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Mapping gene and gene pathways 
associated with coronary artery 
disease: a CARDIoGRAM exome 
and multi‑ancestry UK biobank 
analysis
Praveen Hariharan1* & Josée Dupuis2

Coronary artery disease (CAD) genome‑wide association studies typically focus on single nucleotide 
variants (SNVs), and many potentially associated SNVs fail to reach the GWAS significance threshold. 
We performed gene and pathway‑based association (GBA) tests on publicly available Coronary ARtery 
DIsease Genome wide Replication and Meta‑analysis consortium Exome (n = 120,575) and multi 
ancestry pan UK Biobank study (n = 442,574) summary data using versatile gene‑based association 
study (VEGAS2) and Multi‑marker analysis of genomic annotation (MAGMA) to identify novel genes 
and pathways associated with CAD. We included only exonic SNVs and excluded regulatory regions. 
VEGAS2 and MAGMA ranked genes and pathways based on aggregated SNV test statistics. We used 
Bonferroni corrected gene and pathway significance threshold at 3.0 ×  10–6 and 1.0 ×  10–5, respectively. 
We also report the top one percent of ranked genes and pathways. We identified 17 top enriched 
genes with four genes (PCSK9, FAM177, LPL, ARGEF26), reaching statistical significance (p ≤ 3.0 ×  10–6) 
using both GBA tests in two GWAS studies. In addition, our analyses identified ten genes (DUSP13, 
KCNJ11, CD300LF/RAB37, SLCO1B1, LRRFIP1, QSER1, UBR2, MOB3C, MST1R, and ABCC8) with 
previously unreported associations with CAD, although none of the single SNV associations within the 
genes were genome‑wide significant. Among the top 1% non‑lipid pathways, we detected pathways 
regulating coagulation, inflammation, neuronal aging, and wound healing.

Abbreviations
GWAS  Genome wide association studies
CAD  Coronary artery disease
SNV  Single nucleotide variants
CGEX  CARDiOGRAM exome studies
PUBB  Pan UK biobank
GBA  Gene based association analysis
GPA  Gene pathway association analysis
VEGAS  Versatile gene based association studies
MAGMA  Multi-marker analysis of genomic annotation
SIFT  Sorting tolerant from intolerant

Coronary artery disease (CAD) is a complex disease phenotype influenced by numerous genotypic (polygenic) 
and environmental  factors1–3. While much work to understand the effect of various environmental factors was 
undertaken in the past century, recent genome-wide association studies (GWAS) have identified multiple genetic 
loci associated with  CAD4,5.

Although GWAS has identified more than 160 loci with one or more Single Nucleotide Variants (SNVs) 
significantly associated with CAD risk, many are in non-coding and intergenic regions with unknown func-
tional  significance3,6. Many associated SNVs are in linkage disequilibrium (LD) with existing genetic variants, 
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have pleiotropic effects, and are involved in overlapping  pathways6,7. The causal pathways of these pleiotropic 
genetic variants with CAD have yet to be elucidated. A recent study by Coronary ARtery DIsease Genome wide 
Replication and Meta-analysis (CARDIoGRAM) consortium investigators confirmed isoforms of the LPA gene 
(Lipoprotein-A), and the PCSK9 (Proprotein convertase subtilisin/kexin type) gene and discovered new rare 
isoforms of ANGPTL4 (Angiopoietin-like 4) gene linked with lipid homeostasis to be associated with  CAD1. 
However, the common and rare SNVs only contribute to a portion of the heritability of  CAD8. Moreover, report-
ing only the top associated GWAS SNVs can have many limitations. First, it can shift the focus to a narrow set of 
gene-associated pathways to explain complex disease phenotypes. For example, top SNV based GWAS studies 
in CAD have mainly identified SNVs associated with lipid, blood pressure, and obesity  homeostasis1. Second, 
it can lead to omitting SNVs that fail to reach the GWAS significance threshold  yet are involved in disease 
pathophysiology. Third, the addition of SNV-based genetic scores to traditional risk factors only moderately 
improved discriminant statistics for CAD  prediction3,9. Rather than focusing on a few SNVs strongly associated 
with CAD, by considering multiple SNVs in a gene and multiple genes in a pathway, our ability to identify novel 
genes and causal pathways can  improve10–13. This premise is the basis of many gene-based association analyses 
(GBA), which investigates the association of phenotypes with a group of markers (usually SNVs) within a gene 
rather than most-associated individual markers. In GBA, a gene association statistic is calculated using individual 
SNV association statistics after assigning SNVs to genes based on a-priori criteria. A permutation (gene-based or 
phenotype-based) or resampling approach is often used to correct for gene characteristics such as LD structure 
and size. Often GBA forms the basis for gene pathway association analysis (GPA), which tests the association of 
biologically related genes in a predefined pathway with the phenotype of interest using a self-contained or com-
petitive null  hypothesis14. While the self-contained test assumes the null-hypothesis that none of the genes are 
associated with the phenotype, the competitive test assumes a group of genes in a pathway no more likely to be 
associated with the phenotype than other  genes10,14. Both GBA and GPA can put into perspective and supplement 
the individual SNVs identified through GWAS, especially for complex phenotypes influenced by  polygenicity15. 
For instance, the multiple SNVs associated with human height identified through GWAS were put into perspec-
tive using GBA and GPA as being located in genes within Hedgehog, Transcription Growth Factor-Beta, and 
growth hormone pathways that affect skeletal  growth13. Investigating multiple causal pathways can help identify 
biomarkers and therapeutic agents with pleiotropic effects beyond what can be achieved by focusing on single 
gene coding variants, like  PCSK91,9.

Many tools can perform GBA and GPA including Multi-marker analysis of genomic annotation (MAGMA) 
or Versatile gene-based association study (VEGAS2)10,15,16. Each tool is unique and differs in the type of input 
data used, type of annotation used, type of null hypothesis used, the methodology of assigning gene and path-
way scores, type of approach used (permutation or resampling), and  the type of software used (proprietary or 
open-source)10. While there is a lack of consensus on the superiority of a particular tool, tools using competitive 
null hypothesis generally take into account heritability and genomic inflation. They are more suitable for test-
ing multiple genes and pathways using GWAS results.10,15,17. Recent methodological reviews using simulated 
and real GWAS summary statistics have reported that VEGAS, MAGMA, and GSEA are the most popular and 
powerful GBA and GSA  tools16,17. Wojick et al. compared 21 different methods using WTCCC (Wellcome Trust 
Case Control Consortium) data and concluded VEGAS2 had the highest specificity in  GBA16. Both VEGAS and 
MAGMA use a competitive null hypothesis, are available open-source, and use GWAS summary statistics as 
input  data18,19. Hence, this study aims to identify genes associated with CAD using results from non-synonymous 
autosomal genetic variants in the CARDIoGRAM Exome studies (CGEX) with VEGAS2 and further compare 
with  MAGMA19. We further aimed to compare our results in an independent multi-ancestry Pan-UK biobank 
(PUBB) GWAS  study20. Given the limitations of reporting only the top associated SNVs for a complex disease 
phenotype like CAD, we further aimed to map multiple gene pathways associated with CAD, in particular assess 
the contribution of non-lipid based pathways.

Results
We included 89,853 non-synonymous coding SNVs from the CGEX study across 22 autosomes in our final 
analysis (Fig. 1). We did not find evidence of systemic inflation of p-values in the QQ plot analysis (λ GC = 1.06); 
however, when restricted to rare variants, we observed some evidence of inflation in p values (λ GC = 1.29, Sup-
plement 1 FI). In a prior report, the CGEX investigators adjusted test statistics for GC before performing GWAS 
association and included a homogenous population (Supplement 1 (I), Western European ancestry). Hence, we 
did not perform a second GC correction of GWAS association statistics after meta-analysis as it may not represent 
overdispersion due to population stratification but rather represent true genetic  signals21,22.

