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Exact density matrix elements 
for a driven dissipative system 
described by a quadratic 
Hamiltonian
Sh. Saedi & F. Kheirandish*

For a prototype quadratic Hamiltonian describing a driven, dissipative system, exact matrix elements 
of the reduced density matrix are obtained from a generating function in terms of the normal 
characteristic functions. The approach is based on the Heisenberg equations of motion and operator 
calculus. The special and limiting cases are discussed.

Experimental methods in the design of devices used in nanoscale physics and quantum technologies have 
advanced much in recent years and have led to very high accuracy in measuring instruments. These devices 
are very sensitive to external potentials and types of noise because their operation is in the domain of quantum 
mechanics. Therefore, understanding the performance and quantum dynamics of these devices is essential to 
control them and correct unwanted behaviors. A real quantum device is not an isolated system and interacts with 
its environment or there may be some external classical sources applied to the system. Our favorite quantum 
devices belong to a much wider class of quantum systems, nowadays referred to as open quantum systems1. The 
subject of open quantum systems (systems that exchange information with their surroundings) covers a vast range 
of applications in quantum physics and other related subjects. Generally, by an open quantum system, we mean 
a possibly driven system as the main system interacting with some other systems modeling its environment. In 
the terminology of open quantum systems, the main system together with its environment under the influence 
of external classical sources is considered as a closed system. Therefore, the time-evolution of the total system 
can be described by a total density matrix evolving unitarily. If we are interested in the dynamics of the main 
system or any other subsystem in the environment, the other degrees of freedom should be traced out to get the 
favorite reduced density matrix. The quantum Brownian motion is an example of an open quantum system that 
is extensively studied in various branches of physics2–9. Another important feature of nanoscale quantum devices 
is their thermodynamical properties. Usually, the quantum fluctuations of the physical quantities in nanoscale 
quantum devices are of the same order of magnitude as their expectation values leading to a reformulation of 
thermodynamics in the quantum regime referred to as quantum thermodynamics10–19. There are some other 
quantum systems whose Hamiltonians resemble the Hamiltonian of the quantum Brownian motion in external 
sources. The Hamiltonian that we have investigated here is the Hamiltonian given by Eq. (2) describing a driven 
system with a quadratic Hamiltonian ĤS interacting linearly with its bosonic environment. The Hamiltonian ĤS 
appears in many applications in quantum optics20–28.

The quadratic Hamiltonian ĤS in Eq. (2) can be rewritten in terms of the position ( ̂x ) and momentum ( ̂p ) 
operator operators, also known as quadrature operators in the terminology of quantum optics, as

The renormalized mass ( m∗ ) and frequency ( ω∗ ) are defined by

ĤS =
p̂2

2m∗ + 1

2
m∗ω∗2 x̂2 + φI (x̂p̂+ p̂x̂).

m∗ = m

1− 2φR
ω0

,

ω∗ =ω0

(

1− 4φ2
R

ω2
0

)

,
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where φR = Re [φ] and φI = Im [φ] . Therefore, the real part of the complex parameter ϕ is responsible for 
renormalization of mass and frequency and its imaginary part introduces a term proportional to x̂p̂+ p̂x̂ to the 
harmonic oscillator hamiltonian. Here we have implicitly assumed φR,φI ≪ ω0 , meaning that the two-boson 
process is less likely to occur than the one-boson process. From now on we assume that we are considering an 
oscillator with renormalized mass and frequency so we can set m = m∗ and ω0 = ω∗ and only the imaginary 
part of φ is relevant. Adding the terms representing the interaction of the external force k(t) on the oscillator we 
find the time-dependent Hamiltonian ĤSK (t) as

The Hamiltonian ĤSK (t) is the Hamiltonian of the system in the absence of a reservoir. The squeezed states 
generated from the Hamiltonian ĤSK (t) have been investigated in22,29, the Wigner function corresponding to 
the same hamiltonian is discussed in30. The su(1, 1) coherent states generated from ĤSK (t) have been studied 
in31. The Hamiltonian ĤSK (t) from the point of view of Fresnel operator has been investigated in32. Single-mode 
two-photon systems with Hamiltonian ĤSK (t) have been investigated in33.

