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Evaluation of graphene/crosslinked 
polyethylene for potential high 
voltage direct current cable 
insulation applications
Yuan Li1,2, Guangya Zhu1, Kai Zhou1*, Pengfei Meng1 & Guodong Wang1,2

This paper evaluates the potential usage of graphene/crosslinked polyethylene (graphene/XLPE) 
as the insulating material for high voltage direct current (HVDC) cables. Thermal, mechanical and 
electrical properties of blends with/without graphene were evaluated by differential scanning 
calorimetry (DSC), tensile strength, DC conductivity, space charge measurements and water tree 
aging test. The results indicate that 0.007–0.008% weight amount of graphene can improve the 
mechanical and electrical insulation properties of XLPE blends, namely higher tensile/yield strength, 
improved space charge distribution, and shorter/fewer water tree branches. The improvements mainly 
attribute to the high stiffness of graphene, deep traps introduced by the interaction zones of graphene 
and XLPE, and the blockage effect of graphene within XLPE. For thermal performance of XLPE 
blends, graphene nano-fillers have but limited improvement. The crystallinity of the blends barely 
changes with the addition of graphene. However, the crosslinking degree increases as the additive-
like amounts of graphene doped. The above findings provide a guide for tailoring lightweight XLPE 
materials with excellent mechanical and electrical performances by doping them with a small amount 
of graphene.

High voltage direct current (HVDC, ≥ 1.5 kV) transmission possesses a good number of advantages such as long 
transmission distance, high transmission efficiency and low active power loss. Along with the mass construc-
tion of the power grid, the size as well as the voltage grade of HVDC transmission increases  synchronously1–3. 
As one of the most important part of HVDC, cables directly determine the safety of the system. For cables in 
alternating current (AC) transmission system, crosslinked polyethylene (XLPE) has been widely used as their 
insulating material due to its high breakdown strength, low dielectric loss, good mechanical properties and 
improved thermal  resistance4–6. However, the application of XLPE in high voltage direct current (HVDC) cables 
still faces multiple problems, the most serious of which is the space charge accumulation and its corresponding 
consequences, namely electric field distortion, partial discharge, or even  breakdown7–9. To improve the safety 
and stability of cables in HVDC transmission, it is necessary to modify XLPE materials so as to suppress the 
accumulation of space charges. Moreover, a quantum leap is also needed for the next generation polymeric 
HVDC cables with a further increased transmission voltage up to 800  kV10.

Up to now the most practical strategy to improve the space charge resistance of XLPE is by nano  doping11. 
1–100 nm nanoparticles are uniformly dispersed into the polymer, through which both the physical and chemi-
cal properties of the polymer are modified, mostly  improved12,13. The doped polymer, if used as dielectrics, is 
hence called nano-dielectrics. Lewis first studied nano-dielectrics in  199414. Since then the concept began to 
gain more research attention. e.g., Smith studied the effect of metal oxide nanoparticle fillers on the electrical 
properties of XLPE samples and presented the hypothesis, that the nanoparticles will buildup homo-charge at 
the electrodes, which increases the voltage required for space charge injection due to blocking by the homo-
charge15. Wang studied the effect of nano-TiO2 on DC XLPE cables, and found that adding a small amount of 
nano-TiO2 to XLPE can improve the dielectric properties of polymers, including the crystallinity, conductivity 
activation energy and DC breakdown  strength16. Nevertheless, it is also pointed out that inorganic nanoparticles 
may cause particle agglomeration and thus being unable to guarantee improvements to the overall electrical 
properties of the nano-dielectrics17. Furthermore, high loading of inorganic nanoparticle will also make the 
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dielectric heavier, which restrict its industrial  application18. Dielectrics with less nanoparticle load and better 
electrical performance is therefore highly desired.

Graphene, with its typical close packed two-dimensional structure and unique properties, has been used 
in various areas, including transistor, hydrogen storage and photovoltaics  technologies19–24. Recent studies on 
graphene also indicated it being a promising nanoparticle filler to improve the electrical and thermal properties 
of dielectrics, though its effect on the mechanical properties has not been investigated  yet25,26.

