression, data deduplication, and data formatting, which follows the defined DNA 
segment format for self-containment. The proposed algorithm then encodes the data into DNA sequence for 
DNA synthesis. The synthesised DNA is stored in DNA storage medium and sequenced to produce the DNA 
sequence. The DNA sequence is then decoded into binary files. Finally, the compression algorithm that is self-
contained in the sequence is used to extract the file content, achieving the self-explanatory.

Figure 6.  DNA fragment format. The head and tail are primer sequences used to amplify specific file sequences 
with the PCR technology. The A and T at the ends indicate the direction of the sequence, and Address17 gives 
the offset of the data in the file. The middle Payload field is the data payload, and the RS field in purple is 
the error correction code. Since PCR can amplify the DNA fragments of the data file and the tool file at the 
same time, the sequencing result may contain both two files, so field C in green indicates whether the fragment 
belongs to the data file or the tool file.
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Results
As shown in Fig. 2, the DNA storage process can be in general divided into two inter-connected parts—a digital 
part and a bio-laboratory part, and this research is conducted with a focus squarely on the digital part. One of 
the key problems in this part is how to integrate external tools into the encoded DNA sequence for high storage 
density. To evaluate the effectiveness of our approach, we select three often-used compression programs—rar, 
7z and zip–as the tool and a set of different types of data as the target data to be stored. The used symbols are 
list in Table 3 in “Appendix”.

Storage overhead. The data self-containment inevitably brings some storage overheads. To evaluate this 
impact, we first define compression efficiency, denoted by e, as the metric to measure the space impact of the 
selected compression programs in the worst case, whereby the program with the best performance is selected as 
the main test program to evaluate our proposed methods.

Formally, the compression efficiency is defined as ec = 1− e where e is given by e = (rc × So + ST )/So , 
here, So represents the original data size, ST is the size of the tool file, and rc is compression ratio, defined on per-
program basis as rc = Sc/So where Sc is the size of the file after it is compressed. Given this definition, we can 
make two key observations.

Figure 7.  Overall DNA storage system architecture: The data files stored on traditional storage medium are 
pre-processed and handled by the proposed algorithm before being synthesised. The synthesised DNA can be 
restored by being sequenced to produce the original binary data.
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Observation 1 Not only compressed data but also external tool are considered in the computation of ec . In 
particular, when no self-containment is involved, i.e., ST = 0 , ec is reduced to ec = 1− rc , which represents an 
ideal case for overall compression effects.

Observation 2 It is not always beneficial to use the self-containment method for the DNA storage as ec could be 
less than or equal to 0 when ST ≥ (1− rc)So . In other words, ec can provide a guidance in the use of our method 
in the worst case.

The compression efficiencies of the selected programs with respect to different types of data files are compared 
in Fig. 8 where compression efficiency ec vs. 6 common types of test data files are depicted. In the figure, the 
storage overhead ST of 7z is about 201 KB, rar is 303.5 KB and zip is 254 KB, and the test data with and without 
redundancy are 4MB and 2 MB, respectively. One can see that the higher the value of ec , the better the compres-
sion effects, which means that the space overhead of compression program is smaller and smaller. On the other 
hand, it is also validated that the self-containment method in the worst case is not always beneficial as shown 
in the figure for the bmp file.

Self-contained data will inevitably bring in space overhead (i.e., ST > 0) . Given the results of Fig. 8, we delib-
erately choose 7z as the compression tool and txt as the test data due to their relatively good performance, and 
then conduct a test to measure the overhead of the proposed self-contained and self-explanatory method. The 
results of the test are shown in Fig. 9 in which how the values of ec in ideal case (in blue) and in self-containment 
case (in red) are changed with respect to So and rc are depicted.

