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An immune cell infiltration‑related 
gene signature predicts prognosis 
for bladder cancer
Hualin Chen, Yang Pan, Xiaoxiang Jin & Gang Chen*

To explore novel therapeutic targets, develop a gene signature and construct a prognostic nomogram 
of bladder cancer (BCa). Transcriptome data and clinical traits of BCa were downloaded from UCSC 
Xena database and Gene Expression Omnibus (GEO) database. We then used the method of Single 
sample Gene Set Enrichment analysis (ssGSEA) to calculate the infiltration abundances of 24 immune 
cells in eligible BCa samples. By weighted correlation network analysis (WGCNA), we identified 
turquoise module with strong and significant association with the infiltration abundance of immune 
cells which were associated with overall survival of BCa patients. Subsequently, we developed an 
immune cell infiltration‑related gene signature based on the module genes (MGs) and immune‑
related genes (IRGs) from the Immunology Database and Analysis Portal (ImmPort). Then, we tested 
the prognostic power and performance of the signature in both discovery and external validation 
datasets. A nomogram integrated with signature and clinical features were ultimately constructed 
and tested. Five prognostic immune cell infiltration‑related module genes (PIRMGs), namely FPR1, 
CIITA, KLRC1, TNFRSF6B, and WFIKKN1, were identified and used for gene signature development. 
And the signature showed independent and stable prognosis predictive power. Ultimately, a 
nomogram consisting of signature, age and tumor stage was constructed, and it showed good and 
stable predictive ability on prognosis. Our prognostic signature and nomogram provided prognostic 
indicators and potential immunotherapeutic targets for BCa. Further researches are needed to verify 
the clinical effectiveness of this nomogram and these biomarkers.

Abbreviations
BCa  Bladder cancer
NMIBC  Non- muscle-invasive bladder cancer
MIBC  Muscle-invasive bladder cancer
ssGSEA  Single sample gene set enrichment analysis
WGCNA  Weighted correlation network analysis
IRGs  Immune-related genes
TFs  Transcription factors
GSEA  Gene set enrichment analysis
MAD  Median absolute deviation
MGs  Module genes
IRMGs  Immune-related module genes
PIRMGs  Prognostic IRMGs
LASSO  Least absolute shrinkage, and selector operation
AUC   Area under curve
ROC  Receiver operating characteristic
MHC  Major histocompatibility complex

Bladder cancer (BCa) is one of the most common urinary malignancies and there are around ten thousand newly 
diagnosed BCa per year  worldwide1. Approximately 3/4 BCa are non- muscle-invasive bladder cancer (NMIBC) 
at the initial time of being  diagnosed2. Treatment strategies for NMIBC include transurethral resection of blad-
der tumor with or without intavesical chemotherapy or immunotherapy, while the primary treatment option 
for muscle-invasive bladder cancer (MIBC) is radical cystectomy combined with intavesical medicine  therapy3. 
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The patients of BCa can have a favorable prognosis if the cancerous cells are confined to sub-mucosal connec-
tive tissues. Disappointingly, the 5-year overall survival rate can be declined to lower than 15% from 80% once 
the lesions progress beyond the lining, into the surrounding bladder muscle and even other parts of the  body4. 
Moreover, the conventional therapeutics cannot make a satisfactory outcome for patients of late-stage  BCa5. In 
such conditions, development of new strategies and efficient therapeutics are urgently needed to improve the 
prognosis for patients with BCa.

Recently, the explosive growth of researches on immunotherapy made historic breakthroughs in various types 
of malignancies including prostate cancer, renal clear cell carcinoma, etc.6,7. Li et al. have confirmed the critical 
role of tumor microenvironment in the progression of  BCa8. And significant heterogeneities have been found 
in genome, transcriptome and biological process among groups with different immune-infiltration abundances 
in  BCa9. These works suggest the importance and necessity of exploration of the immune-related molecular 
mechanisms in BCa.

This study intended to quantify the immune cells’ infiltration abundances in BCa by single sample gene set 
enrichment analysis (ssGSEA), and found genes correlated with the prognostic immune cells by weighted correla-
tion network analysis (WGCNA). Then, a signature based on hub genes was constructed to calculate the survival 
risk of patient of BCa. Additionally, we built a nomogram to predict the overall survival rate at 1-, 3- and 5-year 
follow up, based on the signature and clinicopathological parameters. The results of our study provided several 
potential immunotargets and evidences for further research in immunotherapy of BCa.