In this paper, graphene/XLPE nano-dielectric samples with graphene contents of 0%, 0.002%, 0.004%, 0.006%, 
0.008%, 0.01% were prepared by solution blending method. Based on measurements of various parameters 
including thermal performance, tensile strength, DC conductivity and space charge distribution, the effect of 
nano-graphene on thermal, mechanical and electrical properties of XLPE was thoroughly studied. Meanwhile, 
the nano-dielectric samples were subjected to accelerated water tree aging test to explore the potential inhibition 
effect of nanographene on water tree aging process of XLPE. We believe that nanographene can decrease the 
growth rate of water tree both by increasing the yield strength of XLPE and hindering water migration within it.

Results and discussion
Thermal performance. The obtained differential scanning calorimetry (DSC) curves of graphene/XLPE 
samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01%) are shown in Fig. 1a. Based on the results, the crys-
tallinity of the samples is calculated and plotted in Fig. 1b, together with the crosslinking degree of the samples 
measured by gel  method27.

In Fig. 1a, it can be seen that the DSC curves of the samples remain largely the same as the addition of gra-
phene increases. The melting peaks of the curves show little changes, being around 103 °C. This trend is also 
illustrated in Fig. 1b, as the crystallinity of the samples remains stable with more graphene doped. However, 
changes in the crosslinking degree indicate that the inclusion of graphene will increase the thermal stability of 
XLPE samples. For samples without graphene, the average crosslinking degree is 86.5%, nearly 3.5% lower than 
that of the graphene-doped samples. Therefore, it is concluded that the addition of graphene has but limited 
improvement for the thermal performance of XLPE blends, mainly on crosslinking degree.

Tensile strength. The tensile strength of graphene/XLPE samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 
0.01%) are shown in Fig. 2a, where an obvious increment can be observed as the addition of graphene increases. 
For pure XLPE sample, its average tensile strength is 17.1 MPa. When 0.002 wt%, 0.004 wt%, 0.006 wt% and 
0.008 wt% graphene are doped, the strength changes to 17.7 Mpa, 18.3 MPa, 18.6 MPa, and 18.9 MPa, respec-
tively. On the other hand, as the graphene content continues to increase, the tensile strength gradually tends to 
a certain value, also seen from the flat tail of the curve in Fig. 2a.

The enhancement in tensile strength of graphene-doped XLPE samples can be attributed to the following 
factors: (1) the addition of graphene nanoparticles improves the microstructure of the XLPE through minimi-
zation of the size of voids/defects inside the sample, and improves the alignment of structural elements of the 
microstructure at all stages of XLPE sample manufacturing; and (2) the graphene serves as a reinforcing phase 
to further improve the mechanical  properties28,29. Atomistic ReaxFF and large-scale molecular dynamics simula-
tions by Gao et al. also elucidate the ability of graphene to modify the microstructure of polymers by promoting 
favorable edge chemistry and polymer chain  alignment30.

DC conductivity. Figure 2b, c shows the DC conductivity of graphene/XLPE samples (0%, 0.002%, 0.004%, 
0.006%, 0.008% and 0.01%) under different temperature. In Fig. 2b, the conductivity increases exponentially as 
the temperature rises, the trend of which has been observed and well explained by many other  researchers31–33. 

Figure 1.  (a) DSC curves of graphene/XLPE samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01%). (b) 
Crystallinity and crosslinking degree of graphene/XLPE samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 
0.01%).
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In Fig. 2c, however, the change of conductivity with graphene content barely happens. Note that graphene pos-
sesses a high conductivity, this insignificant change is unexpected.

To explain the phenomenon, the percolation theory needs to be considered: when the graphene content is 
0.01%, the fillers are well-dispersed and the nearest distance between neighbor fillers can be as large as tens 
micrometers, indicating the filler content is much lower than the percolation  threshold34. Therefore, it is specu-
lated that no conducting path of charge carriers forms, resulting in the consistency of the conductivity.

Space charge distribution. Based on PEA method described in the method section, the space charge 
distribution of graphene/XLPE samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01%) was measured, the 
results of which are shown in Fig. 3.

For pure XLPE samples, hetero-charges accumulated dramatically near the cathode, where only a few homo-
charges appeared near the anode. Meanwhile, the density of hetero-charges increased obviously with the polari-
zation time, whereas the density of homo-charges showed little changes.