There are some approaches to find the reduced density matrix of a subsystem in a combined system, like path 
integral technique6, though general, is usually difficult to deal with, Lindblad master equation1 which is based 
on some approximations, and phenomenological or quantum Langevin approaches34. Here, instead, we follow 
a scheme to find the exact reduced density matrix elements corresponding to the subsystem ĤS(t) by making 
intense use of the operator calculus in the Heisenberg picture. Thereby, we indeed find analytic expressions for 
the generating function of the reduced density matrix. To the best of our knowledge, this approach has not been 
applied to the Hamiltonian Eq. (2) before, and despite its simplicity, could provide closed-form expressions for 
the reduced density matrix. Knowing the matrix elements of the reduced density matrix, a full description of 
the dynamics of the main subsystem can be achieved.

The main definitions
The prototype system that we have considered in this section is a system described by a quadratic Hamiltonian 
driven by an external classical source k(t) (k̄(t)) interacting with a bosonic bath linearly. The total Hamiltonian is

where fj are the coupling constants that couple the system to its environment and the parameter φ is an arbitrary 
complex parameter. Here, the complex conjugate of any quantity such as c is denoted by c̄ and its norm by |c|. 
The Laplace transform of a function is denoted by µ(t) with µ̃(s) = L[µ(t)] with the inverse µ(t) = L

−1[µ(s)].
Our goal is to find the exact matrix components of the reduced density matrix corresponding to the Hamil-

tonian ĤS(t) . To this end, we first need to find the temporal evolution of the ladder operators. By making use of 
the Heisenberg equations of motion for the subsystem ladder operators we find (see Supp.Mat-Sec. I)

where for notational simplicity we have defined the following functions

(1)
ĤSK (t) =

p̂2

2m
+ 1

2
mω2 x̂2 + φI (x̂p̂+ p̂x̂)+

√
2m�ω kR(t) x̂ +

√

2�

mω
kI (t) p̂,

=�ω0 (â
†â+ 1/2)+ �φ̄ â2 + �φ (â†)2 + � k(t)â† + � k̄(t)â.

(2)

Ĥ = �ω0 (â
†â+ 1/2)+ �φ̄ â2 + �φ (â†)2

︸ ︷︷ ︸

Quadratic Hamiltonian ĤS(t)

+ � k(t)â† + � k̄(t)â
︸ ︷︷ ︸

Interaction with external force k(t)

+
∑

j

�ωj b̂
†
j b̂j

︸ ︷︷ ︸

Bosonic Bath ĤR

+
∑

j

[

� fjâ
†b̂j + � f̄j b̂

†
j â
]

︸ ︷︷ ︸

Linear interaction ĤSR

,

(3)

â(t) =α1(t)â(0)− 2 i φ α2(t)â
†(0)− i

∑

j

Mj(t)b̂j(0)

− i
∑

j

(2 i φ)Nj(t)b̂
†
j (0)− i ζ1(t)− i (2 i φ)ζ2(t),

(4)

â†(t) =ᾱ1(t)â
†(0)+ 2 i φ̄ α2(t)â(0)+ i

∑

j

M̄j(t)b̂
†
j (0)− i

∑

j

(2 i φ)N̄j(t)b̂j(0)+ i ζ̄1(t)− i (2 i φ)ζ̄2(t),
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Similarly, for the environment ladder operators we find (see Supp.Mat-Sec. I)

where we have defined

In “the next section”, by making use of the main Eqs. (3, 4, 6, 7), we will obtain a generating function to produce 
the reduced density matrix elements of the bosonic mode subsystem.