Results
Identification of shared prognostic immune cells. As listed in Table 1, five shared immune cells related 
to prognosis of BCa were identified, including cytotoxic cells, CD8+ T cells, T helper cells, T follicular helper 
cells (TFH), and Dendritic Cells (DC). The KM curves of the five common prognostic cells were presented in 
Supplementary Fig. 1a, which showed that high infiltration levels tumor samples had favorable prognosis.

The results of significant relationship between clinicopathological factors and prognostic cells were demon-
strated in Supplementary Fig. 1b. The infiltration abundance of T helper cells was significantly lower in samples 
of elder patients, high grade, late stage (stage III and IV) and MIBC subtype. TFH also showed lower infiltration 
level in samples of late stage. The infiltration abundance of CD8 T cells, however, was significantly higher in 
MIBC, which may be influenced by the basis of small sample size of NMIBC.

Table 1.  Identification of shared prognostic immune cells. The first five immune cells in bold were considered 
as the share prognostic ones. KM Kaplan–Meier, HR hazard ratio, FDR p-values adjusted in FDR method.

Immune cells

KM survival with 
log-rank test

Univariate Cox regression 
analysis

p-values FDR HR p-values FDR

Cytotoxic_cells < 0.001 0.011 0.117 0.002 0.031

CD8_T_cells 0.011 0.124 0.000 0.003 0.031

DC 0.029 0.124 0.189 0.025 0.084

T_helper_cells 0.020 0.124 0.001 0.005 0.043

TFH 0.026 0.124 0.009 0.012 0.064

Neutrophils 0.031 0.124 4.106 0.120 0.233

T_cells 0.068 0.232 0.252 0.024 0.084

NK_CD56bright_cells 0.118 0.291 0.121 0.013 0.064

Tem 0.121 0.291 1.316 0.846 0.923

Th17_cells 0.103 0.291 0.293 0.061 0.160

Tgd 0.228 0.497 0.288 0.136 0.233

NK_cells 0.280 0.559 28.342 0.104 0.228

B_cells 0.484 0.613 0.097 0.163 0.252

Eosinophils 0.362 0.613 0.009 0.067 0.160

Macrophages 0.390 0.613 2.388 0.168 0.252

Mast_cells 0.436 0.613 3.444 0.131 0.233

NK_CD56dim_cells 0.349 0.613 1.005 0.995 0.995

Th2_cells 0.413 0.613 29.974 0.038 0.113

TReg 0.485 0.613 0.548 0.327 0.436

Th1_cells 0.522 0.626 1.584 0.639 0.731

iDC 0.605 0.691 1.013 0.992 0.995

Tcm 0.716 0.781 0.257 0.468 0.562

aDC 0.781 0.815 0.608 0.421 0.532

pDC 0.989 0.989 0.536 0.287 0.406
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Development of a co‑expression network and identification of the key module. Firstly, we 
constructed the sample dendrogram and trait heatmap with no outlier sample detected. Then, under the soft-
thresholding of 3, the gene cluster dendrogram was produced with the high similarity of feature genes into the 
same module. Next, we created a module-trait heatmap to demonstrate the correlation between the infiltration 
levels of the five prognostic immune cells and different modules. As showed in Fig. 1, turquoise module showed 
the highest correlation coefficient with CD8 T cells (cor = 0.54), TFH (cor = 0.43), cytotoxic cells (cor = 0.75) and 
DC (cor = 0.55) simultaneously. Additionally, this module had marginally significant and weak correlation with 
the survival time compared to other modules. Taking together, this module was regarded as the key module and 
genes within the module were the most relevant to tumor prognosis. We then extracted all genes in this module 
for next studies.

Identify IRMGs and perform enrichment analysis. As shown in Fig. 2a, a total of 259 shared genes of 
IRGs and MGs were identified and considered as immune-related module genes (IRMGs).

The top 20 enriched terms by the online tool Metascape were listed in Fig. 2b. The highest-levels of enriched 
clusters in the four categories were cytokine-cytokine receptor interaction in KEGG pathway, lymphocyte activa-
tion in biological process of GO, Adaptive Immune System in Reactome Gene Sets, and PID IL12 2PATHWAY 
(IL12-mediated signaling events) in Canonical pathways.

