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The effects of heterogeneous 
mechanical properties 
on the response of a ductile 
material
Yichi Song1, Andreas Schiffer2 & Vito L. Tagarielli1*

We investigate numerically the small-strain, elastic–plastic response of statistically isotropic 
materials with non-uniform spatial distributions of mechanical properties. The numerical predictions 
are compared to simple bounds derived analytically. We explore systematically the effects of 
heterogeneity on the macroscopic stiffness, strength, asymmetry, stability and size dependence. 
Monte Carlo analyses of the response of statistical volume elements are conducted at different strain 
triaxiality using computational homogenisation, and allow exploring the macroscopic yield behaviour 
of the heterogeneous material. We illustrate quantitatively how the pressure-sensitivity of the yield 
surface of the solid increases with heterogeneity in the elastic response. We use the simple analytical 
models developed here to derive an approximate scaling law linking the fatigue endurance threshold 
of metallic alloys to their stiffness, yield strength and tensile strength.

Numerical simulations of the response of solid materials are typically conducted assuming spatially uniform 
mechanical properties, with values determined by comparison to measurements. While this is a practical and 
pragmatic solution, which is effective in many cases, it may become inaccurate when simulating small com-
ponents or materials consisting of aggregates of coarse architecture. When, on the contrary, the component 
analysed is substantially larger than the largest geometric features in its microstructure, it is generally assumed 
that modelling the spatial variability of the mechanical properties is not necessary, and that “average” or “effec-
tive” macroscopic properties can be used in analyses, assuming spatially uniform properties of the component 
of interest. To learn if this is really the case, in this paper we explore systematically the effects of microscopic 
spatial variability of materials properties on the macroscopic mechanical response of a “model” heterogeneous 
solid, consisting of a regular array of statistical volume elements (SVEs) possessing dissimilar, uncorrelated 
elastic–plastic properties. The model heterogeneous material analysed here is not intended to quantitatively 
represent any specific solid, but rather to embody a solid with easily tuneable heterogeneity. In a way however, 
we aim at representing all (isotropic) ductile solids.

Several researchers have developed multiscale modelling techniques (see for example the excellent review 
in1) to understand the links between the complexity of material microstructures and their effective, macroscopic 
properties. The logic followed in such models is to analyse in detail a small, representative volume element 
(RVE) of the material of interest and to deduce from this, via computational homogenisation, the macroscopic 
properties of a body. An RVE is, by definition, sufficiently large to display negligible scatter of the response, in 
the sense that different realisations of an RVE display approximately equal responses. This approach is sensible 
in absence of softening responses and strain localisation; it is nevertheless problematic, because almost all real 
materials consist of various solid phases, whose microscopic mechanical properties and constitutive relations 
are difficult (or impossible) to measure. Complex and often somewhat crude inverse problems must be solved 
for such models to be predictive to some extent.

An alternative, more pragmatic approach to modelling the response of solid materials while keeping into 
account their heterogeneity, which will also be followed in this paper, is to embrace statistical descriptions of the 
spatial distribution of relevant mechanical properties, as recognised by several authors2–5. If volume elements 
smaller than an RVE are considered, these will possess intrinsic variability of their mechanical response and 
are referred to as statistical volume elements (SVEs). Modelling a component as an array of SVEs introduces a 

OPEN

1Department of Aeronautical Engineering, Imperial College London, Imperial College Road, London  SW7 2AZ, 
UK. 2Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi  127788, 
UAE. *email: v.tagarielli@imperial.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-97495-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18170  | https://doi.org/10.1038/s41598-021-97495-x

www.nature.com/scientificreports/

realistic length-scale in the model, enabling realistic responses (e.g. localisation, size dependence) that cannot 
be captured by assuming uniform mechanical properties.

The literature on the mechanical response of heterogeneous materials is vast. Theoretical work has been 
conducted to determine bounds to the effective properties of heterogeneous materials and their constitutive 
relations6–8, however most of the work consists of numerical approaches. Considerable research focused on the 
concepts of RVE, studying its existence9 and its optimal size in elastic solids10,11, granular media12, elastic–plastic 
materials3,13. The existence of bounds on the response of SVEs14,15 and uncertainty in such response16 have also 
received substantial attention. The vast majority of the existing studies have focused on elastic solids, and those 
accounting for non-linear material behaviour studied two-dimensional composites. Systematic studies quantify-
ing the effects of heterogeneity on the macroscopic material’s response are currently lacking.

In this study we will focus on 3-dimensional heterogeneous solids. We will not attempt modelling explic-
itly the geometry of material microstructures, but represent the microstructural heterogeneity coarsely, via 
arrays of SVEs. The objective is to understand the effects of the intrinsic scatter and size of such SVEs on the 
macroscopic mechanical response of a body. No publications have analysed in depth the multi-axial response 
of three-dimensional heterogeneous elastic–plastic solids comprising an array of SVEs, and we conduct such 
analysis here. To benchmark our numerical predictions, we also develop simple analytical bounds to the material 
response in uniaxial loading. The analytical models are validated and then used to propose a physically-based 
scaling law relating stiffness, yield strength, tensile strength and fatigue thresholds of ductile metals and alloys 
displaying moderate strain hardening.

We first define the problem and present the analytical models in “Analytical predictions of the uniaxial 
response” section, while in “Numerical calculations” we present the computational framework. Results are pre-
sented and discussed in “Results and discussion”.

Analytical predictions of the uniaxial response
We begin by deriving approximate analytical bounds to the macroscopic uniaxial stress–strain response of 
elastic–plastic solids with microscopic variations of either the Young’s modulus E, the yield strength σy or the 
hardening modulus H, defined as the slope of the true stress–strain curve in the inelastic phase; the elastic 
Poisson’s ratio ν is taken as homogeneous and equal to 0.3. We stress here that in real materials the degrees of 
heterogeneity in these three local properties might be correlated to some extent; here however we do not aim 
at representing a particular material, but rather we focus on the effects of local variations of each of these three 
properties separately.

