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Bone morphological feature 
extraction for customized bone 
plate design
Lin Wang1*, Kaijin Guo2, Kunjin He3 & Hong Zhu1

Fractures are difficult to treat because of individual differences in bone morphology and fracture 
types. Compared to serialized bone plates, the use of customized plates significantly improves the 
fracture healing process. However, designing custom plates often requires the extraction of skeletal 
morphology, which is a complex and time-consuming procedure. This study proposes a method for 
extracting bone morphological features to facilitate customized plate designs. The customized plate 
design involves three major steps: extracting the morphological features of the bone, representing 
the undersurface features of the plate, and constructing the customized plate. Among these steps, 
constructing the undersurface feature involves integrating a group of bone features with different 
anatomical morphologies into a semantic feature parameter set of the plate feature. The undersurface 
feature encapsulates the plate and bone features into a highly cohesive generic feature and then 
establishes an internal correlation between the plate and bone features. Using the femoral plate as an 
example, we further examined the validity and feasibility of the proposed method. The experimental 
results demonstrate that the proposed method improves the convenience of redesign through the 
intuitive editing of semantic parameters. In addition, the proposed method significantly improves the 
design efficiency and reduces the required design time.

Fractures caused by trauma are common, where a large force and a short action time result in severe damage to 
the body1. The most common types of implants are orthopedic plates, whose main function is maintaining the 
reduction state of the fracture end and control the length, axis, and rotation of the diaphysis to provide good 
stability2. This helps to shorten the patient’s healing time. In recent years, the demand for orthopedic plates has 
increased significantly for multiple reasons, including continuous improvements in medical treatment, health 
awareness, and the existence of an aging population. Clinical results show that bone plates that are well matched 
with the shape of the bone surface can -assist the surgeon in reducing the fracture fragment with the help of 
the plate, provide good stability, and reduce the impact of the bone plate on soft tissue3,4. Designing a poorly 
matched plate can lead to surgical failure and other problems5. Clinically, mismatching of the bone plate and the 
patient’s bone often causes surgery failure6,7. As a result, the plate must be precisely shaped to fit the bone shape. 
Customized plates constructed according to specific anatomical shapes and fracture types improve the process 
of fracture healing and are considered next-generation medical devices. A computational design process for 
anatomical enhancement of plates was introduced, which can help manufacturers in identifying anatomically 
compliant implant designs in the early phases of product development8. However, patients have significantly 
different anatomical structures and behavioral movements9,10, making it difficult to design plates for individual 
patients that conform to their anatomical characteristics and conditions11.

In the traditional design process of a customized plate, orthopedic surgeons and designers need to commu-
nicate repeatedly, complicating the entire process12,13. Recently, researchers in China and other countries have 
proposed various design methods. The 3D-surface model of a detailed femur and the corresponding fixation plate 
were represented with high-level feature parameters, and the shape of the specific plate was recursively modi-
fied to obtain the optimal plate for a specific patient14. In reference 1515, the researchers constructed a custom-
designed plate with semantic parameters, based on an average bone model created from existing bone models, 
promoting the quality and efficiency of orthopedic plate design. However, that study only considered femoral 
feature parameters as parameter constraints when constructing the surface model of the fractured femur. The 
influence of the anatomical morphological features of the femur on the feature parameters of the bone plate was 
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not explored in detail in the above methods. However, excavation of the anatomical features of the bone is key 
to achieving a high match between the bone plate and the bone surface. Extracting bone morphological features 
is essential to designing orthopedic plates. Converting the conventional plate modeling content into a feature 
model that is constructed according to bone features is expected to be a more efficient and simpler design process.