PIRMGs identification, mutation analysis and TF regulatory network construction. 376 sam-
ples were randomly and equally divided into training and testing cohorts. We then performed univariate Cox 
regression analysis on the IRMGs in training cohort and identified 12 IRMGs related to the prognosis of BCa 
(Fig. 3a). Subsequently, to clarify the molecular characteristics of the PIRMGs, we used the online tool cBio-

Figure 1.  Identification of key module associated with the prognostic immune cells through WGNCA by 
module-trait heatmap. Each cell contains correlation and p value. Each column represents a trait. The module 
name is shown to the left side of each cell. Each module represents a cluster of densely interconnected genes in 
terms of co-expression.

Figure 2.  IRMGs identification and enrichment analysis. (a) 259 IRMGs (overlapping area) screened out by 
intersection of 2498 IRGs (circle at left) and 1017 MGs (circle at right). (b) The top 20 enriched clusters in 
Metascape.
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portal to perform the gene alternations analysis and found that the most common types were amplification and 
mutation (Fig. 3b).

We then distinguished the TFs from the turquoise module and constructed a regulatory network based on 
the 12 PIRMGs and 15 module-related TFs (Fig. 3c,d).

Develop a signature in the training cohort. The prognostic signature was developed with five PIRMGs, 
namely FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1 (Table 2). The risk score calculator was: Risk score = 0.
148502 × Exp.FPR1 − 0.23798 × Exp. CIITA − 0.1929 × Exp. KLRC1 + 0.190133 × Exp. TNFRSF6B − 0.24818 × Exp. 
WFIKKN1.

Next, 188 BCa samples in the training cohort were divided into high- and low-risk groups according to the 
median risk score of 1.018. Figure 4a–c demonstrated the risk score distribution, survival status and the five 
PIRMGs expression patterns between two groups. To assess the prognostic value of the signature, we performed 
KM survival analysis and found that patients in high-risk group had worse prognosis compared to those in 
low-risk group (Fig. 4d). We then produced time‐dependent ROC curves to estimate the performance of the 

Figure 3.  Regulatory network analysis of PIRMGs and module-related TFs. (a) A forest plot demonstrated the 
12 IRMGs identified by univariate Cox regression analysis (p-value < 0.05). Right panel illustrated the hazard 
ratio of 12 IRMGs, in which red box indicated HR > 1 and light-blue indicated HR < 1. (b) Alteration analysis of 
PIRMGs by online database cBioPortal. The “+” and “−” symbols indicated that whether the alterations in DNA 
levels can be detected or not in corresponding dataset. (c) Identification of 15 module-related TFs (overlapping 
area) by intersection of 1017 MGs (circle at left) and 318 TFs (circle at right). (d) A regulatory network of the 
significant correlations of PIRMGs (circle) and module-related TFs (triangle). Lines indicated correlations. Red 
or light-blue indicated positive or negative correlation, respectively.
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signature, and found that area under curve (AUC) for 1‐, 3- and 5-year survival prediction was 0.798, 0.748 and 
0.656, respectively (Fig. 4e).

Signature validation in internal and external validation datasets. Based on the risk score calcula-
tor proposed in the training cohort, the risk score of each BCa sample of both internal and external validation 
datasets were obtained and these samples were further divided into high- and low-risk groups according to the 
median risk score in training group.

In internal validation dataset, the results were similar to those of the training cohort (Supplementary Fig. 2). 
Additionally, the results of the external validation datasets also suggested that BCa patients in high-risk group 

Table 2.  Information of the five PIRMGs in the signature. Coef regression coefficient calculated by 
multivariate Cox regression analysis, HR hazard ratio, CI confidence interval, FDR p-values adjusted in FDR 
method.

Gene symbol Ensemble ID Coef HR p-value FDR

FPR1 ENSG00000171051 0.149 1.160 0.032 0.032

CIITA ENSG00000179583 − 0.238 0.788 0.003 0.008

KLRC1 ENSG00000134545 − 0.193 0.825 0.016 0.020

TNFRSF6B ENSG00000243509 0.19 1.209 0.006 0.010

WFIKKN1 ENSG00000127578 − 0.248 0.780 0.003 0.008

Figure 4.  Evaluation of the prognosis prediction power of the five PIRMGs signature in the training group. (a) 
Distribution of risk score. (b) Survival status of BCa patients. (c) The expression profiles of the five PIRMGs. (d) 
KM survival analysis of the high- and low-risk groups. (e) Time-dependent ROC curve of the signature.
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also suffered from worse prognosis than those in low-risk group (Fig. 5). Moreover, the signature presented 
stable performance in all cohorts.