We assume that the material consists of a cuboidal array of N elastic–plastic homogeneous cubic SVEs (or 
‘cells’) with linear strain hardening; the relevant microscopic material properties are assumed to follow a uniform 
random distribution as follows

with i = 1 . . .N . Here Emax , Emin , σmax
y  , σmin

y  , Hmax and Hmin are maximum and minimum values associated 
with the ranges of variation of the three mechanical properties; ri denotes uniformly distributed, uncorrelated 
random numbers in the interval [0,1]; the average values of the mechanical properties are denoted as E0 , σy0 
and H0 . The choice of an uncorrelated, uniform probability density for the mechanical properties of each phase 
of the composite was based on the ease of implementation, on the simplicity of its analytical treatment, and the 
fact that it ensures the maximum possible variance for properties defined in a finite interval, such to enhance 
the effects of heterogeneity investigated here; we will show below that predictions are approximately insensitive 
to the shape of the (symmetric) probability density function considered but only to its variance.

The expected value of an upper bound for the macroscopic stress–strain response of the heterogeneous solid 
can be obtained assuming equal strain in all cells (Voigt bound) while an expected value of a lower bound can 
be calculated assuming equal stress in all cells (Reuss bound). In the following we will assume for simplicity that 
all cells are in a state of uniaxial stress during deformation.

Heterogeneity in Young’s modulus.  First we consider the case where the Young’s modulus E (stiffness of 
the SVEs) varies randomly across the solid according to Eq. (1), while the yield strength and hardening modulus 
remain uniform, i.e., �σy = 0 and �H = 0 . We also assume H0 = 0 , i.e., all cells are perfectly plastic.

Expected value of upper bound.  The stress–strain curves of each cell of the statistical mesh are sketched in 
Fig. 1a; it is assumed that all cells undergo the same uniaxial microscopic strain, equal to the current macro-
scopic strain ε . For ε < εmin , where εmin = σy0/Emax , all cells respond elastically; if εmin ≤ ε ≤ εmax , where 
εmax = σy0/Emin , some of the cells respond elastically while others undergo plasticity; all cells deform plastically 
if ε > εmax.

For a given macroscopic applied strain ε , a number Np of cells is in the plastic regime; we define the fraction 
of plastic cells as

(1)Ei(ri) = Emin + ri(Emax − Emin) = Emin + ri�E

(2)σyi(ri) = σmin
y + ri

(
σmax
y − σmin

y

)
= σmin

y + ri�σy

(3)Hi(ri) = Hmin + ri(Hmax −Hmin) = Hmin + ri�H

(4)Pp = Np/N
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The fraction of cells being in the elastic regime is thus given by

where Ne is the number of elastically deforming cells.
If ε < εmin , all cells undergo a purely elastic response, Pp = 0 . If ε > εmax , Pp = 1 . In the transition region, 

εmin ≤ ε ≤ εmax , with reference to Fig. 1a, the fraction of plastic cells is given by

where the variables a and b represent the length of the two segments sketched in the figure. In this phase, plastic 
and elastic regions coexist. The homogenized (or macroscopic) stress σ̄ is obtained by averaging the stresses in 
all cells, as follows

Combining Eqs. (4)–(7), and recalling that ri are uniformly distributed random variables, the expected value 
of the homogenized stress above can be calculated as

(5)Pe = Ne/N = 1− Pp

(6)Pp =
a

a+ b
=

(
1−

εmin

ε

)
/

(
1−

εmin

εmax

)

(7)σ̄ (ε) =
1

N

(
NPσy0 +

Ne∑

i=1

Ei(ri)ε

)
.

Figure 1.   Local stress versus strain responses of the cells, for the cases of variation of (a) Young’s modulus, (b) 
yield stress and (c) hardening modulus.
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For ε < εmin all cells respond elastically and

For ε > εmax , Pp = 1 and σ̄ = σy0.

Expected value of lower bound.  Now assume that all cells are connected in series and experience an increasing 
but uniform macroscopic stress σ̄ . If σ̄ < σy0 , the homogenized engineering strain ε is given by

assuming small deformations. Recalling that ri are uniformly distributed random variables, we can obtain the 
expected value of the lower bound as

which defines the macroscopic elastic behaviour. The response is linear elastic for σ̄ < σy0 ; when the applied 
stress is equal to the yield stress, the strain is undetermined (for this perfectly plastic material) and σ̄ = σy0.

Heterogeneity in yield stress.  Next, we consider the case of the local yield stress σy varying randomly 
across the material domain according to Eq. (2), while Young’s modulus and hardening modulus remain uni-
form, i.e. �E = 0 , H0 = 0 and �H = 0.

Expected value of upper bound.  We now assume that all cells are subject to the uniform macroscopic applied 
uniaxial strain ε . With reference to Fig. 1b, three regions of the response can be identified; for ε < εmin , where 
εmin = σmin

y /E
0
 , all cells respond elastically; a transition region exists for εmin ≤ ε ≤ εmax = σmax

y /E0 , in which 
a fraction of the cells undergoes plasticity; for ε > εmax all cells deform plastically. In the transition region, the 
fraction of plastic cells Pp can be computed as

where c and d denote the length of the two segments shown in Fig. 1b. The homogenized stress σ̄ is the average 
of the stresses in all cells

The quantity σyi(ri) in the latter equation is a uniformly distributed variable in the interval 
[
σmin
y ,E0ε

]
 . It 

follows that the expected value of the expression in Eq. (13) can be calculated as

For ε < εmin the response is governed by σ̄ = E0ε , while for ε > εmax the material collapses at the constant 
stress σ̄ =

(
σmax
y + σmin

y

)
/2 = σy0.

Expected value of lower bound.  Now assume that all cells are connected in series and subject to a uniform stress 
σ̄ . The initial response is linear elastic, σ̄ = E0ε , however, as the applied stress attains the value σ̄ = σmin

y  , the 
material collapses at constant stress and the macroscopic strain is undefined.