It can be seen from Fig. 9 that the self-containment method is not always beneficial to saving storage space. 
Rather, it is possible to incur extra storage overhead, compared to the default method that no compression 
is employed. However, when the amount of data reaches a certain threshold, the self-containment method 
approaches those methods in ideal case, and the storage overhead incurred by the self-containment at this time 
can be almost ignored.
Data storage. In contrast to the previous section, which focuses on the compression efficiencies of selected 
compression programs in the worst intuitive and 1-CS cases, we evaluated the proposed 1-1CS, M-1CI and 
1-MCI in this section when they are used to achieve self-containment and self-explanation. For fair comparison, 
we deliberately assume that all three methods are used to store an equal number of n data files ( Di , i ∈ 1, 2 . . . n ). 
Due to the limitation on the length of synthetic DNA fragment, the range of n is thus determined by 1-MCI and 
limited to 0 < n < ⌊Ls/Lp⌋ where Ls represents the maximal length of DNA segment in nts and Lp the length 
of primer in nts. We first analyse the synthesised and sequenced amount of data with respect to each proposed 
method in theory, and then carry out a DNA data storage process on a real platform to validate the conclusions 
made above.

Method analysis. With the analysis in mind, we first give the amount of binary data SbM that needs to be stored 
by 1-1CS, 1-MCI and M-1CI as follows:

(1)Sb1−1CS =

n∑

i=1

rc × SDi + n× (Sh + ST )

Figure 8.  Compression efficiency (data types). This figure shows how the ec values of the three selected 
compression methods are changed with respect to six types of test data (txt, mp3, jpg, pdf and other files, such 
as exe, dll, html, etc.) for the cases—the data is either redundant (a) or not (b). The data sizes used by these two 
figures are 4MB (w/ redundancy) and 2MB (w/o redundancy), respectively. In particular, (a) shows that the 
overall compression efficiency of 7z is best among the three, and the relative effects of rar and zip are different in 
different situations. From (b), one can still see that 7z is the best, but its advantage is diminished when the data 
redundancy is absent.
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In addition to the 1-MCI tool files, the DNA fragments of other files contain a primer at both ends, so the length 
of the data of the fragment is Ls − 2Lp , the DNA fragment of the 1-MCI method’ tool file contains primers for 
n data files and a universal primer, so the length is Ls − (n+ 1)Lp . The total number of bases SdM after adding 
the primers to the segmented fragments produced by three methods are:

where a is the base factor.
In order to simplify the calculation, we assume that each Di has an equal size SD . Figure 10 presents the 

quantitative results of the number of bases that need to be stored for each method, i.e., SbM , under different 
settings. In Fig. 10a, we can observe that all three methods show a clear linear trend, and the 1-1CS method 
requires the highest DNA base storage capacity compared with its counterparts. Both 1-MCI and M-1CI show a 
relatively lower DNA base storage capacity, which demonstrates the effectiveness of using primers to avoid data 
redundancy. Figure 10b presents the trend of these three methods when the Ls/Lp ratio varies. A clear decreas-
ing trend is observed, and the descending speed slows down when the ratio becomes larger. Again, the 1-1CS 
requires the highest amount of DNA storage, followed by the M-1CI. 1-MCI achieves the lowest DNA storage 
due to the effectiveness brought by the data redundancy avoidance.

Generally speaking, when these three methods are being compared, the 1-1CS has the largest storage overhead 
since it needs to store multiple copies of the compressing tool. By avoiding this data redundancy, the 1-MCI and 
M-1CI perform better than 1-1CS in terms of Sd.

(2)SbM−1CI =

n∑

i=1

rc × SDi + n× (Sh + 2Lp)+ ST

(3)Sb1−MCI =

n∑

i=1

rc × SDi + n× Sh + ST .

(4)Sd1−1CS =Sb1−1CS × a+
Sb1−1CS × a

Ls − 2× Lp
× 2Lp = a× Sb1−1CS × (1+

2Lp

Ls − 2Lp
)

(5)SdM−1CI =SbM−1CI × a+
SbM−1CI × a

Ls − 2× Lp
× 2Lp = a× SbM−1CI × (1+

2Lp

Ls − 2Lp
)