The PUBB study, our replication cohort, included 85,206 SNVs with MAF ≥ 0.1% across 442,574 multi-
ancestry individuals in our final analysis. We did not find any evidence of overdispersion of association statistics 
(λ GC = 1.11),  even when restricting to rare variants (λ GC = 1.09, MAF ≤ 5%, Supplement      2 FI).

The manhattan plot in Supplement 1 (FII) and Supplement 2 (FII) highlights SNV association results across 
all autosomes in the CGEX and PUBB study.

VEGAS 2 GBA. Table 1 lists the top one percent CAD-associated genes identified by VEGAS GBA in the 
CGEX study and the PUBB study. Supplement 1 (V) describes the entire list of CAD-associated genes identified 
by VEGAS2 GBA in the CGEX study. Based on VEGAS2 GBA, most of the genes identified in the top one percent 
of the associated list carried at least one SNV meeting a significance threshold of p ≤ 1 ×  10–4. VEGAS2 GBA in 
CGEX identified multiple enriched genes (KIAA1462/JCAD, LIPA, FAM177B, PCSK9, ARHGEF26, ZC3HC1, 
LPL, FBF1) that met our significance threshold (p ≤ 3 ×  10–6) and further confirmed them in PUBB (Table 1). 
Many genes have been previously reported to be associated with CAD by a different GBA methods (Table 1 and 
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Supplement 1, VII)23,24. In addition, we further identified nine significant genes in PUBB (ADAMTS7, APOE, 
LPA, SH2B3, HNF1A, CELSR2, MYBPHL, ANGPTL4, EHBP1L1) that have been previously reported to be 
associated CAD by GBA (Table 1)6,23,24. The Manhattan plots (Fig. 2a,b) describes the list of genes across all 
autosomes in the CGEX and PUBB study.

In the top one percent of CGEX associated genes above the Bonferroni-corrected threshold (p > 3 ×  10–6) 
identified by VEGAS2, we identified 13 genes (CELSR2, KCNJ11, HNF1A, ARHGAP25, LRRFIP1, QSER1, 
ABCC8, UBR2, ARVCF, TFPI, MOB3C, BDNF, CYP4V2) without a single SNV meeting a significance threshold 
of p ≤ 1 ×  10–4. Among these 13 genes, 7 (bolded) have been previously reported to be associated with  CAD5,6,8,25. 
These results suggest the complementary role of GBA to identify significant loci and genes in addition to tradi-
tional GWAS  studies11. Also, we identified the DUSP13 gene significantly associated (p = 2 ×  10–6) with IHD in 
the PUBB study, which to our knowledge, has not been previously reported to be associated with CAD. However, 
DUSP13 gene failed to reach statistical significance (p = 0.17) in the CGEX study. When we performed a com-
bined metanalysis (CGEX and PUBB GWAS) of DUSP13 gene p values using the fisher method, we obtained a 
gene-level p-value of 5.4 ×  10–6. Of note, the FAM177B and the DUSP13 gene have also been linked to neuro-
cognitive health and self-reported educational attainment,  respectively26,27.

In addition, in the CGEX VEGAS2 enriched genes, we also identified KCNJ11, CD300LF/RAB37, SLCO1B1, 
LRRFIP1, QSER1, UBR2, MOB3C, and ABCC8 genes, that to our knowledge have not been previously described 
to be associated with CAD using GBA (Table 2). We would also like to highlight the previously unreported 
MST1R gene identified in the top 1% of MAGMA (p = 2.9 ×  10–4) and VEGAS2 (Emp p = 1.9 ×  10–4) in the PUBB 
study that was also identified in the CGEX study. The non-synonymous SNV in MST1R gene (rs2230590) was 
one of the top loci associated with intelligence and neurocognition by an independent international GWAS 
 consortium28. We did not identify any previously reported CAD-associated SNVs in high LD  (r2 > 0.8) with our 
SNVs in the enriched genes in (Table 2 and Supplement 2, VIII).

MAGMA GBA. We identified many significant (p ≤ 3 ×  10–6) genes (PCSK9, FAM177, CARF, WDR12, LPA, 
APOE, ZC3HC1, LPL, LIPA, CCDC92, KIAA1462, LOX, ARHGEF26, GIGYF2, CELSR2, TMEM116, SLC22A1) 
in the CGEX study using MAGMA GBA (Table 1). The Manhattan plots (Fig. 2c,d) describes the list of genes 
across all autosomes in the CGEX and PUBB study. All of the genes have been previously reported in CGEX 
and PUBB GWAS using a different type of GBA (Table 1)23. We further confirmed six genes (PCSK9, FAM177, 
LPA, APOE, LPL, ARGEF26) in the PUBB study (Table 1). Four of the six genes (highlighted) were identified as 
significant (p ≤ 3 ×  10–6) by both GBA methods and in both CGEX and PUBB GWAS (Table 3).

In addition, we identified 17 genes among the top one percent of ranked VEGAS2 and MAGMA genes that 
were identical in CGEX and UKBB (Fig. 4, Table 3). SNVs in many of the genes listed in Table 3 have been previ-
ously reported to be associated with CAD.

There was a significant correlation between ranks of the genes using VEGAS2 GBA and MAGMA GBA in 
CGEX (Spearman correlation r = 0.76, p < 2.2 ×  10–16) and PUBB (Spearman correlation r = 0.82, p < 2.2 ×  10–16) 
study (Fig. 3). Among the top one percent of VEGAS2 GBA genes, almost 94% (44/47) of genes in the CGEX 
study and 85% (52/61) genes in the PUBB study were confirmed in the top one percent of the MAGMA GBA 
gene list, respectively (Fig. 4). Figure 3a,b demonstrate the correlation of ranking between VEGAS2 and MAGMA 
genes, with a high concordance of ranks noted in the top 1% genes.

Figure 1.  SNVs and corresponding genes used in final analysis (42,335 cases and 78,240 controls). SNVs single 
nucleotide variants, GWAS genome wide association studies, RNA ribonucleic acid, UTR  untranslated region.
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VEGAS2 GPA. Supplements 1 (VI) and 2 (V) describe the list of pathways identified by VEGAS2 GPA in 
the CGEX and PUBB study. We identified multiple lipid homeostasis and lipoprotein metabolism pathways in 
the top enriched  pathways, confirming their role in CAD pathophysiology (Table 4). We were also able to iden-
tify other critical regulatory pathways of coagulation (Panther_Blood_coagulation, pathway, Emp p = 8.0 ×  10–6), 
inflammation (PID_AMB2_NEUTROPHILS_PATHWAY, Emp p = 9.2 ×  10–6), neuronal aging (GO:0043523_
regulation_of_neuron_apoptosis, Emp p = 2.2 ×  10–4), and wound healing (GO:0042060_wound_healing, path-
way Emp p = 4.1 ×  10–4) among the top one percent in the CGEX. We found similar pathways modulating inflam-
mation, and neurologic aging among the top one percent of pathways in the PUBB study. However, only the 
coagulation pathway  met the Bonferroni corrected significance threshold (P ≤ 1 ×  10–5, Table 4). This informa-
tion provides further evidence of the complex pathophysiology of CAD that would have otherwise received less 
attention based only on top  SNVs12.