Heterogeneity in hardening modulus.  Finally, we consider spatial variations of the hardening modulus 
H across the material domain according to Eq. (3), while Young’s modulus and yield stress are taken as uniform, 
i.e. �σy = 0 and �E = 0 . In this case, all cells will yield at the same strain εy = σy0/E0 , as sketched in Fig. 1c.

Expected value of upper bound.  All cells are imposed a uniform applied strain ε . In the elastic region ( ε ≤ εy ) 
the macroscopic response is dictated by σ̄ = E0ε , while for ε > εy , the homogenized stress σ̄ is the average of 
the stresses in all cells and given by

(8)σ̄ =
1

�E

(
Emaxσy0 −

E2minε

2
−

σ 2
y0

2ε

)
.

(9)σ̄ =
(
Emin + Emax

2

)
ε = E0ε.

(10)ε(σ̄ ) =
1

N

N∑

i=1

σ̄

Ei
=

1

N

N∑

i=1

σ̄

Emin + ri�E

(11)σ̄ =
�Eε

ln(Emax/Emin)

(12)Pp =
c

c + d
=

E0ε − σmin
y

�σy

(13)σ̄ (ε) =
1

N



NeE0ε +
Np�

i=1

σyi(ri)





(14)σ̄ = E0ε −

(
E0ε − σmin

y

)2

2�σy
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The expected value of the expression in Eq. (15) is given by

Expected value of lower bound.  Now assume that all cells are connected in series and experience the same stress 
σ̄ . For σ < σy0 the response is elastic; for σ̄ ≥ σy0 , the global strain is given by the average of the strains in the 
cells according to

Similar to the analysis presented in “Heterogeneity in Young’s modulus” section, the expected value of Eq. 
(17) can be calculated and the homogenised stress–strain response may be written as

which defines the effective strain hardening modulus as �H/ln(Hmax/Hmin).

Numerical calculations
The Monte Carlo Simulation (MCS) method was used to examine the response of elastic–plastic materials with 
random spatial variations of material properties under different loading conditions. The simulations were carried 
out in ABAQUS/Standard, conducting repeated FE simulations on 10 realisations of SVEs and evaluating the 
mean and spread of the populations of outputs. The details of the numerical implementation are described below.

FE scheme.  Cuboidal or prismatic SVEs of volume V were generated in ABAQUS/CAE via Python scripts 
and meshed by fully-integrated 8-noded brick elements of cuboidal shape (C3D8) and volume Ve . Note that geo-
metric nonlinearity arising from large deformation were accounted for in the analyses. We define as NFE the total 
number of finite elements in the model NFE = V/Ve . A regular tessellation was superimposed to the FE mesh 
to subdivide the domain into a number NCELL of cuboidal SVEs of volume VCELL , such that NCELL = V/VCELL ; 
each cell was assigned different material properties to introduce spatial inhomogeneity. The statistical tessella-
tion was such that each cell included an integer number of equally-sized finite elements (hence NCELL ≤ NFE).

The elastic–plastic microscopic response of the material in each cell was modelled using linear isotropic elas-
ticity (Young’s modulus E, Poisson’s ratio ν) and incompressible J2 plasticity with isotropic linear strain hardening 
(yield strength σy , hardening modulus H). A pseudo-random number generator in Python was used to generate 
the values of the microscopic material properties, in accordance with Eqs. (1)–(3).

Boundary conditions and load cases.  Uniaxial loading in tension and compression.  We performed 
simulations of the response in uniaxial tension and compression of prismatic materials domains, which were 
regularly tessellated and modelled as a set of SVEs. These simulations were performed for comparison to the 
analytical bounds derived in "Analytical predictions of the uniaxial response" section and to perform numeri-
cal convergence analyses. The normal displacements on a face perpendicular to the longitudinal axis of the 
specimen were constrained, while the opposite face was subject to normal displacements linearly increasing 
with simulation time, such to induce macroscopic tensile or compressive axial straining. The nodes on the lateral 
faces were free. Assuming uniform deformation and volume conservation during plastic deformation, the true 
macroscopic stresses and strains were obtained as

and

respectively, where the indices ‘t’ and ‘n’ denote true and nominal stresses or strains, respectively.

Multi‑axial loading.  We also simulated multi-axial loading conditions to study the effect of strain triaxiality 
on the response of heterogeneous cubic samples. We imposed uniform displacement boundary conditions on 
the faces of the cubic domain, forcing these to remain planar as deformation proceeded; as in17, the normal 
displacements of opposite lateral faces were forced to be equal and opposite; these constraints were imposed via 
the constraint equation tool of Abaqus, making use of appropriate auxiliary nodes. The choice of uniform over 
periodic boundary conditions was driven by the ease of implementation; this is expected to lead to larger size of 
RVEs (compared to the case of periodic boundary conditions), however this was not a problem for the simula-
tions in this study, which involved a relatively small number of finite elements.

(15)σ̄ (ε) =
1

N

N∑

i=1

(
σy0 +

(
ε − εy

)
Hi(ri)

)
.

(16)σ̄ = E[σ̄ (ri)] = σy0 +H0

(
ε −

σy0

E0

)
.

(17)ε(σ̄ ) = εy +
σ̄ − σy0

N

N∑

i=1

1

Hmin + ri�H
.

(18)σ̄ = σy0 +
(
ε − εy

)
�H

ln(Hmax/Hmin)

(19)σt = σn(1+ εn)

(20)εt = ln(1+ εn)
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In this study we analysed volume elements that were initially statistically isotropic and the applied strains were 
kept small, such that the anisotropy induced by straining was negligible, as confirmed in preliminary checks. We 
therefore assumed that the material response could be evaluated in principal strain space, which coincided with 
principal stress space for our isotropic material. In the FE simulations we therefore prescribed time histories of 
only the normal macroscopic strains εxx , εyy , εzz , while the macroscopic shear strains were set to zero, εxy , εxz , εyz 
= 0 (xyz was a reference system aligned with the edges of the cubic domain). In other words, the applied strains 
εxx , εyy , εzz , were interpreted as principal strains εI , εII , εIII . We checked that the macroscopic shear tractions 
were negligibly small in the simulations, τxy , τxz , τyz ≈ 0 , confirming that the global reference system xyz was a 
principal system also for the macroscopic stress tensor.