(6)Sd1−MCI =Sb1−MCI × a+
(
∑n

i=1
rc × SDi + n× Sh)× a

Ls
× 2LP +

ST × a

Ls − (n+ 1)Lp
× (n+ 1)Lp

Figure 9.  Compression efficiency (data size). We calculate the compression efficiency of 7z when the size of the 
original data So gradually increases. Here, rc of 7z is 0.34 when a text file in size of 500 MB is compressed. Given 
that ST of 7z is 201 KB, we have the results as shown in (a) where ec s are calculated for the data storage method 
in ideal case by ec = 1− rc = 0.66 and in the self-containment case by ec = 1− (rc × So + 201K)/So . To 
validate the results, we further pack a set of test data files with different types (e.g., txt, jpg, exe, mp3) in a single 
compressed package and compare their actual values of ec with a fixed rc = 0.34 as shown in (b). The results are 
roughly consistent with those in calculation as shown in (a).
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Method tests. As opposed to the above studies which focus on the theoretical calculations, we carried out a 
DNA data storage process on a real platform to validate the conclusions made above. The setup of our experi-
ment is configured with a Intel(R) Core(TM)-7-9700 CPU@3.00GHz processor, the RAM memory with size 
16.0 GB, the OS configuration is 64-bit Windows10, and the experimental environment is Python3.8. Since our 
method is mainly to design the indexing method of files and related tools, the design of the coding algorithm is 
not what we are concerned about. We used the open source tool  Chamaeleo28 to test our method.

In this experiment, we selected two compression program tools, 7z (194KB in size) and zip (87KB in size). 
Although 7z is relatively large, its compression effects for those files with more redundant data is better than 
those of zip. We established 5 file directories—Cat, Jane, MonaLisa, Leo, and mix to store the data files in 
3 types—bmp, txt, and jpg—as independent data items for testing. The references of the dataset we used are 
given in the “Appendix” section.

Experiment design: As discussed, in this paper we are mainly concerned with the digital part of the DNA 
storage process, the actual bio-synthetic storage is deliberately ignored. Similarly, we assume that the data can 
be successfully amplified by PCR and sequenced, and then decoded and decompressed after it is read out to 
realise its self-interpretation.

(a) Primer Design: Since the file indexing in our method mainly relies on the allocation of primers, we also 
carried out different primer designs for the experiments. When designing the primers, we should not only 
consider the parameters of biological information that need to be followed, but also concern with the issue of 
 homology15. Considering the impact on time and space, we selected Grass17 encoding DNA files for the primer 
design. We thus needed to design a pair of primers for each data file. The data files of all the methods need a pair 
of primers. For 1-1CS and M-1CI, we needed to design a pair of primers for each tool file. For 1-MCI, we only 
needed to design a pair of universal primers (PrimerU’) for the two tool files. Finally, adding primers to the data 
fragment realises the calculation phase of data self-containment.

For both 1-1CS and M-1CI, there are primer sequences on the left and right ends of the fragments in both data 
file and tool file. We set the primer sequence with a length of LP = 20 , the effective data load thus will not exceed 
220− 40 = 180 . Taking into account the space required for the index, we set the final data load to be 160bp, and 
the space occupied by the index varies according to the file size. Similarly, for 1-MCI, the two ends of the DNA 
fragment of the data file are still primer sequences, and the data payload is also 160pb. However, for the DNA 
fragment of the tool file, it needs to include the primer of the data file and a universal primer, so its 7z and zip 
data payloads are thus up to 220− 2× 20− 20 = 160 and 220− 3× 20− 20 = 140 , respectively. Considering 
the space occupied by the index, we set the final data length for 7z and zip to 140 and 10, respectively. The index 
length changes based on the file size.

(b) Process design: We first use different compression programs to compress a set of test data (5 data files in 
different types and 2 compression programs), and then adopt a classic coding scheme to encode the compressed 
data based on the Chamaeleo software. More specifically, we assume that the length of the synthetic DNA 
sequence is within 220bp, and then make the encoding process that is first to read in each test file as binary data, 
then divide it into fragments, add an index to identify the position of fragment, and then exploit the selected 
encoding algorithm to encode it into a DNA sequence, and finally add the designed primers at its both ends. As 
the error problem is not the focus of this paper, we do not add an error correction code field to the fragment.