For graphene/XLPE samples, however, fewer hetero-charges accumulated near the cathode compared with 
pure XLPE samples. The density of hetero-charges decreased significantly with increasing graphene content, and 
reached the minimum at the graphene content 0.008%. In addition, the density of homo-charges in the samples 
also decreased gradually with the increase of the graphene content and reached the minimum value at the same 
graphene content, namely 0.008%.

The above phenomena show that the density of homo-charges in graphene /XLPE samples is higher than that 
of the pure XLPE samples. One possible reason is that the graphene-polymer interaction zones will introduce 
deep traps between graphene and PE, thus suppressing the charge carrier transport, leading to the accumulation 

Figure 2.  (a) Tensile strength of graphene/XLPE samples (0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01%). (b) 
and (c) DC conductivity of graphene/XLPE samples under different temperatures (25 °C, 40 °C, 50 °C, 60 °C, 
70 °C): (b) temperature as the X-axis, (c) Graphene content as the X-axis.

Figure 3.  Space charge distribution of graphene/XLPE samples: (a) XLPE, (b) XLPE + 0.002 wt% graphene, (c) 
XLPE + 0.004 wt% graphene, (d) XLPE + 0.006 wt% graphene, (e) XLPE + 0.008 wt% graphene, (f) XLPE + 0.01 
wt% graphene.
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of large quantities of homo-charges in the vicinity of both  electrodes35. This explains the trend of space charge 
density when the graphene content is lower than 0.008%. On the other hand, as the graphene content continues 
to increase, the overlapping sites of the graphene-polymer interaction zones would provide low-resistance paths 
for electrons between molecular chains, thus accelerating the transport of electrons through chain barriers, 
and leading to significant amount of space charge accumulation in the bulk of  polymer36. Therefore, it can be 
concluded that appropriate amount of graphene nano-particles can improve the space charge distribution with 
XLPE samples.

Water tree aging characteristics. Water trees are the dendritic paths formed in a wide range of hydro-
phobic polymeric insulating materials when exposed to electric stress and water  immersion37. It is regarded as 
one of the principal aging factors of XLPE cables, as its formation in the cable will cause the reduction in break-
down voltage of cable’s insulating  layer38,39. As a result, in the development of graphene/XLPE nano-dielectric 
which serves as the insulating materials of power cables, the water tree aging characteristics should also be 
considered.

For this purpose, pure XLPE samples and 0.007 wt% graphene/XLPE samples were prepared and subjected 
to water tree aging tests, respectively. The test platform was shown in Fig. 7, where 1.7 mol/L NaCl solution was 
used to initiate water trees at the 1.5 mm deep pinhole tips embedded on the surface of the sample. The test 
voltage was set to 7.5 kVrms with a frequency of 400 Hz. The water tree aging timespan was set to 30 days. After 
the test, the aged samples were first sliced by a YD-2508 slicer, and then dyed by methylene blue for further 
microscopic observations.

Figure 4 shows the microscopic images of water trees in pure XLPE slice and 0.007 wt% graphene/XLPE slice, 
respectively. The magnification was 64 times for Fig. 4a, c, and 160 times for Fig. 4b, d. The results are as follows:

In Fig. 4a, b, the water tree branches are relatively dispersed, where the longer branches are distributed at the 
tip of the pinhole. Meanwhile, more than one-third of the pinhole tip surface is covered by branches with a radial 
growth trend, and the growth direction is basically consistent with the direction of the electric field. Compared 
with Fig. 4a, b, the number of water tree branches in Fig. 4c, d is significantly fewer. Although a large number of 
branches concentrates in the small area of the pinhole tip, branches in other areas of the tip are sparse. Besides, 
the growth direction of water tree branches in graphene/XLPE samples is relatively random. The whole shape of 
the water tree is more irregular than that in pure XLPE samples.

To better quantify the results of the water tree aging test, we measured the length of the water tree branches in 
pure XLPE slice and 0.007 wt% graphene/XLPE slice, and calculated their average value respectively. The results 
indicated that the average tree length in 0.007 wt% graphene/XLPE slice is 85.6 μm, significantly (16.2 μm/15.9%) 
shorter than 101.8 μm in pure XLPE slice. All the above experimental results indicate that graphene nanoparticles 
can inhibit the growth of water trees in XLPE effectively.