In conclusion, the five PIRMGs signature can divided BCa patients into two risk-level groups with significant 
differences in overall prognosis.

Independent analysis of the signature and clinicopathological characteristics. As shown in 
Table  3, the signature showed independent prognostic prediction ability in three cohorts of TCGA dataset, 
simultaneously. Besides, age and stage were considered as two independent clinicopathological predictors of 
BCa.

The results of clinical features relationship analysis demonstrated that patients of high grade, late stage, MIBC 
subtype, and older age had significant higher risk scores (Fig. 6a).

Stratified analysis was further carried out between the signature and age and stage. And the results showed 
that the signature had significant prognostic value and reliability for BCa patients with the same age and late 
stage (Fig. 6b–i).

In short, these results suggested the relationship between signature and progression of BCa.

Construction of a nomogram. Based on the five PIRMGs signature and age and stage, we constructed 
a nomogram to predict the 1-, 3-, and 5-year overall survival of BCa (Fig. 7a). Time-dependent ROC curves 
showed the adequate discrimination of the nomogram with an AUC of 0.774, 0.724, and 0.709 at 1-, 3-, and 
5-year follow up (Fig. 7b). Additionally, we plotted the calibration plots to demonstrated the good predictive 
effect of this nomogram on overall survival (Fig. 7c).

Figure 5.  Evaluation of the prognosis prediction power of the five PIRMGs signature in (a) GSE32548 and (b) 
GSE32894 by KM survival analysis of the high- and low-risk groups and time-dependent ROC curves.
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Table 3.  Independence analysis results of the five PIRMGs signature in three cohorts. HR hazard ratio, 
Subtype muscle-invasive BCa and non-muscle-invasive BCa, FDR p-values adjusted in FDR method.

Cohorts Variable

Univariate Multivariate

HR p-value FDR HR p-value FDR

Training (n = 188)

Age 1.037 0.038 0.076 1.027 0.016 0.042

Gender 1.409 0.608 0.644 1.325 0.243 0.437

Grade 3.724 0.283 0.340 0.994 0.995 0.995

Subtype 2.003 0.852 0.852 0.750 0.590 0.724

Stage 2.150 0.014 0.033 1.975 < 0.001 < 0.001

Risk score 1.462 < 0.001 < 0.001 1.314 < 0.001 < 0.001

Testing (n = 188)

Age 1.025 0.001 0.003 1.020 0.099 0.198

Gender 0.871 0.133 0.218 0.824 0.475 0.660

Grade 2.953 0.192 0.266 1.699 0.603 0.724

Subtype 1.083 0.175 0.263 0.729 0.477 0.660

Stage 1.447 < 0.001 < 0.001 1.400 0.032 0.072

Risk score 1.306 < 0.001 < 0.001 1.293 0.001 0.002

Entire (n = 376)

Age 1.031 < 0.001 0.000 1.024 0.004 0.012

Gender 1.144 0.438 0.493 1.057 0.755 0.799

Grade 3.285 0.095 0.171 1.381 0.655 0.737

Subtype 1.441 0.264 0.339 0.750 0.398 0.652

Stage 1.773 < 0.001 < 0.001 1.633 < 0.001 < 0.001

Risk score 1.400 < 0.001 < 0.001 1.326 < 0.001 < 0.001

Figure 6.  Relationship between risk score/signature and clinical characteristics. (a) Analysis of risk score in age, 
grade, stage and subtype. Results of stratified analysis: (b,c), age > 65; (d,e), age ≤ 65; (f,g) stage III and IV; (h,i) 
stage I and II.
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In traditional clinical practices, some clinical variables such as age, tumor stage and grade were widely used 
in evaluating the survival probability of patients of BCa. Hence, to further test the clinical utility of our signature, 
we designed a full model composed of risk score and clinical variables, and a base model only integrating clinical 
variables. As illustrated in Supplementary Fig. 3, the full model demonstrated superiority to the based model in 
1-, 3-, and 5-year time point. Moreover, we compared the AUC value of the nomogram to those of other clinical 
variables by ROC curves (Supplementary Fig. 4). In a word, the signature combined with traditional clinical 
variables has potential clinical utility.