Feature extraction—a common data-processing technique in machine learning—changes the dimensions of 
the feature space16. Generally, feature extraction involves collecting a large set of parameters and using a typical 
feature extraction method, such as a decision tree17 or deep convolutional neural network18,19, to extract useful 
information. Principal component analysis (PCA), a common feature extraction method, has a wide range of 
orthopedic applications. A PCA model helped predict the shapes of the pelvis and femur from palpable anatomi-
cal landmarks20. The PCA method also helped establish the relationship between the external body shape and 
the internal skeleton of the upper body21. Khan et al.22 used PCA to report the growth and degenerative pat-
terns of the human spine. Some noticeable lumbar spine features (e.g., vertebral height, disc height, disc signal 
intensity, paraspinal muscle, subcutaneous fat, psoas muscle, and cerebrospinal fluid) were used to examine the 
variations in the lumbar spine with natural aging. In our previous work23, we used the factor analysis method 
to extract “size factor” and “angle factor” and noticed that it was related to the person’s height. Extraction of 
bone morphological features helps to obtain useful information from high-dimensional bone morphological 
data to reduce its redundancy24–26. To facilitate the design of orthopedic plates, this study expanded the number 
of femur parameters containing the proximal, shaft, and distal regions. Subsequently, we used PCA to extract 
several important principal components, which were then used to establish the plate feature.

This study aimed to provide an efficient and convenient approach for designing plate features based on bone 
features. Hence, two major requirements should be satisfied:

•	 The plate features must be constructed according to anatomical morphological information.
•	 The feature parameters of the plate must be stratified to improve the adjustment efficiency.

To satisfy these two requirements, we propose an effective method for extracting bone morphological features 
and guiding a customized plate design.

The remainder of this paper is organized as follows. In “Overview” section provides a brief overview of the 
proposed method. The main steps of the proposed method (i.e., extracting the bone morphological features, 
constructing the plate feature model, and generating the customized plate) are presented in “Extraction of bone 
morphological features”, “Construction of the plate feature model”, and “Generation of the customized plate” 
sections, respectively. Finally, the conclusions are presented in “Discussion and conclusion” section.

Overview
Figure 1 shows the extracted bone morphological features which were integrated into the plate feature model in 
this study. The steps for this method are as follows:

1.	 We used PCA to extract bone morphological features.
2.	 We integrated bone morphological features into the semantic layer of the plate feature model.
3.	 We constructed a customized plate by editing the semantic parameters defined in the plate feature model 

according to the bone morphological parameters of an individual patient.
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Figure 1.   Workflow of the proposed method.
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This study uses two types of features from the above steps:

•	 Bone features, including features of the fracture and its morphological features, which consist of the following 
aspects. Fracture features are an important basis for judging fracture types, which are usually characterized 
by imaging fracture lines27. Morphological features describe the anatomical structure of the bone, which is 
usually extracted from parameters using a semantic form28. After confirming the fracture type of the patient, 
we only focused on bone morphology.

•	 The plate feature includes a group of geometric shapes that embody the designer’s intention and constitutes a 
certain set of engineering semantics29. In this way, the plate feature supports editing the plate in the semantic 
feature layer and avoids tedious operation on the geometric layer at the bottom.

Extraction of bone morphological features
Bone sample data collection for PCA.  This study focused on 100 right femurs of unrelated healthy 
adults who belonged to the Chinese Han ethnic group, with an average age of 47 years. The parameter values of 
100 femur samples (expressed as mean ± standard deviation, where length is expressed in mm and angle in °) 
are as follows:

•	 Parameters of the proximal femur include the vertical height of the femoral head (Hfh, 47.95±5.33), col-
lodiaphyseal angle (Afn, 126.18±6.12), eccentric distance (Lfhs, 38.75±6.25), neck length (Lfn, 50.80±6.19), 
femoral head diameter (Dfh, 43.33±3.40), femoral neck diameter (Dfn, 33.08±3.25), length of great trochanter 
(Lt, 65.86±4.03), bump height of great trochanter (Ht1, 10.73±1.09), and interior offset of great trochanter 
(Ht2, 17.57±2.36). These parameters are denoted in vector form as Xi (i = 1, 2, 3, …, 9), in the same order 
presented above after normalization.

•	 Parameters of the femoral shaft include the femoral shaft coronal diameter (Dfs, 25.94±2.23), length of the 
femoral shaft (Hfs, 269.19±16.64), and femoral shaft bending angle (Afs, 173.39±1.51).