To explain the inhibiting effect of graphene nanoparticles, we need to focus on the initiation and growth 
processes of water trees, which according to the known research, are caused by the fatigue of the material. The 
fatigue, meanwhile, is mainly attributed to two factors-electric stress, and chemical  corrosion40,41.

Electric stress induces water tree by the followings. Once water immerse the insulating material, it will deform 
along the direction of the electric field force, during which its shape changes from spherical to ellipsoidal. The 
deformed water droplets will apply the extrusion force to the material. When the pressure exceeds the tensile 
stress of the material, the molecular chain of the latter will break, leading to the generation of sub-micro cavi-
ties (diameter about 0.1–5 μm) and micro channels (diameter about 100 nm), as shown in Fig. 5. Subsequently, 
water will fill the cavities and the channels. The above process occurs repeatedly, resulting in the formation of 
water trees.

On the other hand, the water tree induced by chemical corrosion mainly considers the effects of oxidation and 
ion electroosmosis. When water immerses the material, oxide is also introduced. The oxidation of the polymer 
will then happen on the wall of some isolated micro-voids, which eventually produce sub-micro cavities in the 
amorphous region of the material. Meanwhile, ions dissolved in the water will also migrate and cause electroos-
mosis effect within the material, resulting in the formation of micro channels. These channels, together with the 
cavities produced by the oxidation process, form the water trees within the insulating materials.

Now we consider the effect of graphene nanoparticles on the above two processes. Figure 6a shows the 
mechanical properties of pure XLPE sample and 0.007 wt% graphene/XLPE sample. It is quite obvious that 
graphene nanoparticles enhance the yield strength of XLPE by 5.5%, from 10.99 MPa to 12.69 MPa. This is pre-
dictable hence embedding materials with high stiffness into polymers leads to an increase in material stiffness, 
allowing for stress redistribution from a low modulus matrix to a high modulus filler  phase42. Since the electric 

Figure 4.  (a) and (b) Water tree morphology in pure XLPE samples. (c) and (d) Water tree morphology in 
0.0007 wt% graphene / XLPE samples.
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stress-induced water tree is closely related to the yield strength of the material, it is less likely that water trees 
grow in graphene/XLPE samples.

Meanwhile, the hydrophobic graphene inhibits the growth of water tree also by hindering the water migration 
within XLPE sample. As illustrated in Fig. 6b, when there is no graphene dopped in XLPE samples, the moisture 
will migrate along the inherent cracks within the sample, carrying oxide and ions with it. However, when enough 
graphene nanoparticles are dopped, the inherent cracks of XLPE will be blocked by graphene, which makes it 
difficult for water to move forward, thus weakening the transportation of oxide and ions. The initiation and 
growth of water trees in graphene/XLPE samples is eventually inhibited.

Conclusion
In conclusion, we have fabricated graphene/XLPE nano-dielectric samples by a solution method. The effect of 
graphene addition on the thermal performance, tensile strength, DC conductivity, space charge distribution 
and water tree aging behavior of graphene/XLPE composites were investigated. Results indicate that XLPE filled 
with graphene nanoparticles exhibited excellent mechanical and electrical insulation properties, namely higher 
tensile/yield strength, improved space charge distribution, and shorter water tree branches. The improvements 
mainly attribute to the high stiffness of graphene, deep traps introduced by interface between graphene and 
XLPE, and the blockage effect of graphene within XLPE. In addition, it was found that graphene nano-fillers 
have but limited improvement for the thermal performance of XLPE blends, mainly on crosslinking degree. The 
above findings provide a guide for tailoring lightweight XLPE materials with excellent mechanical and electrical 
performances by doping them with a small amount of graphene. The composite proves its potential for UHV 
HVDC cable insulation applications.

Methods
Sample preparation. Polyethylene (PE) with a density of 0.98 g/cm3 was purchase from Kingfa Science & 
Technology Co., Ltd. Graphene nanoplatelets with properties shown in Table 1 were supplied by Ashine Gra-
phene Co., Ltd.. The nano-dielectric samples were prepared as follows: (1) Vacuum dry the graphene for 24 h 
prior to compounding. (2) Mix the graphene of certain mass with xylene, and sonicate the mixture for 1 h. (3) 
Transfer the mixture to a flask with certain amount of PE and xylene, and heat the mixture in an oil bath (100 °C) 
for 12 h under high-speed stirring. (4) Wash the mixture with ethyl alcohol and vacuum dry it at 80 °C for 24 h. 
(5) Add the cross-linking agent to the dried mixture and crosslink it at 160 °C/15 MPa for 30 min. (6) Degas the 
crosslinked product for 24 h to remove by-products.