a b

Figure 10.  Number of bases that need to be stored for each self-containment method. (a) Illustrates how the 
SdM changes when the number of files n varies. All three methods show a clear linear trend, and the 1-1CS 
method requires the highest DNA storage capacity compared with its counterparts. Both 1-MCI and M-1CI 
show a relatively lower DNA base storage capacity. (b) Presents the trend of SdM when the Ls/Lp ratio changes. 
A clear decreasing trend is observed, and the descending speed slows down when the ratio becomes larger. 
Again, the 1-1CS requires the highest amount of DNA storage, followed by the M-1CI. 1-MCI achieves the 
lowest DNA base storage due to the effectiveness brought by the data redundancy avoidance. Note that we set 
the parameters Sh = 10 , ST = 2010 , Lp = 20 , and a = 1/1.6 during experiments. SD is set to be 100000 to make 
sure that the size of data far exceeds the size of primers. rc is 0.34 for the 7z compression algorithm. Ls is also 
greater than Lp , it varies between 100 and 400 to achieve a ratio ranging between 5 and 20.
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Experimental results: With the above designs, we store the five test files in the DNA storage with different 
proposed methods and then measure their respective storage densities and time taken to reveal the advantages 
of the proposed methods. The storage density is defined as d = So/Sb = 1/a , here, Sb is the total number of bases 
obtained by the selected encoding scheme, a is the base factor. This metric indicates how many bits, including all 
the data, tool, and their respective index primers, are represented by a DNA base, which reflects how effective 
the self-containment methods can be used with DNA coding schemes. According to this definition, the higher 
the storage density, the better the method. The relevant results are shown in Fig. 11 where the storage densities 
of five different types of test files are compared, these files are first compressed by 7z and then encoded with 
the coding algorithm in Grass et al.17, and finally stored with the proposed self-contained and self-explanatory 
methods. In Fig. 11a, the storage density d when storing different files using these three methods are presented. 
In the ideal case, only the compressed data will be stored, and it compressor tool will be ignored. By avoiding 
the data redundancy, the 1-MCI and M-1CI method demonstrate higher storage density, compared with the 
1-1CS method. Hence, it indicates the effectiveness of using primers to reduce redundant data storage and boost 
the storage density. The same result is also supported by Fig. 11b, which shows the storage density d of these 
methods when storing all the data files. Again, both 1-MCI and M-1CI outperform the 1-1CS in terms of storage 
density. In Fig. 12a, it presents the time taken for the encoding and decoding process when processing different 
files under 1-MCI and M-1CI storage methods during the digital part. As we can observe, both the 1-MCI and 
M-1CI present nearly the same reasonable time performance, which verifies that the proposed method runs 
reasonably when processing data files.

a b

Figure 11.  Storage density. (a) presents the storage density d = So/Sb when storing different files using three 
methods. In the ideal case, only the compressed data will be stored and its compressor will be ignored. Note 
that the M-1CI and 1-MCI methods present the same storage density performance, hence they are represented 
using only one bar. Thanks to the avoidance of the data redundancy, the 1-MCI and M-1CI method demonstrate 
higher storage density compared with the 1-1CS. (b) shows the storage density of these methods when storing 
all the data. Again in this case, both 1-MCI and M-1CI present nearly the same storage density performance, 
which outperform the 1-1CS method.

Figure 12.  Time efficiency. This figure presents the time taken for the encoding and decoding process when 
processing different files under 1-MCI and M-1CI storage methods. Since 1-MCI and M-1CI present nearly the 
same time performance, therefore, the bar chart does not present different methods as one extra dimension.
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Summary:  In summary, the self-contained and self-explanatory technology will bring certain data overhead, 
but it greatly improves the integrity of data, and also ensures the reliable storage of data in external unreliable 
environment. In general, when the tool files are relatively small, The 1-1CS method can be used. While in case 
of relatively large tools, the M-1CI method can be used to minimise the redundant data overhead and reduce 
the number of sequencing passes for cost reduction. However, if there are a number of data files using the same 
tool, one can adopt the 1-MCI method to achieve an effective solution.