We imposed different values of strain triaxiality by subjecting the cubic domains to normal macroscopic 
principal strains given by

where t represents the simulation time and ε̇0 denotes a reference strain rate, which was set to ε̇0 = ±0.035 s−1 
in all simulations. Nine pairs of parameters (α,β) were chosen, summarised in Table 1, to give 18 different 
values of strain triaxiality (defined as the ratio of the dilation to the equivalent von Mises strain) in the elastic 
regime, of which 9 positive ( ̇ε0 = 0.035 s−1 , loading cases 1–9) and 9 negative ( ̇ε0 = −0.035 s−1 , loading cases 
10–18). Histories of macroscopic true principal stresses and strains were extracted from each simulation from 
the degrees of freedom and the reaction forces of the auxiliary nodes, and used to determine the corresponding 
histories of hydrostatic stress σH and equivalent von Mises stress σVM , as well as the volumetric strain εV and 
equivalent von Mises strain εVM , as

Sensitivity of the uniaxial response to N
CELL

 and N
FE

.  The predictions are affected by the density 
of the statistical and FE meshes used, representing, respectively, a material length scale and the accuracy of the 
numerical discretisation. In this section we determine the sensitivity of the predictions to these parameters, 
with the secondary objective of determining the minimum values of NFE and NCELL which make the predictions 
approximately insensitive to these same parameters. Note that the results presented in this section were obtained 
using the loading and boundary conditions described above. Figure 2 examines the sensitivity of the predicted 
response to NCELL , Fig. 3 focuses on the effect of NFE , while Fig. 4 investigates the role of the relative fineness of 
the statistical and numerical discretisations, quantified by NFE/NCELL.

First, we examine the sensitivity of the predictions to NCELL , for the case NFE = NCELL (i.e. each statistical cell 
is meshed by a single finite element) and a sample with dimensions of 5× 5× 5 mm. Figure 2a shows examples 
of domains with NCELL varying in the range 125–8000. For each choice of NCELL , MCS were performed on two 
sets of realisations of the microstructure. Set I was generated by implementing spatial variations of the Young’s 
modulus according to Eq. (1), while keeping yield strength σy0 and hardening modulus H0 = 0 uniform. For 
Set II, random variations of the yield stress were considered, according to Eq. (2), keeping elastic modulus and 
hardening modulus (H0 = 0) uniform. We define, for Set I, a non-dimensional measure of heterogeneity rE , as 
the relative variance of the modulus

where ΔE and E0 denote range and average of the random spatial variation of Young’s modulus. Such parameter 
was set to rE = 2 (which represents an extreme case, i.e. the theoretical maximum for rE ) in this set of simulations. 
Using a similar notation, we define, for Set II, a non-dimensional measure of heterogeneity as

A high value rσ = 1.33 was chosen in the simulations. The domains were subject to loading in uniaxial 
tension, which was interrupted at a total tensile strain of 0.05; the effective macroscopic modulus Eeff  and the 
0.2% proof stress σeff  were extracted from the macroscopic true stress–strain histories, for both Set I and Set II, 
respectively.

(21)
ε1(t) = ε̇0t(α + β)
ε2(t) = ε̇0t(−α + β)
ε3(t) = ε̇0tβ

(22)σH =
σ1 + σ2 + σ3

3

(23)σVM =
[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ3 − σ2)

2

2

]1/2

(24)εV ∼= ε1 + ε2 + ε3

(25)εVM =
√
2

3

[
(ε1 − ε2)

2 + (ε1 − ε3)
2 + (ε3 − ε2)

2
]1/2

.

(26)rE =
�E

E0

(27)rσ =
�σy

σy0
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In Fig. 2b we summarize the results of these calculations for both Set I and Set II, showing predictions of the 
normalised effective modulus Eeff /E0 for Set I, and the normalized effective strength σeff /σy0 for Set II, for each 
choice of NCELL . The error bars included in Fig. 2b represent the ranges of each output population (the distribu-
tions of outputs were found to be approximately Gaussian, as expected).

The analysis of Fig. 2b shows that σeff /σy0 is scarcely sensitive to NCELL , but lower than the value of 1 expected 
in a “deterministic” simulation (in which material properties are uniformly set at their average values). The spread 
of such quantity decreases rapidly with increasing NCELL . For Set I, the quantity Eeff /E0 initially increases with 
NCELL but this dependence becomes small for NCELL > 1000 . Again, the scatter in this normalised measure of 
strength decreases rapidly with increasing NCELL . Increasing the value of NCELL , while the size of the domain 
simulated is kept constant, is physically equivalent to increasing the size of the component analysed. Therefore 
our simulations suggest a size dependence of the tensile response for Set I, such that larger samples are stiffer 
than smaller ones, as reported by several authors (e.g.18).

Next, we examine the sensitivity of the FE predictions to NFE , with NCELL held constant. FE simulations were 
performed on a single realisation of the heterogeneous solid, with NCELL = 125 , and the FE mesh was progres-
sively refined, as illustrated in Fig. 3a. Again, two sets of simulations were performed, one with rE = 2 (Set I) 
and the other with rσ = 1.33 (Set II). Each domain was subjected to uniaxial tension and the simulations were 
interrupted when a total tensile strain of 0.05 was reached.

Figure 3b presents, on the same graph, plots of the normalised effective modulus Eeff /E0 for Set I ( rE = 2 ) 
and the normalized effective strength σeff /σy0 for Set II ( rσ = 1.33 ), for each choice of NFE . It can be seen that 
both Eeff /E0 and σeff /σy0 decrease monotonically with increasing NFE ; the decrease in stiffness is expected, as 
the number of degrees of freedom of the calculation increases; the decrease in strength is justified by the fact 
that a progressively refined FE mesh better captures the stress concentrations induced by the microscopic vari-
ations of mechanical properties.