MAGMA GPA. Supplements 1 (X) and 2 (VII) describe the list of pathways identified by MAGMA GPA 
in the CGEX and PUBB study. While we could not perform a head-to-head comparison with the VEGAS2 
pathway analysis, we found a very similar category of pathways within the top one percent of MAGMA path-
ways compared to VEGAS2 pathways (Tables  4 and 5). In addition to the highly significant lipid pathways, 
we identified regulating coagulation (GO:0050817_coagulation), inflammation (amb2_neutrophils_path-

Table 1.  Top enriched genes identified using VEGAS2, and MAGMA GBA in CARDIoGRAM and Pan UK 
Biobank (UKBB). Top one percent of the ranked genes in either VEGAS2 or MAGMA GBA are defined as top 
enriched genes. P values of significant genes (p ≤ 3 ×  10–6) highlighted in bold. Genes highlighted in italics were 
identified using VEGAS2, and MAGMA GBA in CARDIoGRAM and UKBB (Pan UK Biobank). *Previously 
reported by Svishcheva et al.23. † SNVs in corresponding genes previously reported by Van der Hast et al.6. 
‡ SNVs in corresponding genes previously reported by Nelson et al.29. § SNVs in corresponding genes previously 
reported by Hartiala et al.21.

Top significant genes (p ≤ 3 ×  10–6) identified using VEGAS2, and MAGMA GBA in either CARDIoGRAM or UKBB

VEGAS2 GBA MAGMA GBA

Cardiogram P UKBB P CARDIOGRAM P UKBB P

KIAA1462† 1.0 × 10–6 ADAMTS7* 1.0 × 10–6 PCSK9‡ 1.7 × 10–11 ADAMTS7* 7.8 × 10–16

LIPA* 1.0 × 10–6 APOE* 1.0 × 10–6 FAM177B* 2.2 × 10–10 LPA* 4.7 × 10–15

FAM177B* 1.0 × 10–6 LPA* 1.0 × 10–6 CARF* 3.8 × 10–10 APOE* 7.3 × 10–13

PCSK9‡ 1.0 × 10–6 SH2B3‡ 1.0 × 10–6 WDR12‡ 5.0 × 10–10 LPL† 2.4 × 10–10

ARHGEF26‡ 1.0 × 10–6 LPL† 1.0 × 10–6 LPA* 5.0 × 10–10 PCSK9‡ 1.7 × 10–9

ZC3HC1§ 1.0 × 10–6 PCSK9‡ 1.0 × 10–6 APOE* 5.0 × 10–10 SLC22A1 1.8 × 10–9

LPL† 1.0 × 10–6 HNF1A‡ 1.0 × 10–6 ZC3HC1§ 1.6 × 10–9 HNF1A‡ 5.6 × 10–8

FBF1* 2.0 × 10–6 FAM177B* 1.0 × 10–6 LPL† 9.9 × 10–9 PLG† 6.9 × 10–8

CELSR2§ 1.0 × 10–6 LIPA* 1.3 × 10–8 SH2B3‡ 1.1 × 10–7

MYBPHL* 1.0 × 10–6 CCDC92* 9.0 × 10–8 FAM177B* 1.4 × 10–7

ANGPTL4* 1.0 × 10–6 KIAA1462† 2.2 × 10–7 PRRC2A 1.8 × 10–7

DUSP13 2.0 × 10–6 LOX* 2.3 × 10–7 C6orf47* 3.8 × 10–7

EHBP1L1§ 2.0 × 10–6 ARHGEF26‡ 4.4 × 10–7 DUSP13 4.4 × 10–7

KIAA1462† 2.0 × 10–6 GIGYF2‡ 1.1 × 10–6 HLA-B 7.4 × 10–7

ARHGEF26‡ 3.0 × 10–6 CELSR2§ 1.3 × 10–6 ARHGEF26‡ 7.8 × 10–7

TMEM116* 1.3 × 10–6 MYBPHL* 8.0 × 10–7

SLC22A1* 1.9 × 10–6 CDKN2A* 1.2 × 10–6

HSPA1L* 2.4 × 10–6

GPRC5B 2.7 × 10–6

Top one percent genes identified using VEGAS2, and MAGMA GBA in both CARDIoGRAM and UKBB with 
p ≥ 3 × 10–6

CELSR2§ 7.0 ×  10–6 DHX58* 1.6 ×  10–4 MYBPHL* 6.8 ×  10–4 DHX58* 2.1 ×  10–4

MYBPHL* 1.7 ×  10–5 LIPG† 1.4 ×  10–4 DHX58* 1.5 ×  10–5 LIPG† 2.2 ×  10–5

LPA* 1.8 ×  10–5 TNS1* 1.1 ×  10–5 LIPG† 8.4 ×  10–5 TNS1* 1.6 ×  10–5

DHX58* 1.5 ×  10–5 RAB37 2.2 ×  10–5 TNS1* 2.0 ×  10–4 RAB37 3.3 ×  10–5

LIPG† 4.8 ×  10–5 CD300LF 2.3 ×  10–5 RAB37 3.2 ×  10–4 CD300LF 2.8 ×  10–6

TNS1* 9.4 ×  10–5 QSER1§ 4.5 ×  10–4 CD300LF 2.4 ×  10–4 SMG6‡ 2.4 ×  10–5

RAB37 1.2 ×  10–4 ZC3HC1§ 1.4 ×  10–5 SMG6‡ 4.7 ×  10–5 QSER1§ 5.1 ×  10–4

CD300LF 1.2 ×  10–4 SMG6‡ 1.7 ×  10–5 HNF1A‡ 1.2 ×  10–4 KIAA1462† 7.5 ×  10–6

SMG6‡ 1.3 ×  10–4 QSER1§ 1.5 ×  10–3 CELSR2§ 3.2 ×  10–5

HNF1A‡ 1.2 ×  10–4 ZC3HC1§ 8.7 ×  10–6

QSER1§ 2.0 ×  10–4
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way_amb2_Integrin_signaling), neuronal aging (GO:0048156_tau_protein_binding), and wound healing 
(GO:0042060_wound_healing) (Table 5). These findings further consolidate the complex pathophysiology of 
CAD demonstrated by VEGAS2 and MAGMA GPA.

Discussion
In this study, through VEGAS2 GBA and GPA, we identified multiple genes regulating coagulation, inflamma-
tion, wound healing, and neuronal aging pathways to be associated with CAD in the CGEX study. We further 
confirmed many of these findings in an independent large multi-ancestry PUBB study. We were also able to 
replicate our results using a MAGMA GBA and GPA in CGEX and PUBB. We identified 17 top enriched genes 
with four genes reaching statistical significance (p ≤ 3 ×  10–6) using both GBA methods in two GWAS studies. 
SNVs in many of these genes have been reported to be associated with CAD using single SNV association 
 analyses6,8,21,29,30. In addition, we identified few genes that have not been previously reported to be associated 
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Figure 2.  Manhattan Plots of VEGAS2 and MAGMA gene-based association analysis.
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with CAD. VEGAS2 and MAGMA GBA further identified multiple genes carrying sub GWAS threshold SNVs 
and pathways associated with CAD.