Based on the above procedures, we prepared graphene/XLPE nano-dielectric samples with graphene contents 
by weight of 0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01%, respectively. The samples with thickness of 3 mm 

Figure 5.  Void-crack model of water trees in insulating polymer.

Figure 6.  (a) Mechanical properties of pure XLPE sample and 0.007 wt% graphene/XLPE sample. (b) 
Illustration of the blockage effect of graphene nanoparticles on water migration in XLPE.
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were subjected to thermal performance and tensile strength tests, whereas films with thickness of 500 μm were 
used to study the DC conductivity and space charge distribution.

Additional pure XLPE samples and 0.007 wt% graphene-XLPE samples were prepared for water tree aging 
test. The thickness of the samples was 3 mm. On the surface of each sample, a 25 mm diameter circular area was 
chosen as the active aging zone, among which 18 pinholes with depths of 1.5 mm and tip radius of 4.0 ± 0.5 μm 
were embedded as the initiation spots of the water trees.

Thermal characterization. Thermal performance of the samples was studied by using a Mettler-Toledo 
differential scanning calorimeter (DSC). Before the measurement, the samples were thermal-erased first, and 
then heated to 200 °C at a rate of 10 °C/min, during which the heat flow was recorded. Based on the result, crys-
tallinity degree and crosslinking degree of the samples were calculated.

Tensile strength measurement. Tensile strength of graphene/XLPE samples were investigated under the 
guidance of ISO 527-2012. The sample was first cut into a dumbbell shape and then subjected to tensile test on 
an elongation tester (TianFa Inc., JDL-5000 N), at a strain rate of 30 mm/min.

DC conductivity measurement. DC conductivities of the pure XLPE sample and graphene/XLPE sam-
ples were measured by using a three-electrode structure with a Keithley 6517B connected in series. The meas-
urement was performed strictly in accordance with IEC 62631, under 2 kV/mm, and 25 °C, 40 °C, 50 °C, 60 °C, 
70 °C, respectively.

Space charge measurement. The space charge distribution was investigated by the pulsed electro acous-
tic (PEA) method under room temperature 25 °C43. Samples of 500 μm in thickness and 10 cm in diameter were 
sandwiched between an aluminum electrode and a semiconductive polymer electrode. As the measurement 
started, a DC electric field of 30 kV/mm was applied to the sample and kept for 30 min. Afterwards, the depo-
larization current of the sample was recorded for another 1000 s.

Water tree test. As for the water tree test, experimental platform shown in Fig. 7 was adopted.
The platform mainly consists of two parts: I. high voltage generating part, and II. water tree aging part. In part 

I, a signal generator in series with a power amplifier was adopted to generate 7.5 kVrms voltage with a frequency 
of 400 Hz. The high voltage was then applied to a rod copper electrode through a water resistance (≈ 10 kΩ). In 

Table 1.  Properties of graphene nanoplatelets adopted in the experiment.

Properties Value

Appearance Black powder

Purity  > 98 wt%

Thickness 0.55–3.75 nm

Equivalent diameter 0.5–3 μm

Surface area 450–500  m2/g

Layers  < 10

Conductivity ≈2 ×  104 S/m

Figure 7.  Experimental platform of the water tree aging test.
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part II, the 0.007 wt% graphene/XLPE sample with a thickness of 3 mm was sandwiched by a PTEF container 
filled with 1.7 mol/L NaCl solution, and a grounded copper electrode. Note that a 35 mm diameter circular area 
was hallowed at the bottom of the container, so that NaCl solution can directly immerse the pinholes on the 
sample. To transmit the high voltage to the pinhole tips of the graphene/XLPE sample, the rod copper electrode 
was inserted into the NaCl solution. Under the co-influence of moisture and electrical stress, water trees were 
therefore generated at the pinhole tips of the sample.

Received: 6 April 2021; Accepted: 24 August 2021
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