Figure 2.   (a) Examples of domains with increasing NCELL ; (b) Sensitivity of the normalised effective tensile 
modulus, Eeff /E0 (Set I) and normalised effective tensile strength, σeff /σy0 (Set II) to NCELL.

Table 1.   Loading parameters corresponding to Eq. (21).

Loading parameter 1 2 3 4 5 6 7 8 9

α 1 1 1 1 1 1 1 0.5 0

β 0 0.05 0.1 0.15 0.25 0.5 1 1 1
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The latter mesh sensitivity study was repeated for higher values of the statistical mesh density, namely 
NCELL = 1000 and NCELL = 8000 , for both Set I and Set II. The predictions are presented in Fig. 4, where Eeff /E0 
is plotted as a function of the ratio NFE/NCELL in Fig. 4a for Set I ( rE = 2 ), while for Set II ( rσ = 1.33 ), predic-
tions of σeff /σy0 are shown Fig. 4b. Clearly, the choice of NCELL does not have a notable effect on the sensitivity 
of the predictions to NFE/NCELL ; predictions are scarcely sensitive to the FE mesh if at least 8 finite elements are 
used to mesh each SVE (i.e. NFE/NCELL = 8 ), irrespective of the chosen NCELL.

Results and discussion
Uniaxial response.  In this section we analyse the numerical predictions of the uniaxial response in detail 
and compare them to the bounds derived analytically above. We chose prismatic volume elements (VEs) of 
square cross-section, consisting of 20,736 cubic cells (NCELL = 20,736) and each cell was meshed with a single 
finite element ( NFE = NCELL ). The prismatic domains analysed had dimensions of 6× 4× 4 mm , to represent 
the gauge portion of test specimens typically used for laboratory-scale mechanical tests. As shown in Fig. 2b, this 
choice of NFE ,NCELL makes the predictions of average modulus and strength insensitive to further refinements 
of the discretisation. All the numerical predictions presented in this section are average responses obtained from 
10 simulations of different realisations of the heterogeneous specimens.

Effect of variation of Young’s modulus.  We now present the results of simulations in which a random spa-
tial variation of Young’s modulus was imposed, with uniform yield strength and uniform hardening modulus, 
H = 0 (as sketched in Fig. 1a). The average macroscopic uniaxial true stress versus true strain histories are pre-
sented in Fig. 5a for the case of tension and in Fig. 5b for the case of compression. Simulations were conducted 
at three different values of rE as indicated; the insets show contours of the absolute value of the maximum 
principal strain at a 5% total macroscopic axial strain (for the maximum value of rE considered). A “deter-
ministic” simulation, in which all material properties were taken as uniform and equal to the average values 
(E0 = 70 GPa; σy0 = 300 MPa;H = 0) is included in the figures for comparison.

In both tension and compression, a non-linear elastic–plastic response begins at macroscopic stress well 
below σy0 = 300 MPa , as a consequence of the stress concentrations and multiaxial stress states induced by the 
variations of Young’s modulus; the stress at the onset of plasticity decreases with increasing rE . At higher stresses, 
the material exhibits a non-linear macroscopic response reminiscent of strain-hardening, but non-linearity is 
rather a consequence of the progressive yield of more and more cells, similar to what described by Eq. (8) (we 
recall that the microscopic material response is perfectly plastic). The peak true stress is scarcely sensitive to 

Figure 3.   (a) Examples of domains with increasing NFE ; (b) Sensitivity of the normalised tensile effective 
modulus, Eeff /E0 (Set I) and normalised tensile effective strength, σeff /σy0  (Set II) to NFE.
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the imposed variation of Young’s modulus in the ranges investigated and is always close to the homogeneous 
microscopic yield stress of 300 MPa; however, this decreases with the degree of heterogeneity.

At relatively large strains, the mechanisms of deformation are different in tension and compression. In ten-
sion the deformation, initially uniform, localises and a neck forms in the sample at a random location, as evident 
from the inset of Fig. 5a. Due to the local reduction of cross-sectional area in the neck, the macroscopic response 
exhibits a stress peak followed by geometric softening. Furthermore, the macroscopic strain at which a peak in 
tensile stress is attained is sensitive to rE : the higher rE , the higher the strain at peak stress; this suggests that the 
ductility of a heterogeneous material increases with the degree of elastic heterogeneity, as quantified in this case 
by the parameter rE . In compression, on the other hand, the necking mechanism is absent and the macroscopic 
response progressively evolves towards a plateau response at stress σy0 = 300 MPa , as shown in Fig. 5b. Some 
inhomogeneity in the strain field is visible, due to the tendency of the specimen to localise deformation along 
inclined planes. In the apparent hardening phase of both the tensile and compressive responses, the flow stress at 
any given macroscopic strain decreases with increasing rE . Figure 5c presents a comparison between the numeri-
cally predicted normalised effective tensile modulus and the expected value of the analytical bounds developed 
above. It can be seen that the average values of our numerical predictions fall between the analytically predicted 
expected values of the upper and lower bounds.

Effect of variation of yield stress.  In Fig. 6a,b we present average macroscopic true stress versus true strain his-
tories obtained from simulations in which the yield stress was varying in space, while the Young’s modulus and 
hardening modulus were kept uniform 

(
E0 = 70 GPa; σy0 = 300 MPa; H = 0

)
 . Predictions are presented for 

three different levels of heterogeneity, quantified by the values of rσ  indicated. The insets show contours of the 
absolute value of the maximum principal strain at 5% total macroscopic axial strain.

The effects of a microscopic variation of yield stress are somewhat different from those observed for variations 
in Young’s modulus. In both tension and compression, compared to the deterministic simulation, the macro-
scopic response of the heterogeneous material features an onset of plasticity at relatively low values of stress, 
followed by a non-linear (apparent) strain hardening phase, consequence of the progressive yielding of the cells 
in the sample. Again, a higher degree of heterogeneity rσ results in lower flow stress at any applied macroscopic 
strain. In tension and compression, deformation localises along shear bands at approximately ±45° on the loading 
axis; in tension these bands evolve to trigger a macroscopic necking mechanism associated with strain softening, 
while in compression, the predicted stress quickly reaches a plateau after the initial elastic phase, as shear bands 
spread across the whole sample. In tension, the macroscopic strains at necking increase with rσ , reinforcing the 
notion that material heterogeneity increases macroscopic ductility.