While multiple single SNV GWAS analyses using CGEX and PUBB data have been published, few investiga-
tions have focused on GBA and GPA (Table 3). VEGAS2 and MAGMA GBA identified FAM177B as a significant 
gene in both CGEX and PUBB, in addition to PCSK9, LPL, and ARGEF26 (Tables 2, 3). More recently, loci 
in the FAM177B gene have been identified by gene-based association analyses in the UK Biobank cohort by 
Svishcheva et al.23 The FAM177B (rs6683071, A/G, Allele 1 = 19%) missense variant has been predicted to yield 
protein FAM177B isoform X1 ([CAA]Gln143Arg[CGA]). The FAM177B isoform X1 (rs6683071, OR = 1.07), 
and FAM177B isoform X2 (rs2378607, OR = 1.06) have been predicted by the Sorting Intolerant from Tolerant 
(SIFT) tool as tolerant missense variants. However, the isoform X2 has been reported to have a higher prob-
ability of affecting protein function based on a lower SIFT score (SIFT score = 0.07). We did not observe high 
LD between the two SNVs  (r2 = 0.48). FAM177B contained the highest-ranked non-synonymous coding SNV 
(p = 4.2 ×  10–6) associated with one of the cognition phenotypes in the CANTAB study though it failed to reach 
genome-wide  significance26. FAM177B conferred an increased risk of CAD in our study.

Among other SNVs, we identified loci in MYBPHL and DUSP13 gene in CGEX and PUBB. MYBPHL has 
been previously associated with PR-interval, intelligence, neurocognitive function, tau protein levels, and self-
reported educational  attainment27,28,31,32. At the same time, MYBPHL (rs629001, OR = 1.08, p = 2.1 ×  10–5 (CGEX), 
p = 7.6 ×  10–7 (PUBB)) increased the risk of CAD in our study. SNV (rs629001) in the MYBPHL gene has been 
reported as a non-synonymous coding variant by the Leducq Consortium CADGenomics investigators asso-
ciated with  CAD33. MYBPHL is myofilament protein overexpressed in human atrial tissue and its concentra-
tion increases in the serum after cryoablation or radiofrequency ablation induced atrial  damage34. MYBPHL 
is also located in chromosome 1p13.3, which hosts other high-risk CAD  loci35. We did not identify any previ-
ously reported CAD-associated SNVs in high LD  (r2 > 0.8) with our SNVs in DUSP13 or MYBPHL. DUSP13 
gene (rs6480771, OR = 1.04, p = 3.9 ×  10–7 (PUBB), p = 0.21 (CGEX)) and MST1R gene (rs2230590, OR = 1.03, 
p = 3.0 ×  10–3 (CGEX), p = 2.0 ×  10–3 (PUBB)) has also been associated with neurocognitive function and in our 

Table 2.  Top enriched GBA genes previously unreported CAD associations. Genes in bold with p values 
less than the Bonferroni-corrected significance threshold in CGEX (CARDIoGRAM) or PUBB (Pan UK 
Biobank) study (p ≤ 3 ×  10–6). SIFT score: Sorting Intolerant from Tolerant score. A score ranges from 0–1, and 
score ≤ 0.05 is suggestive to functional consequence from protein alteration based on amino acid sequence 
change. HDL high density lipoprotein, BMI body mass index, NA not available, OR odds ratio for coronary 
artery disease. ‡ Negative strand. °Gene trait: Clinical phenotypes (maximum 2) obtained using the GWAS 
catalog (https:// www. ebi. ac. uk/ gwas/ genes), the Ensembl genome database (https:// www. ensem bl. org), the 
National Center for Biotechnology ClinVar web-based database (https:// www. ncbi. nlm. nih. gov/ clinv ar/ varia 
tion/), and through pubmed search (https:// pubmed. ncbi. nlm. nih. gov).

Name SNV in gene Allele1/Allele2
Allele 1 frequency 
(%)

OR (CGEX, SNV p 
value)

OR (PUBB, SNV p 
value)

Amino-acid 
substitution

SIFT score 
(threshold ≤ 0.05) Gene trait°

FAM177B rs2378607 T/G 31% 1.06
(p = 1.1 ×  10–9)

1.04
(p = 1.5 ×  10–7)

[ATT] 
Ile3Ser[AGT] 0.07 Neurocognitive 

health

FAM177B rs6683071 A/G 19% 1.07
(p = 1.2 ×  10–8)

1.04
(p = 1.5 ×  10–5)

[CAA]
Gln143Arg[CGA] 0.99 Neurocognitive 

health

MST1R rs2230590 T/C 49% 1.03
(p = 3 ×  10–3)

1.03
(p = 2 ×  10–3)

[CAA]
Gln523Arg[CGA] ‡ 1 Intelligence/BMI

PLCB3 rs12146487 A/G 17% 0.95
(p = 4 ×  10–5)

0.97
(p = 2 ×  10–2)

[CGC]
Arg483His[CAC] 0.04 Obesity/HDL

KCNJ11 rs5215 C/T 37% 1.03
(p = 1.9 ×  10–4)

1.004
(p = 6.2 ×  10–1)

[GTC]
Val250Ile[ATC] ‡ 0.137 Diabetes, Benign 

islet cell hyperplasia

ANKLE1 rs77683348 A/G 3% 0.89
(p = 8.1 ×  10–5)

1.03
(p = 2.3 ×  10–1)

[CGG]
Arg548Gln[CAG] 0 Breast/ovary cancer

SLCO1B1 rs4149056 C/T 17% 0.95
(p = 7.0 ×  10–5)

0.99
(p = 4.6 ×  10–1)

[GTG]
Val174Ala[GCG] NA

Statin response, 
serum metabolite 
levels, bilirubin and 
thyroxin levels

CD300LF/
RAB37 rs35489971 A/G 19% 1.05

(p = 6.4 ×  10–5)
0.96
(p = 1.8 ×  10–5)

[GTC]
Val19Asp[GAC] ‡ 0 C reactive protein, 

Fibrinogen levels

LRRFIP1 rs11680012 C/G 5% 1.14
(p = 1.8 ×  10–3)

1.03
(p = 1.1 ×  10–1)

[AGG]
Arg634Thr[ACG] 0.47 Adiposity

QSER1 rs62618693 T/C 4% 0.92
(p = 1.9 ×  10–4)

0.93
(p = 3 ×  10–4)

[CGC]
Arg1230Cys[TGC] 0.04 Type II Diabetes, 

Smoking

UBR2 rs62414610 A/G 4% 1.09
(p = 5.9 ×  10–4)

1.04
(p = 3 ×  10–3)

[GAG]
Glu126Lys[AAG] 0.04 Obesity, and Lung 

cancer

MOB3C rs6671527 A/G 47% 0.96
(p = 1.5 ×  10–4)

0.98
(p = 1 ×  10–2)

[CGA]
Arg24Stop[TGA] ‡ NA NA

ABCC8 rs757110 C/A 37% 1.03
(p = 9.5 ×  10–4)

1.003
(p = 6.7 ×  10–1)

[GCC]
Ala1370Thr[ACC] ‡ 0.29 Diabetes

DUSP13 rs6480771 T/C 43% 1.01
(p = 2.1 ×  10–1)

1.04
(p = 3.9 ×  10–7)

([AGC]
Ser160Cys[GGC]) 0.4 Neurocognitive 

health

https://www.ebi.ac.uk/gwas/genes
https://www.ensembl.org
https://www.ncbi.nlm.nih.gov/clinvar/variation/
https://www.ncbi.nlm.nih.gov/clinvar/variation/
https://pubmed.ncbi.nlm.nih.gov
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study was associated with IHD in PUBB. However, both DUSP13 and MST1R genes, did not meet statistical 
significance (p > 3 ×  10–6) in the CGEX  study27,28. DUSP13 gene (rs6480771, T/C, C = 57%) missense variant has 
been predicted to yield protein DUSP13 isoform ([AGC]Ser160Cys[GGC]) (Table 3). A more recent study by 
Wang et al., using GWAS summary and proteomics data from Medical Research Council Integrative Epidemiol-
ogy Unit, suggested strong evidence of association of protein-coding regions in DUSP13 with atrial  fibrillation36. 
In the same study, using multivariable mendelian randomization analysis, CAD phenotype played a causal role 
for atrial fibrillation, suggesting shared genetic pathways between atrial fibrillation and  CAD36. In addition, 
an-invitro study by Shen et al. demonstrated upregulation of DUSP13 genes in cardiac myocytes in response to 
cadmium-induced  cardiotoxicity37. In-vitro studies demonstrating the upregulation of MYBPHL and DUSP13 
to cardiac stress and our gene-based analysis observations suggest their role in CAD  pathophysiology34,37.