•	 Parameters of the distal femur also include distal transverse diameter (Ldf, 75.10±6.00), anterior and posterior 
length of medial condyle (Lm, 56.03±3.74), anterior and posterior length of external condyle (Ll, 59.95±4.00), 
length of anterior condyle line (La, 32.77±2.53), length of posterior condyle line (Lp, 52.06±4.05), height of 
medial condyle (Hm, 55.35±3.71), height of lateral condyle (Hl, 59.73±3.98), angle of medial condyle (Am, 
81.33±1.87), angle of lateral condyle (Al, 85.60±1.97), angle of the anterior condyle (Aa, 8.25±2.85), angle of 
posterior condyle (Ap, 4.13±1.63), angle of trochlear groove (As, 134.11±4.19), depth of trochlear groove (Htg, 
6.04±0.75), the height difference between the medial and lateral condyle (Hml, 4.37±0.51), rate of femoral 
surface (Cf, 1.25±0.09), and joint inclination of medial and lateral condyle (Aml, 12.98±2.86). Similarly, these 
parameters are denoted in vector form, Yi (i = 1, 2, 3, …, 16), in the same order as presented above after 
normalization.

To ensure that the collected data represent the general population and avoid severe deviations, the samples 
included in the analysis should be close to a normal distribution. The height of individuals follows a normal 
distribution, and the femoral length is often proportional to the height; therefore, we can reasonably assume 
that the femoral length should also follow a normal distribution30. Experiments with 100 samples show that the 
femoral length distribution is left skewed, with a skewness value of − 0.07, mean of 420.072 mm, and standard 
deviation of 22.968 mm. Notably, the deviation degree is small, and the collected samples can be considered 
as being reasonably representative of the general population. Furthermore, we used the Kaiser–Meyer–Olkin 
(KMO) test31 to compare simple and partial correlation coefficients between the variables. The KMO statistic 
was between 0 and 1. The closer the KMO value is to 1, the stronger the correlation between variables, and the 
more suitable the original variables for PCA. In the present study, the KMO statistic was 0.731. Furthermore, 
Bartlett’s sphericity test31, which can also test the correlation between variables, indicates a significance value 
(i.e., Sig.) of 0.00, which is less than 0.05. These results indicate that the collected set of samples is particularly 
suitable for PCA requirements.

Extraction of the principal components.  PCA is the most commonly used linear dimensionality-
reduction method. It maps the high-dimensional data to a low-dimensional space via linear projection and 
extracts most information in the dimensionality (maximum variance) of the projected data to use fewer data 
dimensions while retaining as much feature information as possible from the original data. By mapping an 
n-dimensional feature to a k-dimensional feature, in which k is often less than n, the k-dimensional feature is 
reconstructed, which is called the principal component31. In this way, we can use the principal components to 
reflect the information of the original variable and replace the original variable for an in-depth study. The steps 
for feature extraction via PCA are as follows.

1.	 We calculated the covariance matrix, eigenvalues, and eigenvectors. The selection principles of the k eigen-
vectors are as follows:

•	 The eigenvalue must be greater than 0.5, and ideally greater than 1.
•	 The cumulative contribution rate should be greater than 90%31.

2.	 We sort the eigenvalues and retain the eigenvectors corresponding to the first k largest eigenvalues.
3.	 We converted the original features into a new space constructed by the k feature vectors obtained above.
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Notably, the KMO statistic for parameters of the femoral shaft is 0.465, which is much lower than the aver-
age level of 0.731, suggesting that the correlation between the parameters of the femoral shaft is relatively small. 
Furthermore, there were fewer femoral shaft parameters. Therefore, extracting the principal components of the 
femoral shaft parameters is not required. Feature extraction of the proximal and distal femurs is described below.

1.	 For the proximal femur, the yellow line in Fig. 2a indicates the curve change of the eigenvalue with compo-
nent number. Notably, the first eigenvalue is the largest and those after the fifth are smaller and only change 
slightly. Therefore, we selected the first four components. Table 1 lists the principal component load matrix 
of the proximal femur, Aij (each element in the matrix is denoted aij, the range of i is 1–4, and range of j is 
1–9). The column of each principal component constitutes the eigenvector corresponding to the principal 
component. For example, the eigenvectors corresponding to principal component 1 were 0.348, − 0.070, 
0.223, 0.243, 0.466, 0.446, 0.450, 0.275, and 0.269, respectively. Equation (1) shows the mathematical model 

Figure 2.   Components and their variance contribution rate: (a) components and their corresponding 
eigenvalues, (b) variance contribution rate of the components of the proximal femur, and (c) variance 
contribution rate of the components of the distal femur.