In Fig. 6c numerical predictions of the 0.2% proof stress in tension are compared to the analytical bounds. 
As expected, these lie within the analytical bounds but appear much closer to the upper bound than to the lower 
bound.

Effect of probability distribution.  We performed additional MCSs using a symmetric, triangular (T) probability 
density function of yield stress, to compare with our previous results obtained for the case of a uniform, rec-
tangular distribution (R) with rσ = 1.33  (Fig. 6). The range of variation for the triangular probability density, 
r′σ = �σ ′

y/σ
′
y0 , was chosen such to obtain the same average and variance as for the uniform distribution with 

rσ = 1.33 . This was achieved by setting  r′σ =
√
2rσ = 1.88 and σ ′

y0 = σy0 = 300 MPa . In Fig. 7 we compare 
the average macroscopic stress–strain responses obtained with the uniform distribution ( rσ = 1.33 ) to those 
obtained with a triangular distribution of equivalent variance ( r′σ = 1.88 ). Clearly the two types of predictions 

Figure 4.   (a) Sensitivity of the normalised effective modulus, Eeff /E0  to the number of finite elements per 
cell, NFE/NCELL , for Set I; (b) Sensitivity of the normalised effective strength, σeff /σy0 to the number of finite 
elements per cell, NFE/NCELL , for Set II.
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Figure 5.   Effect of the variation of modulus on the macroscopic (a) tensile and (b) compressive stress–strain 
response; (c) Normalised effective modulus, Eeff /E0 as a function of the degree of heterogeneity rE ; the insets in 
figures (a) and (b) are contour plots of the absolute value of the maximum principal strain at a true macroscopic 
strain of 0.05.
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Figure 6.   Effect of the variation of yield strength upon the macroscopic (a) tensile and (b) compressive stress–
strain response; (c) Normalised effective strength, σeff /σy0 , as a function of the degree of heterogeneity rσ ; the 
insets in figures (a) and (b) are contour plots of the absolute value of the maximum principal strain at a true 
macroscopic strain of 0.05.
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are nearly coincident in both tension (Fig. 7a) and compression (Fig. 7b), suggesting a scarce sensitivity of our 
predictions to the assumed shape of the probability density functions which govern the spatial variation of mate-
rial properties. It would be interesting to examine the case of a non-symmetric probability density function of 
the same average and variance, which is omitted here for brevity.

Effect of variation of hardening modulus.  A separate set of simulations was conducted by imposing a spa-
tial variation of the material hardening modulus, with elastic modulus and yield stress kept constant (
E0 = 70 GPa; σy0 = 300 MPa

)
 . The mean value of the hardening modulus was H0 = 35 Gpa and the degree 

of variation was chosen as rH = 2.
The ensuing macroscopic response, not shown for the sake of brevity, comprised a linear elastic part followed 

by a linear strain-hardening phase. The effective hardening modulus, for the (relatively high) degree of variation 
rH considered, was much closer to that predicted by the upper bound developed above (Eq. (16)) than to the 
corresponding lower bound (Eq. (18)), indicating cooperative straining. A spatial variation of the hardening 
modulus alone does not have substantial effects on the macroscopic response, with the exception of resulting in 
a macroscopic hardening modulus only slightly smaller than the average microscopic value (as predicted by the 
expected value of upper bound, Eq. (16)).

Size (and shape) dependence of the response.  Introducing a spatial variation of material properties in the 
numerical models introduces a length scale in the problem, namely the dimension of the SVE used. Dimensional 
analysis dictates that the problem must depend on a non-dimensional parameter involving this cell dimension, 
for example the ratio between size of the material sample and size of the statistical cells, which increases mono-

Figure 7.   Comparison between predictions obtained with a uniform rectangular distribution (R) and a 
symmetric triangular distribution (T) of random yield strength with the same mean and variance: (a) tension 
and (b) compression.

Figure 8.   Effect of NCELL on the macroscopic (a) tensile and (b) compressive response, for a given degree of 
plastic heterogeneity, rσ = 1.33.
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tonically with decreasing NCELL . The number of SVEs (or cells) used, NCELL , is representative of physical size of 
the material specimen. The dependence of the macroscopic response upon NCELL has been already highlighted 
in Fig. 2. We now examine in detail how the macroscopic stress–strain response changes as a function of NCELL.

First, consider the case of uniform elastic modulus, uniform hardening modulus and non-uniform yield 
stress (rσ = 1.33 , rE = rH = 0) . Figure 8a,b present, respectively, the tensile and compressive stress–strain curves 
for a heterogeneous material, compared to the deterministic (homogeneous) case. Each figure includes three 
curves corresponding to different values of NCELL . We include the corresponding value of the ratio ϕ , defined 
as the number of material cells lying on the specimen’s lateral surface divided by those lying within the speci-
mens. The latter ratio depends on NCELL through a simple geometric relation and it also depends on the shape 
of the specimen analysed. It is seen from Fig. 8 that the material displays an inverse size effect in both tension 
and compression, with larger specimens (or equivalently, specimens with larger values of NCELL ) displaying a 
stronger material response. This has been reported by other studies on size effects in the response of ductile 
elastic–plastic solids (e.g.19) and is justified in terms of the different stress states of material domains lying on the 
surface of the solids and those contained within this surface. In fact, material cells lying with at least one side on 
the external surface are less constrained, having at least one vanishing principal stress, and tend to yield earlier 
than material cells within the bulk of the SVE. Our results support this notion, reporting a weaker response in 
both tension and compression for higher values of ϕ . We note that assuming a uniform material response would 
not give rise to such size effect, but modelling the heterogeneity in material properties results in a dependence 
of the macroscopic response upon both size and shape of the specimen analysed.