Among the top one percent of VEGAS2  genes in CGEX that did not meet our Bonferroni-corrected signifi-
cance threshold (genes in Table 2 with p > 3 ×  10–6), KCNJ11(rs5215, OR = 1.03, 1.9 ×  10–4 (CGEX)) and RAB37 
(rs35489971, OR = 1.05, 6.5 ×  10–5 (CGEX)) have been previously associated with islet cell hyperplasia and fibrino-
gen levels  respectively38,39. Both conferred an increased risk of CAD in our study. SNVs in QSER1 and UBR2 has 
been previously linked with neurodegenerative (Parkinson’s) disease and obesity,  respectively40,41. In our study, 
SNVs in QSER1 and UBR2 conferred a higher risk of CAD with a SIFT score lower than the threshold level 
(P ≤ 0.05), suggesting a high probability of protein function alteration from the amino acid sequence change 
(Table 3). More recently, Hartiala et al. identified the SNV (rs62618693) in QSER1 through single SNV analysis 
to be associated with CAD in the UK Biobank cohort, but it failed to reach statistical significance. QSER1 is one 
of the 17 genes we identified using both GBA methods and in both GWAS studies.

GPA provides insight into the functional implications of enriched genes and the role of different pathways in 
CAD susceptibility. Through VEGAS2 and MAGMA GPA, we were able to identify the association of neuronal 
aging/apoptosis, coagulation cascade, inflammation, wound healing in addition to lipid metabolism to be asso-
ciated CAD. Van der Harst et al. reported coagulation and inflammation pathways using proprietary Ingenuity 
software in CGEX and PUBB  cohorts6. Nelson et al. used 300 SNVs associated with CAD to identify pathways 
related to angiogenesis using Ingenuity  software29. However, using open source VEGAS2 and MAGMA, we 
identified the role of neurocognition in CAD and the role of neuronal apoptosis/aging and coagulation cascade 
for CAD susceptibility. While CAD and vascular dysfunction has long been viewed as a risk factor for cognitive 
decline, our study highlights the hypothesis of “neurocognitive health” and “neuronal aging/apoptosis” as essen-
tial factors modulating CAD risk, likely through shared gene-pathways12,42–45. A recent study by Gu et al. noted 
a high incidence of cognitive decline in older patients presenting with myocardial  infarction46. More recently, Li 
et al. demonstrated the association of genetic components of intelligence  associated with CAD with an inverse 
correlation behavioral risk factors of  CAD47. It has been hypothesized that failure of the glymphatic system lead-
ing to aggregation of neurotoxic proteins could be an underlying mechanism for  dementia45. Glymphatic failure 
has indeed been linked with cardiovascular  disease48. Mouse models of Alzheimer’s disease have demonstrated 
the extracranial aggregation of neurotoxic proteins through the glial-lymphatic  system49. Our observation of 

Table 3.  Top 17 enriched genes identified in both GBA methods across CARDIoGRAM (CGEX) and Pan 
UK Biobank (PUBB). Genes highlighted in bold with p values less than the Bonferroni-corrected significance 
threshold (p ≤ 3 ×  10–6) in both CGEX and PUBB GWAS. °Gene trait: clinical phenotypes (maximum 2) 
obtained using the GWAS catalog (https:// www. ebi. ac. uk/ gwas/ genes), the Ensembl genome database (https:// 
www. ensem bl. org), the National Center for Biotechnology ClinVar web-based database (https:// www. ncbi. nlm. 
nih. gov/ clinv ar/ varia tion/), and through pubmed search (https:// pubmed. ncbi. nlm. nih. gov).

Name Top SNV in gene (CGEX) Top SNV in gene (PUBB) Gene trait°

FAM177B rs2378607 rs2378607 Neurocognitive health

PCSK9 rs11591147 rs11591147 Coronary artery disease, low density lipoprotein levels

LPL rs328 rs328 Coronary artery disease, metabolic syndrome

ARHGEF26 rs12493885 rs12497267 Coronary artery disease, systolic blood pressure

KIAA1462/JCAD rs3739998 rs3739998 Coronary artery disease, platelet count

ZC3HC1 rs11556924 rs11556924 Coronary artery disease, platelet count

LPA rs41272114 rs3124784 Coronary artery disease, peripheral artery disease

DHX58 rs2074158 rs34891485 Coronary artery disease, high density lipoprotein levels

LIPG rs2000813 rs77960347 Total cholesterol levels, high density lipoprotein levels

MYBPHL rs629001 rs629001 PR interval/intelligence, tau protein levels

CELSR2 rs72703203 rs72703203 Coronary artery disease, low density lipoprotein levels

TNS1 rs918949 rs918949 Coronary artery disease, blood pressure

SMG6 rs903160 rs903160 Coronary artery disease, body mass index

HNF1A rs1169288 rs1169288 Coronary artery disease, C reactive protein

CD300LF rs35489971 rs35489971 C reactive protein, fibrinogen levels

RAB37 rs35489971 rs35489971 C reactive protein, fibrinogen levels

QSER1 rs62618693 rs62618693 Type II diabetes, smoking

https://www.ebi.ac.uk/gwas/genes
https://www.ensembl.org
https://www.ensembl.org
https://www.ncbi.nlm.nih.gov/clinvar/variation/
https://www.ncbi.nlm.nih.gov/clinvar/variation/
https://pubmed.ncbi.nlm.nih.gov
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genes linked with neurotoxic tau proteins, and neuronal aging-based pathways associated with CAD raises the 
possibility of glymphatic system’s role in CAD through extracranial aggregation neurotoxic proteins.

Our study has certain limitations. First, we used publicly available GWAS summary data from the CGEX 
exome array and PUBB data and limited our analysis only to non-synonymous SNVs. Our approach of using 
non-synonymous SNVs has been applied in other complex disease GBA and individual SNV association stud-
ies.1,50,51 When we included all non-synonymous SNVs (rare and common) in our analysis,we did not find any 
evidence of systemic inflation of p-values. For VEGAS2 GBA, we considered SNVs in the ‘0kbloc’ region, with 
respect to 5’ and 3’ UTR. This step can reduce the power of detecting regulatory SNVs that are otherwise not 
tagged by the gene boundaries. However, the inclusion of multiple unassociated SNVs might reduce the power 
of gene-based approaches. Hence, this step decreased the burden of multiple testing. Moreover, based on the 
included SNVs, we had sufficient SNV information covering almost 83% of the gene space across all designated 
NCBI 37.3 autosomal genes. Nevertheless, there remains significant variation in defining gene boundaries across 
GBA, and any gene-based study should be viewed as a complement to single SNV association  studies52–54. While 
not exhaustive, VEGAS2 GPA used canonical pathways and gene-sets from BIOCARTA, REACTOME, PAN-
THER, gene ontology, pathway commons, and pathway interaction database. In this step, we may have missed 
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Figure 3.  Scatter plot of VEGAS2 and MAGMA ranked genes. R Spearman correlation coefficient, GBA gene 
based association analysis.
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other pathway annotation databases that would have otherwise identified novel CAD associated pathways. Our 
discovery cohort was primarily in individuals from Western European ancestry. However, we were able to rep-
licate many of our findings in multi-ancestry though predominant Western European UK Biobank cohort. In 
addition, some genes discovered in our study included SNVs have been previously associated with CAD indi-
viduals of East and South Asian  ancestry5,55. We only used SIFT as a tool to evaluate the likely protein function 
consequences from amino-acid substitutions. We acknowledge that many protein function prediction tools are 
available using coding SNVs (PolyPhen, SIFT, Grantham, MutationTaster) and some tools like CADD (Combined 
Annotation Dependent Depletion) that could combine these individual  tools56. However, a technical report by 
Kircher et al. comparing many individual tools noted that SIFT score had the highest discriminatory capacity, 
followed by PolyPhen for protein level  metrics56. Finally, all observed VEGAS2 and MAGMA associations need 
functional in-vitro, in-vivo, and population risk modification studies to confirm their physiological significance.