Table 1.   Principal component load matrix of the proximal femur.

aij

i

1 2 3 4

j

1 0.348 0.291 0.384 0.289

2 − 0.070 0.448 0.606 0.137

3 0.223 − 0.571 − 0.058 0.283

4 0.243 − 0.441 0.353 0.457

5 0.466 0.058 − 0.010 − 0.178

6 0.446 0.137 − 0.140 − 0.156

7 0.450 0.108 − 0.177 − 0.004

8 0.275 0.326 − 0.421 0.273

9 0.269 − 0.233 0.359 − 0.691
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of the PCA of proximal femoral parameters, i.e., the correlation between the principal components, p1, p2, 
p3, and p4, and the original variables, X1 – X9.

2.	 For the distal femur, the blue line in Fig. 2a indicates a change in the eigenvalue with component number. 
The curve becomes less steep from the eighth component onward. Therefore, we selected the first seven 
components. Table 2 lists the principal component load matrix of the distal femur, Bij, where each element 
in the matrix is called bij, the range of i is 1–7, and the range of j is 1–16. The column of each principal 
component constitutes the eigenvector corresponding to the principal component. Equation (2) shows the 
mathematical model of PCA, i.e., the correlation between the principal components, q1, q2, q3, q4, q5, q6, and 
q7, and the original variables, Y1–Y16.

In this experiment, as shown in Fig. 2b, the cumulative variance contribution rate31 of the proximal femur was 
90.474%, whereas the variance contribution rates of the first four components were 43.054%, 25.449%, 14.176%, 
and 7.795%, respectively. As shown in Fig. 2c, the cumulative variance contribution rate of the distal femur was 
93.241%, whereas the variance contribution rates of the first seven components were 31.338%, 22.293%, 11.936%, 
9.589%, 7.630%, 6.112%, and 4.343%, respectively. The extracted principal components can explain the original 
data well. In addition, to interpret the principal component representative of the morphological parameters, we 
adopted the maximum variance orthogonal rotation method31. Figure 3 shows the rotated principal components 
of the proximal and distal parameters. In Fig. 3a, Component 1 primarily explains Dfh, Dfn, Lt, and Ht1; Compo-
nent 2, Lfhs and Lfn; Component 3, Hfh and Afn; and Component 4, Ht2. In Fig. 3b, Component 1 primarily explains 
Lf, Ll, Hm, and Hl; Component 2, Am and Al; Component 3, La and Lp; Component 4, As and Htg; Component 5, 
Aa and Ap; Component 6, Ldf; and, finally, Component 7, Cf.

We further calculated the weighted sum of the extracted principal components to obtain the final evaluation 
value, which is the variance contribution rate of each principal component. We divided the femur samples into 
three categories based on the principal component composite scores. We used variance analysis to verify the 
rationality of the classification. The results confirmed that most morphological parameters were statistically 
significant in the differences between classes (i.e., Sig. less than 0.05), indicating classification rationality. This 
suggests that the extraction method used in this study is reasonable and effective.

Construction of the plate feature model
Our previous work was based on bone plate features based on the idea of features32. Plate features were formal-
ized into a quadruple form, including constraint relationships, mapping relationships, and semantic parameters. 
Because its shape contained a feature point, feature curve, and surface, a plate was expressed at a higher level 

(1)pi =

9
∑

j=1

aijXj (i = 1, 2, 3, 4)

(2)qi =

16
∑

j=1

bijYj (i = 1, 2, 3, ..., 7)

Table 2.   Principal component load matrix of the distal femur.