In the data presented in Fig. 8 the aspect ratios of the specimens analysed were kept constant. In a separate set 
of simulations (rσ = 1.33 , rE = rH = 0,NFE = NCELL) , we varied the geometry of the SVE substantially, rang-
ing from a chain of cells in series to an array of cells all arranged in parallel; the corresponding uniaxial tensile 
strength varied from the mean yield stress (for the case of a parallel arrangement, in line with the upper bound 
derived in “Analytical predictions of the uniaxial response” section) to approximately one third of this value, for 

Figure 9.   Effect of NCELL on the macroscopic (a) tensile and (b) compressive response, for a given degree of 
heterogeneity in the hardening modulus, rH = 2 ; the insets represent contour plots of equivalent plastic strain at 
a true strain of 0.05.

Figure 10.   (a) Yield surface evolution for a given degree of elastic heterogeneity, rE = 1.43 . (b) Effect of rE on 
the yield surface.
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the case of a chain arrangement. Such variations are driven by the dependence of ϕ upon the geometry (aspect 
ratios) of the SVE, but also by different mechanisms of deformation and different stress triaxiality induced by 
the specimen geometries.

Next we present, in Fig. 9, analogous information as that in Fig. 8, for the case of a spatial variation of 
the hardening modulus alone (rH = 2 , rE = rσ = 0) ; the Young’s modulus and yield strength were chosen as 
E0 = 70 GPa and σy0 = 300 MPa , respectively, and the mean value of hardening modulus was H0 = 35 GPa . The 
observed size effect is in this case very mild in the wide range of sizes ( 324 ≤ NCELL ≤ 20,736 ) considered here.

Multiaxial response.  To illustrate the effects of material heterogeneity on the multiaxial response, we used 
the loading and boundary conditions described in the “Multi-axial loading” section to construct pseudo-yield 
surfaces of heterogeneous solids and compare with the homogeneous case. Cubic SVEs were generated with 
NFE = NCELL = 21,952 , using a 5× 5× 5 mm specimen. Macroscopic strain histories were imposed on the 
SVEs according to Eq.  (19) and Table  1. Two sets of simulations were conducted, varying either the elastic 
modulus or the yield stress at microscopic scale. All pseudo-yield surfaces were constructed using the average 
responses obtained from 10 simulations of different realisations of the heterogeneous cubic domain. Figure 10 
shows the yield surface of a heterogeneous material featuring microscopic variations of the elastic modulus. In 
Fig. 10a we present, for rE = 1.43 , the evolution of the yield surface. Trajectories of the hydrostatic and devia-
toric stresses at different (initial) stress triaxiality are shown, and on each trajectory two points are marked, 
corresponding to macroscopic von Mises equivalent strains of 0.01 (squares) and 0.04 (circles). Clearly the mac-
roscopic yield surface is pressure-dependent, although the microscopic material response is pressure-insensitive 
(obeying the von Mises criterion); this is due to the fact that an imposed macroscopic hydrostatic strain results 
in deviatoric stress components at microscopic level, due to the elastic heterogeneity. The macroscopic material 
hardening can be deduced from the figure and is neither isotropic nor kinematic (note that isotropic hardening 
is imposed at microscopic level). Figure 10b shows the effect of the degree of heterogeneity rE on the multiaxial 
response: clearly, a higher heterogeneity gives a weaker response and enhances the pressure-sensitivity of the 
macroscopic response (note that the yield surfaces in Fig. 10b are obtained at macroscopic von Mises equivalent 
strains of 0.01).

Figure 11 presents similar information for the case of microscopic variations of the yield stress, with uni-
form elastic modulus; Fig. 11a shows the evolution of the yield surface for rσ = 1.33 , while Fig. 11b presents the 
effect of varying rσ on the macroscopic yield surface. In this case the macroscopic response is pressure-insensitive 
and hardening is isotropic, as for the local constitutive response; this is due to the fact that the material is elasti-
cally homogeneous and macroscopic hydrostatic stress components do not induce microscopic deviatoric com-
ponents in this case. Again, a higher degree of heterogeneity results in a weaker macroscopic response (Fig. 11b).

Can we predict the fatigue endurance limit from the quasi‑static response?  The discussion of 
the results presented above has highlighted, among other things, the fact that in real materials the onset of yield 
occurs at relatively low stresses (see Figs. 5 and 6), much lower than what is commonly referred to as the material 
‘yield stress’ (i.e. proof stress, or macroscopic flow stress at 0.2% plastic strain). In addition, we found that the 
macroscopic response of heterogeneous materials featuring variations of the yield stress is close (Fig. 5) to the 
predictions of the simple upper bound model developed in “Analytical predictions of the uniaxial response” (Eq. 
(14)). In principle, fitting Eq. (14) to the stress strain curve of a material with small macroscopic strain hardening 
may be used to determine the macroscopic stress at the onset of local plasticity, σmin

y .
Such fitting exercise was conducted using uniaxial tension data by Bettaieb et al.20 on two types of Tita-

nium alloys, considering only the stress–strain histories for strains less than 0.01; an initial linear response was 
assumed, followed by a non-linear response (given by Eq. (14)) for σ > σmin

y  . The value of σmax
y  was taken as 

the flow stress at total strain of 0.01 (this value approximately corresponds to the point at which the measured 
stress–strain curves in20 attain a horizontal tangent). This fitting exercise yielded, for the two alloys considered 
(denoted as Ti-5553-1 and Ti-5553-3 in20) σmin

y = 334  MPa and σmin
y = 312  MPa, respectively. The authors 

also measured S–N curves for these two alloys (at relatively low stress ratio, R = 0.1) and found that both alloys 

Figure 11.   (a) Yield surface evolution for a given degree of plastic heterogeneity, rσ = 1.33 . (b) Effect of rσ on 
the yield surface.
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displayed a fatigue endurance limit, measured as 330 MPa and 310 MPa for Ti-5553-1 and Ti-5553-3, respectively. 
These are remarkably close to the values of σmin

y  extracted from the uniaxial stress–strain curves.
It is well known that fatigue is a macroscopic phenomenon initiated by microscopic plasticity at relatively 

low levels of stress, and due to local deformation and fracture mechanisms supported and enhanced by cyclic 
loading. Although the mechanisms are quite complex, and surely they involve complex loss of cohesion, it is 
logical to think that if the applied stress levels are low enough to not initiate noticeable microscopic plastic-
ity, then the material will not fail by fatigue at such applied stresses. The data, in this case, support this notion; 
however more complex modelling techniques (accounting for material strain hardening, loss of cohesion, more 
sophisticated bounds) and a more extensive experimental campaign on different materials would be needed to 
substantiate this hypothesis.