In conclusion, the VEGAS2 and MAGMA gene and pathway analysis lead to discovering previously unre-
ported genes associated with CAD and could map functional pathways involving the discovered loci. In particu-
lar, we were able to confirm the coagulation cascade’s  role12 and identified neuronal health and neuronal aging as 
critical gene-based pathways associated with CAD. Many SNVs in the VEGAS2 and MAGMA enriched genes and 
pathways had subthreshold p-values based on the traditional GWAS significance level and underscore the role of 
subthreshold SNVs and the genes containing the SNVs in CAD pathophysiology. This study also underscores the 
multiple pathways associated with CAD and the need for a continued multifaceted approach for CAD prevention.

Figure 4.  Venn diagram of top one percent VEGAS2, MAGMA ranked genes in CARDIoGRAM and Pan UK 
Biobank study. UKBB United Kingdom Biobank.

Table 4.  Top one percent VEGAS2 lipid and non-lipid based enriched pathways in CARDIoGRAM 
(CGEX)  and Pan UK Biobank (PUBB). GO gene ontology, PID pathway interaction database, PUBB Pan UK 
Biobank. Empirical p value: Obtained from resampling genes from the pathway and calculated as the number 
of instances the summed chi-squared test statistics per resample exceeds observed test statistic. *Pathways in 
bold with empirical pathway significance threshold was defined was p ≤  10–5.

Molecular pathway name

Rank Genes in the pathway Empirical P value Rank Genes in the pathway Empirical p value (P)

CARDIoGRAM PUBB

Lipid pathway

GO:0055088_lipid_homeostasis 1 16 1.0 × 10–6* 12 18 8.0 × 10–6*

GO:0016298_lipase_activity 2 32 2.0 × 10–6* 76 36 7.0 ×  10–4

REACTOME_LIPID_DIGESTION_MOBILIZATION_AND_
TRANSPORT 7 15 6.0 × 10–6* 4 17 2.0 × 10–6*

GO:0034368_protein-lipid_complex_remodeling 5 8 4.0 × 10–6* 8 10 2.0 × 10–6*

Coagulation

PANTHER_BIOLOGICAL_PROCESS_Blood_clotting 8 14 8.0 × 10–6* 38 29 1.9 ×  10–4

Inflammation

PID_AMB2_NEUTROPHILS_PATHWAY 26 10 9.2 ×  10–5 42 10 9.2 ×  10–5

GO:0042060_wound_healing 47 36 4.2 ×  10–4 882 51 7.0 ×  10–2

Neuronal aging

GO:0043523_regulation_of_neuron_apoptosis 42 13 2.2 ×  10–4 123 15 1.9 ×  10–3

GO:0031175_neurite_development 314 47 1.9 ×  10–2 51 55 3.2 ×  10–4
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Methods
Study participants. CGEX study. We performed GBA and GPA on the publicly available CGEX GWAS 
summary data. The CGEX summary data includes 120,575 (42,335 cases and 78,240 controls) individuals re-
cruited from 20  studies across Europe and North  America1. Supplement 1 (I) provides details of individual 
studies. While there was some heterogeneity in the CAD definition across the study cohorts, the case definition 
for CAD can be summarized as the presence of one or more of the following: a history of myocardial infarction 
(MI); the presence of stable or unstable angina; a history of percutaneous coronary intervention (PCI) or coro-
nary artery bypass graft (CABG); at least one epicardial coronary artery stenosis (> 50%) in coronary angiogram; 
International Classification of Disease (ICD-9 or 10) codes compatible with MI or PCI or CABG or chronic 
ischemic heart disease; abnormal myocardial stress imaging or died due to CAD. Controls were selected  from 
population-based cohorts who were asymptomatic, generally older than case definition criteria, or did not meet 
the CAD definition as stated above.

PUBB study. We performed a replication analysis of our GBA and GPA using the publicly available PUBB 
GWAS summary data (https:// pan. ukbb. broad insti tute. org). In brief, PUBB prospectively recruited 500,000 
consented individuals across different ancestries residing in the UK between the ages 40–69 years from 2005 to 
2010 and performed a genotypic and phenotypic  evaluation20. Data across 7221 phenotypes were prospectively 
obtained through self-reported questionnaires, ICD codes during clinic visits and hospitalizations, biomarker 
panel, radiographic studies, and other health data points through electronic medical records from National 
Health Services or other UK National Registries. We used phenocode 411 (developed based on ICD-9 or 10 rep-
resenting “Ischemic Heart Disease-IHD”) to access publicly available GWAS summary statistics across 442,574 
individuals (43,287 cases, 399,287 controls)57. We downloaded the summary association statistics (version 3) 
from the publicly available amazon cloud link provided within the domain https:// pan. ukbb. broad insti tute. org/ 
downl oads/ index. html (https:// pan- ukb- us- east1. s3. amazo naws. com/ sumst ats_ flat_ files/ pheco de- 411- both_ 
sexes. tsv. bgz). This phenotype was chosen to match the CGEX study case definition and mapped to the fol-
lowing disease entities: stable or unstable angina, MI, mechanical complications from MI, presence of CABG 
or PCI, atherosclerotic heart disease, and other acute or chronic ischemic heart disease. The PUBB was a pan-
ancestry cohort comprising of individuals representing European (EUR, n = 419,724), Central/South Asian 
(CSA, n = 8870), African (AFR, n = 6624), East Asian (EAS, n = 2708), Middle Eastern (MID, n = 1593), Admixed 
American (AMR, n = 979) other (n = 2076) ancestries.

Genotyping and quality control. CGEX study. Details regarding each study’s genotyping and sample 
quality control (QC) procedures have been reported earlier by CGEX  investigators1. In brief, the CGEX investiga-
tors performed genotyping on the Illumina HumanExome BeadChip (v 1.0 or 1.1) or the Illumina OmniExome 
array (including markers from HumanExome BeadChip) per manufacturer’s protocol. Subsequently, phasing 
and imputation were performed by CGEX investigators using SHAPE IT, IMPUTE2, MACH, and  BIMBAM8,58. 
The accuracy of rare variant genotypes was increased using the zCall  algorithm59. The CGEX investigators per-
formed sample QC on genotypes before the application of the zCall algorithm. The CGEX investigators used the 
Hardy–Weinberg exclusion threshold of 1.0 ×  10–51,30.

PUBB study. Details regarding genotyping and sample quality control (QC) procedures have been reported 
earlier by the PUBB study  group20. In brief, all PUBB individuals were genotyped using the UK Biobank BiLEVE 
axiom array and the UK Biobank Axiom array. All sample batches (n = 106) were genotyped at the Affymetrix 

Table 5.  Top one percent MAGMA lipid and non-lipid based enriched pathways in CARDIoGRAM (CGEX) 
or Pan UK Biobank (PUBB). GO gene ontology, PUBB Pan UK Biobank. *Pathways in bold with empirical 
pathway significance threshold was defined was p ≤ 5 ×  10–6.