Reduced density matrix elements
According to the terminology of the open quantum systems theory, the whole system described by the Hamil-
tonian Eq. (2) is a closed system having a unitary time-evolution given by

where the initial density matrix of the whole system ( ρ̂(0) ) is usually assumed to be a separable state

The reduced density matrix of the bosonic-mode subsystem can be obtained by tracing out the degrees of 
freedom of the environment

We are interested in the matrix elements of the reduced density matrix. We have

(5)

α1(t) =L
−1

[ ˜̄G(s)
L̃(s)

]

,

α2(t) =L
−1

[
1

L̃(s)

]

,

L̃(s) =|G̃(s)|2 − 4|φ|2,
G̃(s) =s + iω0 + χ̃(s),

Mj(t) =fj

∫ t

0
d t ′eiωj(t−t′)α1(t

′),

Nj(t) =f̄j

∫ t

0
d t ′e−iωj(t−t′)α2(t

′),

ζ1(t) =
∫ t

0
d t ′ α1(t − t ′) k(t′),

ζ2(t) =
∫ t

0
d t ′ α2(t − t ′) k̄(t′).

(6)b̂j(t) =
∑

k

[

�jk(t) b̂k(0)+�′
jk(t) b̂

†
k(0)− Ŵjk(t) â(0)− Ŵ′

jk(t) â
†(0)−�jk(t)

]

,

(7)b̂†j (t) =
∑

k

[

�̄jk(t) b̂
†
k(0)+ �̄′

jk(t) b̂k(0)− Ŵ̄jk(t) â
†(0)− Ŵ̄′

jk(t) â(0)− �̄jk(t)
]

,

(8)

�jk(t) =e−iωj tδjk − f̄j

∫ t

0
d t ′eiωj(t−t′)Mk(t

′),

�′
jk(t) =− f̄j

∫ t

0
d t ′eiωj(t−t′)(2 i φ)Nk(t

′),

Ŵjk(t) =− i f̄j

∫ t

0
d t ′eiωj(t−t′)α1k(t

′),

Ŵ′
jk(t) =− 2φ f̄j

∫ t

0
d t ′eiωj(t−t′)α2k(t

′),

�jk(t) =− f̄j

∫ t

0
d t ′eiωj(t−t′)(ζ1(t

′)− (2 i φ)ζ2(t
′)
)
.

(9)ρ̂(t) = Û(t) ρ̂(0) Û†(t),

(10)ρ̂(0) = ρ̂S(0)⊗ ρ̂R(0).

(11)ρ̂S(t) = TrR
{
ρ̂(t)

}
.
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therefore,

In Eq. (12), the operator ÎR is the identity operator over the environment Hilbert space. The matrix elements 
Q̂mn can be written in terms of the ladder operators in the Heisenberg representation (see Supp.Mat-Sec. II)

where

and â†(t) can be obtained by taking the hermitian conjugation of the relations defined in Eq. (15). By inserting 
the expressions for â(t) and â†(t) into Eq. (14), one easily finds

Now by making use of Eq. (13) we have

From the definitions of operators B̂ and Ĉ , we observe that

so we can rewrite Eq. (17) as

Equation (19) is a general result giving the components of the reduced density matrix in terms of a generat-
ing function. Note that IĈ and IB̂ are normal characteristic functions in the terminology of quantum optics. To 
proceed, let us assume that the initial state of the environment is a thermal state with temperature T

(12)

� n |ρ̂S(t)|m � = � n |TrR
�

Û(t)ρ̂(t0)Û
†(t)

�

|m �,

=
�

|m �� n |TrR
�

Û(t)ρ̂(t0)Û
†(t)

��

,

= Tr
��

|m �� n | ⊗ ÎR

�

Û(t)ρ̂(t0)Û
†(t)

�

,

= Tr







Q̂nm
� �� �

Û†(t)
�

|m �� n | ⊗ ÎR

�

Û(t) ρ̂(t0)







,

(13)
� n |ρ̂S(t)|m � = Tr

{

Q̂nm ρ̂(0)
}

= Tr
{

Q̂nm ρ̂S(0)⊗ ρ̂R(0)
}

.

(14)Q̂nm = 1√
m! n!