However, to further support the possibility of a link between the fatigue endurance limit of metals and their 
quasi-static monotonic response, we analyse data from a material database21, as shown in Fig. 12. The database 
stores mechanical properties for a large number of engineering materials. In particular, for unreinforced metallic 
alloys, it reports (i) the yield stress σ0.2 , intended as the stress at a plastic strain of 0.2%, (ii) the tensile strength 
σT , intended as the peak stress in uniaxial tension, (iii) the Young’s modulus E0 , and (iv) the fatigue strength at 
107 cycles σ 107

F  , which is in practice considered as the fatigue endurance limit. Figure 12a–c show the correla-
tion between such fatigue strength and elastic modulus, yield strength and tensile strength, respectively, for the 
186 materials for which the four properties above are measured via mechanical test (rather than estimated, by 
approaches similar to that in22). The fatigue strength in general increases when these three parameters increase, 
and in first approximation it does so according to power-laws of exponents close to 1.

We now assume that the stress versus strain response of metallic alloys can be described by Eq. (14), imply-
ing a negligible heterogeneity in elastic properties, moderate variability of the yield stress and negligible strain 
hardening modulus; the proof stress σε̂ at a certain plastic strain ε̂  (in this case σ0.2 , evaluated at plastic strain 
ε̂ = 0.002 ) can be determined by finding the intersection of Eq. (14) with the line of equation σ̄ = E0(ε − ε̂) . 
Under our hypothesis, we assume that σ 107

F = σmin
y  . With regards to σmax

y  , we assume that for materials with small 
strain hardening modulus it is σT ≈ σmax

y  ; the logic of this is that for a material with a locally perfectly-plastic 

Figure 12.   Correlations of the relevant measured mechanical properties for 186 metallic alloys listed in 21. The 
axes of the ellipses shown indicate the measured variability in the quantities plotted. Green, purple and red 
ellipses indicate ferrous alloys, lightweight alloys (based on Ti, Al, Mg, Be) and non-ferrous alloys, respectively.
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response, global plastic collapse (and consequent ultimate failure) will have occurred when the applied stress 
attains the yield stress of the strongest SVE. This leads to the equation

Equation (28) makes mathematical sense for σT ≥ σ 107

F  , which is satisfied for all materials in the dataset inves-
tigated. To further ensure that it can be solved for σ 107

F  , it must also satisfy (σT − σ0.2)/E0 ≥ ε̂/2 . In Fig. 12d we 
plot measured data for a subset of 149 metallic alloys satisfying the condition above. It is clear that the quantities 
at the two sides of Eq. (28) are correlated. In Fig. 12e we present the same information as in Fig. 12d, but imposing 
the further condition σT < 1.2σ0.2 , to exclude materials with very pronounced strain hardening. The correlation 
between the two sides of Eq. (28), including this time only 60 materials, is plotted in linear scale (rather than 
logarithmic), to highlight the discrepancies between data and prediction (included in both Fig. 12d,e). Again, 
Eq. (28) provides a good description of the measured data.

In consideration of the enormous impact that correlations similar to Eq. (28) would have in engineering 
practice, we think that the preliminary findings highlighted in this section should be reinforced by more extensive 
investigations, and we hope that some of the readers will join us in this.

Concluding remarks
Monte Carlo analyses and FE simulations were used to study the effects of microscopic variations of elastic 
modulus, yield strength and hardening modulus upon the macroscopic elastic–plastic response of model het-
erogeneous materials. Volume elements consisting of regular arrays of SVEs were generated and their uniaxial 
and multiaxial stress–strain responses were predicted. The mechanical properties of the SVEs were taken as 
linear elastic, followed by incompressible J2 plasticity with constant strain hardening modulus and isotropic 
hardening. Mechanical properties were different in each SVE, according to uncorrelated random fields of uni-
form probability density. Microscopic variations of either the elastic modulus, the yield stress or the hardening 
modulus were studied, and their macroscopic effects were investigated. The main conclusions and observations 
of the study are as follows:

•	 The macroscopic elastic modulus and the yield stress extracted from experiments are lower than the spatial 
averages of their microscopic counterparts.

•	 Heterogeneous materials with a local perfectly-plastic response may display an apparent macroscopic strain-
hardening.

•	 The macroscopic response of a heterogeneous solid is scarcely sensitive to the shape of the probability density 
function governing the microscopic spatial variability of the mechanical properties, but depends strongly on 
the relative variance of such probability density.

•	 The onset of yield in a heterogeneous material occurs at stresses much lower than the proof stress; the higher 
the degree of heterogeneity, the lower is the macroscopic stress to cause the first local yield.

•	 Microscopic variation of stiffness or yield stress induce tension/compression asymmetry, strain localisation 
by shear banding and necking instability in uniaxial tension.

•	 The strain at which tensile necking occurs in ductile materials increases with the degree of heterogeneity.
•	 Heterogeneity in plastic properties results in an inverse size effect as well as in a pronounced dependence of 

the response on the shape of the specimen.
•	 An elastically heterogeneous material, comprising an array of plastically incompressible domains with iso-

tropic hardening, displays a pressure-sensitive macroscopic response with non-isotropic hardening.
•	 A preliminary investigation on the application of the findings of this paper suggests that the fatigue endurance 

of solids might be estimated from a detailed analysis of the stress versus strain curves measured in quasi-static 
monotonic experiments.
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