bij

i

1 2 3 4 5 6 7

j

1 − 0.020 − 0.065 − 0.069 − 0.164 0.157 0.951 0.944

2 0.425 − 0.033 − 0.185 0.092 − 0.094 0.022 0.866

3 0.425 − 0.033 − 0.185 0.092 − 0.094 0.021 0.866

4 0.230 − 0.244 0.227 − 0.230 0.431 − 0.140 0.988

5 0.268 − 0.032 0.357 − 0.207 0.384 − 0.101 0.984

6 0.420 − 0.068 − 0.198 0.086 − 0.095 0.018 0.867

7 0.427 − 0.013 − 0.174 0.096 − 0.094 0.022 0.862

8 − 0.059 − 0.486 − 0.212 − 0.101 − 0.043 − 0.053 0.861

9 0.040 0.489 0.207 0.080 0.020 0.016 0.794

10 − 0.042 − 0.138 0.171 0.581 0.279 0.053 0.668

11 − 0.007 − 0.142 0.064 0.607 0.309 0.105 0.819

12 0.001 0.106 − 0.472 − 0.159 0.606 − 0.166 0.747

13 0.162 − 0.254 0.535 − 0.041 − 0.192 0.019 0.979

14 0.278 0.393 0.082 0.124 − 0.037 0.043 0.812

15 − 0.202 0.115 − 0.182 0.251 − 0.011 − 0.106 1.588

16 0.062 0.415 0.090 − 0.128 0.163 0.079 0.905
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to avoid the tedious process of designing from the bottom; this improves the design efficiency and quality. By 
following the same rationale for this study, we enhanced the plate feature model by integrating the bone’s mor-
phological features to set the semantic parameters of the plate’s features. The key steps included the representation 
of the relation, semantic feature parameters, and mapping relation.

Constraint relationships.  The constraint relation of the surface features primarily includes structural 
and dimensional constraints33–35. Typically, shape features represent the plates. The structural constraint is also 
referred to as the shape constraint. The shape contains points, curves, and surfaces. The curve is an important 
bridge from a point to a surface and its topological relation determines the feature contour shape of the surface. 
As a result, shape constraints are mainly reflected in the topological relationships between the feature curves. 
For the undersurface of the orthopedic plates, the feature curves primarily include the boundary curve (referred 
to as B) and internal auxiliary curve (referred to as I). For brevity, the numbers represent the position (separa-
tion or intersection) between the two feature curves, as shown in Fig. 4a. The topological relation between the 
boundary feature curve and the internal auxiliary feature curve is called the BI relation, based on the number of 
intersection points between the boundary feature curve and the internal auxiliary feature curve. The topological 
relation between any two internal auxiliary feature curves, called the II relation, is based on the position of the 
intersection points between the two internal auxiliary feature curves.

Figure 4b–d shows the undersurface of the eagle-shaped plate constructed as a skeleton structure. The bone 
plate has a good mechanical effect36 and is accepted as fracture types 31A3 and 32A337. The feature curves contain 
the boundary feature curve (C0) and the auxiliary feature curves. We used a boundary feature curve to represent 
the edge profiles. The auxiliary feature curve also resembles the skeleton and contains ridge curves (C1 and C2) 
and costal curves (from C3 to C11). The following adjacency matrix represents the structural constraints of the 
feature curves.

Figure 3.   Rotated components of (a) proximal parameters and (b) distal parameters.

Figure 4.   Skeleton-like structure of the undersurface of the eagle-shaped plate: (a) topological relations 
between feature curves: ① BI_0 type, ② BI_11 type, ③ BI_21 type, ④ II_0 type, ⑤ II_11 type, ⑥ II_12 type, and ⑦ 
II_13 type. (b) undersurface, (c) boundary feature curve, and (d) ridge curves and costal curves.
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The dimension constraint mainly restricts the semantic parameters and contains two meanings: the correla-
tion between the semantic parameters and the value range of each semantic parameter. These semantic parameter 
relations and range values are based on the relationship between the bone morphological parameters and the 
range of values.

Semantic feature parameters.  Size parameters include global feature parameters that reflect the com-
mon shape of the plate and local parameters, which are constructed by dividing the global parameters into 
several special feature parameters according to different angles. Furthermore, we constructed several generic 
feature parameters using the attributes of the global parameters. We also constructed several special feature 
parameters using the local parameter attributes. The semantic feature parameters primarily refer to those with 
certain semantics that support high-level operations38. The definition of feature parameters corresponds to the 
specific engineering semantics and functional information, facilitating surface feature instantiation.