Discussion
In this study, we identified five PIRMGs (FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1) from the turquoise 
module which showed positive and significant correlations with several immune cells including CD8+ T cells. 
A prognostic signature was then constructed to divide patients of BCa into two distinct risk groups. Ultimately, 
a nomogram composing of signature, age and tumor stage was developed to calculate the total score of each 
BCa and return a quantitative survival probability. Two GEO datasets were obtained to validate the significant 
predictive power and good performance of the signature and nomogram, respectively. Although there have been 
several immune-related signatures proposed in literature, we firstly proposed a novel immune cell infiltration 
abundance-related prognostic signature of BCa through WGCNA.

Though correlation analysis between TFs of the turquoise module and PIRMGs, three key TFs (STAT4, IKZF1 
and STAT1) were identified from the network. STAT4 and IKZF1 have been proved as essential factors in immune 
cell development and immune  response10. STAT1 can affect the cellular survival and response to pathogens due 
to its critical roles in gene expression.

Cytotoxic cells are composed of CD8+ T cells, gamma delta T cells (Tγδ) and natural killer (NK) cells, 
participating in the innate immune system. The definite function of cytotoxic cells is eliminating intracellular 
pathogens and abnormal cells. Unlike CD8 T cells with strict major histocompatibility complex (MHC) restric-
tion, both Tγδ and NK cells have the ability to recognize and kill infected cells in the absence of antibodies and 

Figure 7.  Building and evaluating the predictive power of the nomogram. (a) A nomogram constructed 
based on the five PIRMGs signature, age and stage. (b) Time-dependent ROC curves of the nomogram in the 
prediction of prognosis at 1-, 3-, and 5-year time points. (c) Calibration plots of the nomogram in 1-, 3-, and 
5-year survival. The predicted and the actual probabilities of survival are plotted using blue and black solid lines, 
respectively.
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MHC, and secret a large number of cytokines, allowing for a rapid immune  response11. As a critical role in the 
adaptive immune system, T helper cells regulate the proliferation of B cells and participate in pathogen clearance, 
and autoimmunity through specific coordinate effector functions. There are two major subsets of T helper cells 
(Th1 and Th2 cells) once the proliferating T helper cells develop into effector T cells. Th1 cells mainly lead to 
an activated cell-mediated response, while Th2 cells favor a predominantly humoral  response12. TFH, a subset 
CD4+ T cells, are found in B cell follicles and germinal centers. TFH play an important role in regulating the 
selection and survival of B cells that can differentiate into plasma cells and memory B cells. More importantly, 
TFH are believed to have the ability to decrease the repertoire of potentially autoimmune-causing mutated B 
cells within the germinal center. In general, the functions of, and mediation between, the cytokine, immune 
cells, and immune systems are critical for anti-tumor immunity, and profound understanding in these molecular 
interactions can promote the breakthroughs in tumor immunotherapies.

WFIKKN1, encodes large extracellular multidomain proteins, were mainly explored in cell growth and 
 metabolism13, while, the biological behavior of WFIKKN1 was poorly studied in tumors.

As reported in previous studies, the expression of peptide-loaded HLA class I molecule (HLA-E) in tumor cells 
can negatively mediate the anti-tumor activity of NK cell, by ligation of the NK inhibitory receptor CD94/NKG2A 
(KLRC1)14. This key molecular mechanism in tumor resistance to immune cells was further explored by Kamiya 
et al. via establishing NKG2Anull and NKG2A + NK cells. And the results showed that NKG2A downregulation 
was associated with the higher cytotoxicity of NK cell in decreasing HLA-E-expressing tumor  cells15. The consist-
ent result was also reported in the study by Chen et al. who further found that NKG2A + CD8+ T cells form the 
predominant subset of NKG2A+ cells in lung cancer tissue but not NK cells and NKG2A blockade could promote 
anti-tumor immunity by reducing dysfunctional CD8+ T  cells16. Surprisingly, these findings were contrary to 
the results of our study in which high expression of NKG2A was associated with favorable prognosis. Further 
studies are required to explore the role and molecular mechanism of NKG2A in BCa.