Discussion
The current DNA storage often resorts to external tool to restore the original data from the stored DNA sequence, 
compromising the data integrity, which is critical to ultra-long-term data archives. To address this issue, we 
proposed a self-contained and self-explanatory DNA storage in this paper, which not only contains the data to 
be stored but also includes the tool that is used in pre-processing of the data, say compression program. The 
proposed system needs to be well-designed to address two problems—data redundancy and random read. To this 
end, we developed the 1-MCI method to minimise the redundant data and defined file formats for both DNA 
and its fragment files to realise the self-explanation function. We evaluated the proposed system via a prototype 
implementation and analytical experiments, which showed that the redundancy brought by the self-contained 
data can be successfully avoided by the proposed method. Additionally, we also made an in-depth exploration 
of the file index design with a corresponding file and DNA fragment storage formats.

Although it is proposed to address the data integrity issue for compressed data restoration as a holy grail, our 
method is generic enough to address other issues that may also benefit the DNA storage. For example, embedding 
the metadata for the data  deduplication29 in the DNA storage could dramatically improve the system robustness 
in uncertain settings while increasing the cost-efficiency, which lay the foundation for the application of the 
self-contained DNA storage in large-scale data storage.

Appendix

Data Sources:

cat.jpg: Original picture
7z: https:// sourc eforge. net/ proje cts/ seven zip/
Zipfile.py: https:// github. com/ python/ cpyth on/ blob/3. 9/ Lib/ zipfi le. py
MonaLisa_bmp.jpg: https:// en. wikip edia. org/ wiki/ Mona_ Lisa. wiki
Jane_eye.txt: https:// www. guten berg. org/ ebooks/ 1260
Resurrection_Leo_Tolstoy.txt: https:// en. wikip edia. org/ wiki/ Resur recti on_ (Tolst oy_ novel)

Generated primers:

Table 3.  Symbol description: Explanation of symbols to be used

Symbol Description

rc Compression ratio

So Size of original data before being compressed (B)

Sc Size of compressed data (B)

e Compression efficiency

eo Compression efficiency of non-self-contained data

ec Compression efficiency of self-contained data

Lp Length of primer (bp)

Ls Max length of DNA segment (bp)

Di Data file with label i, i =< 1, 2, . . . , n >

SDi Size of Di (B)

SD Binary file size when all Di s are with the same size (B)

n Number of data files

Sh Size of data file’s header (B)

T Tool file

ST Size of tool file (B)

M Data self-contained method, M = < 1-1CS,M-1CI,1-MCI> (B)

SbM Size of binary data needs to be stored of method M (B)

a Base factor (bp/bit)

SdM Number of base needs to be stored of method M (bp)

Se The number of bases finally stored

d Data storage density

https://sourceforge.net/projects/sevenzip/
https://github.com/python/cpython/blob/3.9/Lib/zipfile.py
https://en.wikipedia.org/wiki/Mona_Lisa.wiki
https://www.gutenberg.org/ebooks/1260
https://en.wikipedia.org/wiki/Resurrection_%28Tolstoy_novel)
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Primer of Cat for 3 methods: CGC GTA TAT GGC CCC TCT TC, ACT AAC CTT GCC GTC GCC CT
Primer of Jane for 3 methods: CCC CGG TCA AAA GAC AAC GT, AGG TAT CTG CGG CCC ATT AAC 
Primer of Monalisa for 3 methods: CCA GTG TCC GAC GAA CTT ATCT, AGG GTA GAG CTC GGC AAT GT
Primer of Leo for 3 methods: CTT TGC AAC CGA TTT CCA CGT, GCA GGA ATC CGT GGC CTA AAG 
Primer of Mix for 3 methods: ACC TCC AGA CCC CAG CTA AT, TCC GAC CTT CCC AGC TAA AC
Primer of 7z for 1-1CS and M-1CI: ATC GGG TCA AAG AGG CGA AG, GCA GGC AAG CTC GTC GAC AT
Primer of zipfile for 1-1CS and M-1CI: GCC GGC CTT CAC AAC TAC AG, ACG CAT ACC ACC CGC ATA CT
Universal primer of 7z and zipfile for 3 1-MCI: GCA CAG CAT AGC GTC CCT TG, AGT GGG GTT GAG CGT 
CGA AC
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