Molecular pathway name

Rank
Genes in the
Pathway P value Rank Genes in the pathway P value

CARDIoGRAM PUBB

Lipid pathway

GO:0017127_cholesterol_transporter_activity 2 10 5.9 × 10–8* 4 9 1.5 × 10–7*

GO:0034368_protein-lipid_complex_remodeling 3 14 2.1 × 10–7* 5 14 1.6 × 10–7*

GO:0055088_lipid_homeostasis 13 67 3.9 ×  10–5 13 69 1.2 × 10–6*

Coagulation

GO:0050817_coagulation 122 265 3.1 ×  10–3 85 263 9.1 ×  10–4

Inflammation

amb2_neutrophils_pathway_amb2_Integrin_signal-
ing 15 28 3.9 ×  10–5 38 27 8.7 ×  10–5

GO:0042060_wound_healing 69 360 9.6 ×  10–4 78 356 7.7 ×  10–4

Neuronal aging

GO:0048156_tau_protein_binding 193 5 5.8 ×  10–3 42 3 1.2 ×  10–4

GO:0043523_regulation_of_neuron_apoptosis 666 84 3.3 ×  10–2 591 81 3.0 ×  10–2

https://pan.ukbb.broadinstitute.org
https://pan.ukbb.broadinstitute.org/downloads/index.html
https://pan.ukbb.broadinstitute.org/downloads/index.html
https://pan-ukb-us-east1.s3.amazonaws.com/sumstats_flat_files/phecode-411-both_sexes.tsv.bgz
https://pan-ukb-us-east1.s3.amazonaws.com/sumstats_flat_files/phecode-411-both_sexes.tsv.bgz
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Research Services Laboratory in Santa Clara, California, USA. The Affymetrix analysis resulted in 812,428 mark-
ers (biallelic SNVs and indels) used for QC. QC approach accounted for the large cohort size, batch type pro-
cessing, and population structure. Specifically, they tested for batch effect, plate effect, a departure from HWE, 
and sex effect to each marker in each batch. Markers that failed anyone these tests in every batch were excluded. 
Subsequently, markers failing array effect or had discordance across controls were excluded. This screening led 
to 805,426 markers across 488,377 samples. Subsequently, allele frequencies were matched across an independ-
ent Exome Aggregation Consortium database (ExAC). For imputation, markers with a greater than 5% missing 
rate across all batches or with MAF < 0.0001 were removed, leading to 670,739 autosomal markers. Imputation 
was carried out using the Haplotype Reference Consortium. Imputation was carried out using the IMPUTE4 
program (https:// jmarc hini. org/ softw are/). Subsequently, SNVs with INFO (proportion of imputed SNVs equiv-
alent to set of perfectly observed genotypes) score > 0.8 were retained.

Statistical analysis. CGEX GWAS. We utilized the CGEX GWAS summary data (Supplement 1, II) to 
identify all non-synonymous variants located on the 22 autosomes. For mapping the SNV location to dbSNP 
rsID, we used “SNPInfo_HumanExome-12v1_rev5.tsv.txt” downloaded from https:// charg econs ortium. com/ 
main/ exome chip. For categorizing the variants using dbSNP rsID, we used the Annovar tool (http:// www. openb 
ioinf ormat ics. org/ annov ar/). Using dbSNP rsID and corresponding functional annotations, we excluded syn-
onymous, intergenic, intronic SNVs, and SNVs with missing annotations (Fig. 1). To evaluate the association of 
single SNV with CAD, the CGEX investigators performed logistic regression with additively coded genotypes, 
CAD as the dependent variable, adjusting for top ten principal components of ancestry, excluded monomor-
phic SNVs, and combined evidence across studies using an inverse variance weighted fixed-effect meta-analysis. 
CGEX investigators restricted the meta-analysis of autosomal SNVs with a minor allele frequency of ≥ 0.1% 
across the 120,575 samples in the discovery cohort. To detect systemic inflation of SNV association p-values, we 
plotted a quantile–quantile (QQ) plot of observed versus expected p-values from the CGEX GWAS summary 
data (Supplement 1, FI). Each study was corrected for genomic control prior to assessing SNV association analy-
sis at the GWAS level. Because each study was adjusted for genomic control prior to meta-analysis, we did not 
adjust GWAS association statistics for genomic control as it may not represent overdispersion due to population 
stratification but rather represent true genetic  signals21,22.

PUBB GWAS. The PUBB investigators performed GWAS for each phenotype and ancestry group using linear 
or logistic regression (SAIGE = Scalable and Accurate Implementation of GEneralized mixed model package), 
including random effects to account for correlated data, as defined by the empirical kinship matrix and covari-
ates as fixed effects. Each GWAS model used age, sex, and the first 10 PCs as covariates. We used the GWAS sum-
mary statistics for the phenotype “IHD” and excluded synonymous, intergenic, intronic SNVs. This filtering led 
to the identification of 140,911 SNVs. We further restricted our analysis to autosomal SNVs with MAF ≥ 0.1% 
across 442,574 individuals to include autosomal 85,206 SNVs for our replication analysis. To detect systemic 
inflation of SNV association p-values, we plotted a quantile–quantile (QQ) plot of observed versus expected 
p-values from the PUBB GWAS summary data (Supplement 2, FI).

(A) Single SNV analysis. We used Manhattan plots to highlight all SNVs associated with CAD at the sig-
nificance threshold of p ≤ 1.0 ×  10–4. We further used SNVs with CAD association p ≤  10–4 to confirm previously 
reported CAD-associated loci. To omit SNVs with substantial differences in sample size and effect estimates 
across the 20 studies, we used the Cochran heterogeneity test threshold of p ≤ 0.1. SNVs with non-heterogeneous 
effects (Cochran heterogeneity test p-value > 0.1) with association p-values below our genome-wide significant 
threshold (p < 5.0 ×  10–8) were considered to be significantly associated with CAD in the CGEX data. For rep-
licating single SNV analysis in the PUBB study using 85, 206 SNVs, we defined our type 1 error significance 
threshold at the Bonferroni corrected value of 5.0 ×  10–7 ( 0.0585,206 ).

(B) VEGAS2 GBA. For VEGAS2 GBA, we used the online web server implementation tool (https:// vegas2. 
qimrb ergho fer. edu. au) to rank genes and pathways. While there is no gold standard practice to define gene 
boundaries, we considered SNVs in the ‘0kbloc’ region, with respect to 5’ and 3’ UTR (Untranslated Region), 
to focus on exonic SNVs and excluded regulatory  regions52,60.  Consistent with the software gene boundary 
options, our method also reduces the problem with the annotation of overlapping  genes61. Details regarding 
the VEGAS2 gene and pathway-based analysis have been provided in the study by Mishra et al.19 Gene annota-
tion was performed according to NCBI (National Center for Biotechnology Information) build 37/hg 19.