The critical role of CIITA in immune response to tumor cells was well established in literature. Mortara et al. 
reported that MHC class II expression in breast cancer was dependent on CIITA. And they found that CIITA-
induced MHC class II expression on tumor cells had the ability of triggering an adaptive and protective immu-
nity by presenting tumor antigen to Th cells, antitumor polarization, and establishment of antitumor immune 
 memory17. Accolla et al. proposed an innovative method for construction of optimal anti-tumor vaccine, based 
on the biological functions of CIITA-induced MHC class II. The reason why traditional tumor-specific MHC-
I-bound peptides had limited anti-tumor efficacy, as they analyzed, was that Th cell was inadequate triggered to 
maintain the proliferation of all the immune effector cells. Considering this drawback, they conducted a in vivo 
in mice assay and found that CIITA-driven MHC class II expression in tumor cells revealed strong inhabitation 
of tumor  growth18. The protective role of CIITA in tumor was also proved by Lee et al.19. Based on these find-
ings, novel anti-tumor vaccination protocols will be established and translated in clinics to provide a favorable 
prognosis for patients with tumors.

FPR1 functions as a key part of the innate immune system mainly expressed in the phagocytic and blood 
leukocyte cells, and mediates the response to pathogens invasion. Jiang et al. reported that overexpression of 
FPR1 was associated with drug-resistant BCa and may deteriorate the overall condition of drug-resistant  BCa20. 
The biological behaviors of FPR1 were also explored in ovarian  cancer21, cervical  cancer22, and lung  cancer23 as 
a risk factor related to poor prognosis, advanced stage and metastasis. However, Prevete et al. found that FPR1 
acted as a tumor suppressor in human gastric cancer by counteract  angiogenesis24.

TNFRSF6B belongs to the tumor necrosis factor receptor superfamily and acts as inhibiting Fas ligand-
induced  apoptosis25. Upregulated TNFRSF6B was identified in several human cancers including colon and lung 
cancers, and functioned as predictor of tumor  invasion26. Tseng and colleagues found that overexpression of 
TNFRSF6B was also associated with the progression of chronic kidney  disease27. Zekri et al. studied the differen-
tially expressed genes in metastasis advanced Egyptian BCa and found that TNFRSF6B was downregulated in BCa 
samples, which was contrary to our  findings28. This study, however, did not explore the molecular mechanism 
of TNFRSF6B in depth.

Together, we identified five PIRMGs, including FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1, which 
might play a vital role in tumorigenesis of BCa and serve as potential targets of immunotherapy. Besides, we 
developed a prognosis signature based on a series of analyses, which had good prognosis prediction ability in 
BCa. Ultimately, a stable prognostic predictive nomogram of signature, age, and stage, was developed to predict 
the 1-, 3- and 5-year survival probability of patient with BCa. Further researches are needed to verify the clinical 
effectiveness of this nomogram.

Methods
Figure 8 presents the work flow of our study.

Data acquisition. We downloaded the transcriptome data (log2 transformed RSEM normalized count) and 
clinical data of BCa from the TCGA Hub in the UCSC Xena database (https:// tcga. xenah ubs. net). GSE32548 and 
GSE32894 were downloaded from GEO database (https:// www. ncbi. nlm. nih. gov/ gds/). The exclusive criteria of 
BCa samples were: (1) BCa with follow up < 90 days and, (2) BCa with missing survival data. Finally, 376, 126 
and 224 BCa samples in TCGA and GSE32548 and GSE32894 datasets were obtained, respectively. Samples 
of TCGA dataset were divided into training and testing cohorts. The training cohort was used for signature 
construction, and the testing cohort and entire TCGA dataset were used for internal validations. Tow GEO data-
sets were used for external validations. Ethics approval statement is not needed because the BCa samples were 
obtained from the public databases.

https://tcga.xenahubs.net
https://www.ncbi.nlm.nih.gov/gds/
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A total of 2498 immune-related genes (IRGs) were obtained from the Immunology Database and Analysis 
Portal (ImmPort) database (https:// www. immpo rt. org/)29. 318 transcription factors (TFs) were downloaded 
from the Cancer database (http:// cistr ome. org)30 for constructing a regulatory network.

Infiltration levels of 24 immune cells in BCa samples. Firstly, we quantified the infiltration abun-
dances of the 24 immune cells (reported in previous studies) in BCa samples by  ssGSEA31,32. After the infiltration 
levels and the survival data of the BCa samples were obtained and merged, univariate Cox regression analysis 

Figure 8.  Work flow of this study. TF transcription factors, IRG immune-related gene, ssGSEA single sample 
gene set enrichment analysis, WGCNA weighted correlation network analysis, IRMG immune-related 
module gene, PIRMG prognostic IRMG, LASSO Least Absolute Shrinkage and Selector Operation, multiCox 
multivariate Cox.

https://www.immport.org/
http://cistrome.org
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and Kaplan–Meier survival analysis were performed to screen the shared prognostic immune cells. KM curves 
were produced to illustrate the results of survival analyses.