∞∑

s=0

(−1)s

s!
(
â†(t)

)m+s(
â(t)

)n+s
,

(15)

â(t) =Ĉ(t)− i
(

B̂(t)+ ζ(t)
)

,

Ĉ(t) =α1(t)â(0)− 2 i φ α2(t)â
†(0),

B̂(t) =
∑

j

(

Mj(t)b̂j(0)+ 2 i φ Nj(t)b̂
†
j (0)

)

,

ζ(t) =(ζ1(t)+ 2 i φ ζ2(t)),

(16)Q̂nm = 1√
m! n!

∞∑

s=0

(−1)s

s! Tr

{(

Ĉ†(t)+ i
(

B̂†(t)+ ζ̄ (t)
))m+s(

Ĉ(t)− i
(

B̂(t)+ ζ(t)
))n+s

}

.

(17)

� n |ρ̂S(t)|m � = (−1)n√
m! n!

∞∑

s=0

1

s!
∂m+s

∂�m+s

∂n+s

∂(�̄)n+s
Tr

{

e
�

(

Ĉ†(t)+i
(

B̂†(t)+ζ̄ (t)
))

e
−�̄

(

Ĉ(t)−i
(

B̂(t)+ζ(t)
))

ρ̂S(0)⊗ ρ̂R(0)

}

�=�̄=0

.

(18)[B̂, Ĉ] = [B̂, Ĉ†] = 0,

(19)

� n |ρ̂S(t)|m � =

(−1)n√
m! n!

∞�

s=0

1

s!
∂m+s

∂�m+s

∂n+s

∂(�̄)n+s






ei � ζ̄ (t)+i �̄ζ(t)

IĈ
� �� �

TrS

�

e�Ĉ
†(t)e−�̄Ĉ(t)ρ̂S(0)

�

IB̂
� �� �

TrR

�

ei �B̂
†(t)ei �̄B̂(t)ρ̂R(0)

�







�=�̄=0

,

= (−1)n√
m! n!

∂m

∂�m

∂n

∂(�̄)n
e∂�∂�̄

�

ei � ζ̄ (t)+i �̄ζ(t)IĈ IB̂

�

�=�̄=0
.
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where β = 1/κBT and κB is the Boltzmann constant. Also, Trj denotes the trace over the base vectors correspond-
ing to the jth oscillator of the environment. One can obtain IB̂ easily as (see Supp.Mat-Sec. III)

where

therefore,

Equation (24) is our main result, giving the reduced density matrix elements using a generating function. 
In the next section, as an application of the main result, we assume that the bosonic mode is initially prepared 
in a coherent state.

The system is initially prepared in a coherent state
As an application of the general formula Eq. (24), let us assume that the initial state of the main system is a 
coherent state

in this case, the normal characteristic function IĈ can be obtained as (see Supp.Mat-Sec. IV)

and Eq. (24) can be rewritten as

Therefore, if the initial state of the main system is a coherent state and the initial state of the environment 
is a Maxwell Boltzmann thermal state then the elements of the reduced density matrix can be obtained from a 
generating function given by Eq. (27). If we set ( φ = 0 ), the diagonal elements of the reduced density matrix 
Pn(t) = � n |ρ̂S(t)| n � are

where

(20)

ρ̂R(t) =
1

ZR

∏

j

e
−β�ωj b̂

†
j b̂j ,

ZR =
∏

j

zj ,

zj = Trj

{

e
−β�ωj b̂

†
j b̂j

}

,

(21)TrR

{

ei � B̂
†(t)ei �̄ B̂(t)ρ̂R(0)

}

= eϑ[�,�̄,t],

(22)ϑ[�, �̄, t] =
∑

k

[

−� �̄

( |Vk(t)|2
eβ�ωk − 1

+ 4|φ|2 |Nk(t)|2
)

+ i(�2 φ̄N̄k(t)M̄k(t)− �̄
2φNk(t)Mk(t))

]

,

(23)Vk(t) =Mk(t)+ 2 i φ̄ N̄k(t),

(24)

� n |ρ̂S(t)|m � = (−1)n√
m! n!

∞∑

s=0

1

s!
∂m+s

∂�m+s

∂n+s

∂(�̄)n+s

[

ei � ζ̄ (t)+i �̄ζ(t)eϑ[�,�̄,t] TrS
{

e�Ĉ
†(t)e−�̄Ĉ(t)ρ̂S(0)

}]

�=�̄=0
,

= (−1)n√
m! n!