In brief, for gene-based analysis, the p values for n SNVs within the specified gene boundary were converted 
to an upper tail χ2 statistic with one degree of freedom and summed to calculate a gene-based test statistic. 
The significance of gene-based test statistic was compared to simulated replicates from a multivariate normal 
distribution with mean = 0 and variance = Σ (the n × n correlation matrix between the SNV genotypes within the 
gene using LD values estimated from 1000 Genomes European reference population for both CGEX and PUBB). 
Empirical p values were computed for each gene using the formula, Emp p-value = r+1

m+1 , where r is the number 
of instances where the simulated statistic exceeds the observed data and m is the number of simulations (start-
ing at 1000 simulation replicates and progressively increasing the number of simulation replicates to 10,000 for 
genes with p < 0.1, and to 100,000 for genes with p < 0.01, and to 1 million simulation replications for genes with 
p < 0.001). An r of 0 from  106 simulations can be interpreted as p <  10–6, which exceeds the Bonferroni-corrected 
threshold of 3 ×  10–6 ( 0.0515,296 ) for genes. In the CGEX study, a total of 4796 genes (SNVs > 1 per gene) in the ‘0kbloc’ 
gene boundary had empirical p-value estimates < 1; the remaining 10,500 genes had VEGAS2 empirical p-values 
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exactly equal to 1 or had 0 or 1 SNVs in the gene boundary. In the PUBB study, a total of 6096 genes (SNVs > 1 
per gene) in the ‘0kbloc’ gene boundary had empirical p-value estimates < 1.

In addition to genes meeting our Bonferroni-corrected threshold of 3 ×  10–6 for genes, we also investigated the 
top one percent of genes with CAD association empirical p-values < 1, as a suggestive threshold (enriched genes). 
Our type-1 error significance threshold definition is consistent with other GBA  studies5,62. We also performed 
Manhattan plot analysis to highlight all enriched genes identified through VEGAS2 GBA.

(C) MAGMA GBA. For MAGMA GBA, we used MAGMA v1.08b obtained from https:// ctg. cncr. nl/ softw 
are/ magma for our analysis. We further downloaded NCBI build 37.3 to map non-synonymous SNV to 15,400 
genes from the total 18,575 autosomal NCBI 37.3 gene list using our gene boundary definition (0kbloc). We 
subsequently downloaded 1000 Genomes European panels that MAGMA uses as reference data to account 
for LD between SNVs and compute the correlation matrix for SNV genotypes. For our analysis, we used the 
default SNP-wise mean model, where a T statistic is calculated from the sum of squared SNV Z-statistics 
(T* = 

∑K
j Z

2
j = ZTZ , Zj = Φ(pj),  pj = marginal p-value for SNV j). Z is assumed to have a multivariate normal dis-

tribution with mean = 0 and variance = the n × n correlation matrix between the SNV genotypes within the gene 
using LD values estimated from 1000 Genomes European reference population. This summed statistic is used for 
calculating gene-based p  values18. In the CGEX study, the MAGMA GBA list included 10,029 genes with more 
than one SNVs. In the PUBB study, the MAGMA GBA list included 10,195 genes with more than one SNVs. We 
defined our type-1 error cut off after Bonferroni correction at 3 ×  10–6 ( 0.0515,400 ) based on the total mapped NCBI 
build 37.3 mapped genes. In addition to genes meeting our Bonferroni-corrected threshold of 3 ×  10–6 for genes, 
we also investigated the top one percent of genes with CAD association empirical p-values < 1, as a suggestive 
threshold (enriched genes).

(D) Protein function and clinical phenotypic significance of top SNVs in identified genes. For 
the top enriched genes identified by VEGAS2 with previously unreported CAD associations, we recorded the 
previously reported clinical phenotypes using the Ensembl genome database (https:// www. ensem bl. org), the 
National Center for Biotechnology ClinVar web-based database (https:// www. ncbi. nlm. nih. gov/ clinv ar/ varia 
tion/), and through Pubmed central search (https:// pubmed. ncbi. nlm. nih. gov). We further used the “Sorting 
Tolerant From Intolerant (SIFT)” tool to identify protein-altering functional significance of coding SNVs among 
the top enriched  genes63. SIFT predicts protein function alteration from the  amino acid substitution, based on 
a scaled probability threshold, also known as the SIFT score. SIFT score ranges from 0–1, and score ≤ 0.05 sug-
gests protein alterating functional consequence. However, SIFT does not account for dynamic protein structural 
changes from amino acid sequence change that could affect protein function.

(E) VEGAS2 GPA. VEGAS2 uses gene ontology incorporated from BIOCARTA, REACTOME, PANTHER, 
pathway commons, and pathway interaction database for pathway-based  analysis53,64–67. We defined non-lipid 
based pathways as those without the terms “lipid or lipoprotein or lipase or sterol or triglyceride or cholesterol” 
in the pathway names. VEGAS2 computes pathway-based summed chi-squared ( x2 ) statistics, by converting 
gene-based p-values to upper tailed χ2 statistics with one degree of freedom before summing. While the gene 
p-value was obtained from the summed chi-squared ( x2 ) statistic with degrees of freedom equal to the number 
of SNVs in the gene, the empirical p-value for pathway was calculated by repeatedly resampling the same num-
ber of genes drawn at random from the pathway under consideration. Empirical p-value was defined as p = y+1

N+1 
, where y is the number of instances the summed chi-squared ( x2 ) statistic per resample is more than or equal 
to the observed for pathway under consideration and N is the number of resamples  performed53. The resam-
pling approach corrects for varied pathway sizes. Pathways were ranked according to empirical p values. From 
the ranked genes, the VEGAS2 GPA ranked 5528 pathways that had empirical p-values < 1 in the CGEX study. 
Despite the non-independent nature of the gene pathways, we used a rigorous Bonferroni-corrected pathway 
significance threshold of  10–5 ( 0.055528 ). For the PUBB study, we used a rigorous Bonferroni-corrected pathway 
significance threshold of  10–5 ( 0.055764 ) , based on the ranked pathways with empirical p values < 1. In addition to 
reporting pathways meeting our rigorous Bonferroni threshold, we also investigated the suggested threshold of 
the top 1% pathways associated with CAD with empirical p-value estimates < 1.

(F) MAGMA GPA. For GPA, MAGMA transforms the gene-based p-values to standard normal Z statistic 
with lower p-values corresponding to higher Z statistic. Gene pathway analysis is implemented using a linear 
regression model, where the gene association score (Z statistic) is tested for association with gene pathway mem-
bership (S), adjusting for gene-level covariates (C): Z = β0 + Sβs + Cβc + ε. The error term (ε) is assumed to follow 
a multivariate normal distribution with correlation matrix computed from the gene–gene correlation obtained 
from the gene analysis resampling. For pathway annotation, we used the Biosystems pathway containing 9574 
gene pathways. We defined our type-1 error cut off after Bonferroni correction at 5 ×  10–6 ( 0.059574 ). We further 
investigated the top 1% of listed pathways as a suggestive threshold.

(G) VEGAS2 and MAGMA comparison. We tabulated a list of genes meeting our significance threshold 
(3 ×  10–6) in CGEX and PUBB, respectively. In addition, we constructed a scatter plot comparing ranks of top 
1000 genes common to VEGAS2 GBA and MAGMA GBA across CGEX and PUBB, respectively, and computed 
Spearman rank correlation. We further plotted a Venn diagram investigating the overlap of the top one percent 
of listed genes identified by both GBA methods in the CGEX and PUBB. For pathway comparison, while dif-
ferent pathway annotation sets were used for each GPA method, we categorized pathways into lipid and non-
lipid pathways and compared the top 1% of ranked pathways. We used R version 4.0.3 for the Venn diagram, 
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scatter plot and single SNV analysis. For SNVs screened after VEGAS2 and MAGMA analysis we obtained LD 
information from NCBI LD calculator tool (https:// ldlink. nci. nih. gov/? tab= home) to identify previously CAD-
associated SNVs in LD with our screened SNVs. We defined SNVs in high LD, if  r2 > 0.8 within ± 500 kb distance 
from our screened SNV location.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files). Supplemental Materials 1 and 2; Expanded Materials & Methods; Data Set; Online Figures I–II.
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