Then, with an attempt to further clarify the possible association between the shared prognostic cells and tumor 
progression, we analyzed the relationship between clinicopathological factors (age, grade, stage and subtypes) 
and these cells.

Construction of a weighted co‑expression network. The input data files of WGCNA were: (1) tran-
scriptome data of the 376 BCa samples of TCGA dataset and (2) the phenotype matrix which consisted of the 
survival data and the infiltration levels of the identified prognostic immune cells.

Firstly, the variability of gene expressions across the 376 samples was measured by a robust method called 
median absolute deviation (MAD). And the top 5000 MAD genes were identified for following analysis. A sample 
dendrogram with phenotype heatmap was constructed.

Subsequently, we calculated the best soft-thresholding, named β, by Soft Threshold function. A weighted adja-
cency matrix was then constructed based on the β value. And the adjacency matrix was further transformed into 
a topological overlapping matrix (TOM). Finally, genes with similar expressions were clustered into one module 
called co-expression module. p-values and correlation coefficients were calculated to identify the association 
between a co-expression module and the phenotype. Finally, the key module with significant correlation with 
phenotype was identified, and all genes within the module (module genes, MGs) were extracted for next studies.

Identification of immune‑related module genes (IRMGs). IRMGs were considered as the shared 
genes of MGs and IRGs. A Venn plot by “VennDiagram” package in R was generated to show the analytic 
 results33. To reveal the functional mechanism of the IRMGs, we then performed enrichment analysis by online 
tool Metascape (https:// metas cape. org/) which is designed to provide a comprehensive gene list annotation and 
analysis resource for  researchers34.

Identification of prognostic IRMGs (PIRMGs). The 376 BCa samples of TCGA dataset were randomly 
divided into training cohort and testing cohort in the ratio of 1:1. Then, we performed univariate Cox regression 
analysis in the training cohort to screen the IRMGs associated with prognosis of BCa, and IRMGs with p-values 
lower than 0.05 were considered as PIRMGs. The online tool cBioportal (http:// www. cbiop ortal. org/) was then 
used to analyze the alterations of the  PIRMGs35.

Next, we identified TFs in the key module by “VennDiagram” package and analyzed their correlations with 
PIRMGs by Pearson correlation coefficient. We further selected significant correlations under the cutoff values: 
correlation score > 0.4 and p-value < 0.001. A regulatory network of the significant correlations was ultimately 
constructed to further explore the molecular mechanisms of these PIRMGs. Software Cytoscape 3.8.0 was 
employed to visualize the  network36.

Development of a prognostic signature. A prognostic signature was developed by Least Absolute 
Shrinkage and Selector Operation (LASSO) analysis and multivariate Cox regression analysis. Risk score of 
each BCa was calculated using the formula: Risk score =  ExpGene1 ×  CoefGene1 +  ExpGene2 ×  CoefGene2 + … 
 ExpGene(n) ×  CoefGene(n). In this equation, “ExpGene” represented gene expression and “CoefGene” was the 
regression coefficient.

Then, BCa samples in training cohort were divided into high- and low-risk groups depending on the median 
value of the risk score. KM survival curve by log-rank test and time‐dependent receiver operating characteristic 
(ROC) curve were produced to assess the prognostic ability and performance of the signature. Further, the stabil-
ity and reliability of the signature was verified in the internal and external validation group by the same methods.

Furthermore, the independent prognostic ability of signature was assumed by univariate and multivariate 
Cox regression analysis. Stratified analysis was also employed to assess the performance of signature in the same 
clinicopathological characteristics.

Development and evaluation of a nomogram. With an attempt to predict the 1-, 3- and 5-year sur-
vival probability of each BCa patient, we constructed a nomogram based on the risk score and independent clin-
icopathological characteristics. The performance of the nomogram was validated using time‐dependent ROC 
curves and calibration plots.

Additionally, to further asses the clinical utility of the signature for prognosis, we compared a full model 
including risk score and clinical variables (age, stage and grade) to a base model including only clinical variables 
through time-dependent ROC curves. AUC represents the performance of each model at specific time point.

Data availability
The data underlying this study are freely available from the TCGA Hub at Xena datasets (https:// tcga. xenah ubs. 
net) and the GEO database with accession number of GSE32548 and GSE32894 (http:// www. ncbi. nlm. nih. gov/ 
geo/).
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