∂m

∂�m

∂n

∂(�̄)n
e∂�∂�̄

[

ei � ζ̄ (t)+i �̄ζ(t)eϑ[�,�̄,t] TrS
{

e�Ĉ
†(t)e−�̄Ĉ(t)ρ̂S(0)

}]

�=�̄=0
.

(25)ρ̂S(0) = |γ ��γ |,

(26)
TrS

{

e�Ĉ
†(t)e−�̄Ĉ(t)ρ̂S(0)

}

= e
α2(t)

(

i �2φ̄ᾱ1(t)−i �̄2φα1(t)−4��̄|φ|2α2(t)
)

e
γ̄

(

�ᾱ1(t)+2 i �̄φα2(t)
)

e
−γ

(

�̄α1(t)−2 i �φ̄α2(t)
)

,

(27)

� n |ρ̂S(t)|m � = (−1)n√
m! n!

∂m

∂�m

∂n

∂(�̄)n
e∂�∂�̄

[

e
i
(

�ζ̄ (t)+�̄ζ(t)
)

e
−4��̄|φ|2α22 (t)+iα2(t)

(

�
2φ̄ᾱ1(t)−�̄

2φα1(t)
)

eϑ[�,�̄,t]e

(

�γ̄ ᾱ1(t)−�̄γ α1(t)
)

+2 i α2(t)
(

�̄γ̄ φ+� γ φ̄

)]

�=�̄=0

.

(28)
Pn(t)|φ=0 =

(−1)n

n!

(
∂

∂�

∂

∂ �̄

)n

e
∂�∂�̄

︷ ︸︸ ︷
∞∑

s=0

1

s!

(
∂

∂�

∂

∂ �̄

)s

I

∣
∣
∣
∣
�=�̄=0

,
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Therefore, (see Supp.Mat-Sec. V)

where Ln[x] is a Laguerre polynomial of degree n. From Eq. (30) the mean excitation number n̄ at temperature 
T and time t is

at zero temperature we have η(t) → 0 , so |Z(t)|2 = n̄0(t) , therefore, n̄T (t)− n̄0(t) = η(t) . If we set ( φ = 0 ) then 
in low temperature regime ( T → 0 ), we have

and by making use of the identity

we deduce

which is a Poisson distribution with the mean number parameter 〈 n 〉 given by

Example  For the choice φI = 0 , k(t) = k0 sin(νt) and the memory-less response function χ(t) = χ0 δ(t) , we 
find in the large-time limit ( t ≫ χ−1

0  ) the following time-independent values

Note that η is a temperature-dependent parameter. The probability Pn(η) for n = 0, 1, 2, 3 is depicted in Fig. 1 
in terms of the dimensionless parameter η . The most probable excitation value (in zero temperature) belongs 
to n = n̄0 which for the values assigned to the parameters ω0 , χ0 , k0 and ν in the caption of the Fig.1 is n = 0 . 
If we increase the strength of the external source for example by choosing the values k0 = 0.2ω0 , χ0 = 0.1ω0 , 
and ν = 0.99ω0 , then we will find the results as depicted in Fig. 2 for the values n = 0, 1, 2, 3, 4 . It is seen that 
the most probable value (at zero temperature) corresponds to n = [n̄0] = 3 where [a] returns the integer part of 
a. Note that, in large-time limit and finite temperature we have n̄T − n̄0 = η(T) . The results are consistent with 
our expectations and the results known in the literature.

Strong coupling with external source and low dissipation regime
Let us assume that the system is initially prepared in the ground state ρS(0) = |0��0| , then in the absence of dis-
sipation, by setting n = m and γ = 0 in Eq. (27) we find

(29)

I =e−��̄η(t)+� Z̄−�̄Z ,

η(t) =
∑

k

|Mk(t)|2
eβ�ωk − 1

,

Z =− iζ(t)+ γα1(t),

Z̄ =iζ̄ (t)+ γ̄ ᾱ1(t).

(30)Pn(t)|φ=0 =
e
− |Z|2

1+η(t)

1+ η(t)

(
η(t)

η(t)+ 1

)n

Ln

( −|Z|2
η(t)(1+ η(t))

)

,

(31)n̄T (t) = �n�T (t) =
∞∑

n=0

n Pn(t) = |Z(t)|2 + η(t),

(32)

η(t) → 0,

Vk(t) = Mk(t),

L̃(s) =
∣
∣G̃(s)

∣
∣
2 =⇒ α1(t) = L

−1

[
1

G̃(s)

]

,

G̃(s) = s + iω0 + χ̃ (s).

(33)lim
η→0

(
η(t)

η(t)+ 1

)n

Ln

( −|Z|2
η(t)(η(t)+ 1)

)

= |Z|2n
n! ,

(34)Pn(t)|φ=0 =
e−|Z|2 |Z|2n

n! = |γα1(t)− iζ1(t)|2ne−|γ α1(t)−iζ1(t)|2

n! ,

(35)� n � = |γα1(t)− iζ1(t)|2.

α1(t)  → 0,

|Z(t)|2φ=0 = |ζ1(t)|2  →
k20[8ν2 + 2(χ2

0 + 4ω2
0)]

(4ν2 + χ2
0 − 4ω2

0)
2 + 16χ2

0 ω
2
0

,

η(t)  →
∑

k

4|fk|2
χ2
0 + 4(ω0 + ωk)

2

1

e
�ωk
kBT

−1
.
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To simplify the calculations, we ignore from the term proportional to φ2
I  in the exponential term in Eq. (36) 

( φI ≪ ω0 ), in this case the exponential term is separable in terms of �, �̄ , therefore, by expanding exp(∂�∂�̄) we 
have

Now using the generating function of Hermite polynomials

and changing the variable � = y/
√
iα2(t)φI ᾱ1 , one easily finds

By making use of Eqs. (5, 15) we have

(36)Pn(t) =
(−1)n

n! (∂�∂�̄)
n e∂�∂�̄

[

e
i
(

�ζ̄ (t)+�̄ζ(t)
)
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Figure 1.   The probability Pn(η) (see Eq. (30)) for n = 0, 1, 2, 3 is depicted for the values k0 = 0.02ω0 , 
χ0 = 0.1ω0 , and ν = 0.99ω0 in terms of the dimensionless variable η in large-time limit.

Figure 2.   The probability Pn(η) (see Eq. (30)) for n = 0, 1, 2, 3 is depicted for the values k0 = 0.2ω0 , 
χ0 = 0.1ω0 , and ν = 0.99ω0 in terms of the dimensionless variable η in large-time limit.
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Note that at the times τ = mπ (m = 1, 2, 3, . . .) we have α2(t) = 0 and Eq. (39) becomes singular at these 
points, but, these singular points are removable and one can easily show that at this times Eq. (39) tends to a 
poisson distribution given by

where

For the external source k(t) = k0 sin(νt) , from Eqs. (5, 40) we have

The probability Pn(τ ) for n = 0, 1, 2, 3, 4 is depicted for the values k0 = ω0 , φI = 0.1ω0 , and ν = 0.9ω0 in terms 
of the dimensionless variable τ = ω0t in Fig. 3. Note the order of excitations in time ( n = 1, n = 2, n = 3, n = 4 ) 
as we expected.

Conclusion
We have considered a driven, dissipative quantum system described by a time-dependent quadratic Hamiltonian 
and found a generating function Eq. (19) to find the exact matrix elements of the reduced density matrix. The 
generating function is given in terms of the well-known normal characteristic functions in the terminology of 
quantum Optics. For the case of a thermal environment with a Maxwell–Boltzmann equilibrium state, an exact 
expression for the components of the reduced density matrix is obtained given by Eq. (24). Explicit expressions 
for reduced density matrix components are obtained when the subsystem is initially prepared in a coherent state. 
Despite the simplicity of the method, while deriving the main result Eq. (24), assumptions like weak or strong 
coupling and/or Markovian approximation have not been applied.
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