As shown in Fig. 5, the size parameters of the undersurface of the eagle-shaped plate include the total length 
L, total width W, tail length l1, head length l2, local tail widths w0 and w1, local head width wi (i = 2, 3, …, 8), 
local tail bump height hj (j = 0, 1), and local head bump height, hj (j = 2, 3, …, 8). Moreover, L and W are mainly 
determined by the bone morphological parameters, including femur length Hf and femoral shaft coronal diam-
eter Dfs. L is divided into tail length and head length by inheritance; similarly, W is divided into tail width and 
head width by inheritance.

Mapping relations.  Based on the concept of layering from whole to part, the mapping relation is divided 
into two levels38:

•	 Primary level mapping refers to the correspondence between the feature parameters of the upper layer and 
the feature curves of the middle layer.

•	 Secondary level mapping refers to the correspondence between the feature points of the middle and bottom 
layers.

Because this mapping relationship did not adequately incorporate bone morphology, the constructed plate 
feature was relatively independent and, as a result, did not fit well with the bone morphological features. In this 
study, based on the above research, we integrated the principal component into the primary mapping to form a 
new mapping relation, which is called component mapping (see Fig. 6a). The mapping relation is represented as 
F1 = {X → Y|X ∈ P1,Y ∈ P2}

F2 = {Y → Z|Y ∈ P2,Z ∈ P3}
 , where F1 is the primary mapping, F2 is the secondary mapping, P1 denotes the 

upper layer, P2 denotes the middle layer, and P3 denotes the bottom layer. The component mapping, F ′1 , is 
F ′1 = {X

P4
−→Y|X ∈ P1,Y ∈ P2}  ,  w h e r e  P 4  i s  t h e  s e t  o f  p r i n c i p a l  c o m p o n e n t s , 

P4 = {p1, p2, p3, p4, q1, q2, q3, q4, q5, q6, q7} , extracted as described in “Extraction of bone morphological features” 
section. Here, we add the principal components to the mapping as weights. Figure 6b illustrates this, and Fig. 6c 
shows the principal component values.
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Figure 5.   Size parameters of the undersurface of the eagle-shaped plates.
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Generation of the customized plate
We edited the semantic parameters to generate customized features of the eagle-shaped plate using Microsoft 
Visual C++ 2008 and Dassault Systèmes CATIA V5R22. We modified tail length l1 by changing the feature points 
of the tail. We also modified the local width wi (i = 1, 2, 3, …, 8) and height hi (i = 1, 2, 3, …, 8) by changing the 
boundary feature points in the head. Figure 7a shows how the entity of the eagle-shaped plate was generated by 
stretching the undersurface; Fig. 7b shows that the entity parameters include the tail thickness t1, head thickness 
t2, and hole parameters (ød1, ød2, ød3, and s1); Fig. 7c shows the eagle-shaped plates with different parameters.

Figure 6.   Undersurface feature change of the eagle-shaped plate. (a) Mapping relation of the feature model. 
The upper layer containing the feature parameters can be constructed based on the bone information. Through 
the component mapping and secondary mapping, the correspondence between the feature parameters and 
the underlying element is established, allowing the feature parameters to uniquely determine the feature 
geometric shape, (b) change of feature curves. The tail and head parameters change based on different principal 
component values. The feature curve approaches inward under the constraints of boundary and internal 
auxiliary feature curves, and (c) principal component values of numbered curves 1–5 shown in (b).

Figure 7.   Parameter variation of the features in the eagle-shaped plate: (a) entity generated from undersurface, 
(b) punch holes and set parameters, (c) plates with different parameters. Plate A: l1 = 229 mm; l2 = 39 mm; 
w0 = 12 mm; w1 = 14 mm; w2 = 16 mm; w5 = 29 mm; w7 = 13 mm; h2 = 1.6 mm; h3 = 2.4 mm; h4 = 7.9 mm; 
h5 = 8.3 mm; h2 = 5.2 mm; h7 = 0.8 mm; h8 = 0.7 mm; t1 = t2 = 3 mm; ød1 = 7 mm; ød2 = ød3 = 5 mm; and s1 = 6 mm. 
Plate B: l1 = 204 mm; l2 = 44 mm; w0 = 12 mm; w1 = 14 mm; w2 = 15 mm; w5 = 25 mm; w7 = 13 mm; h2 = 1.5 mm; 
h3 = 2.2 mm; h4 = 7.2 mm; h5 = 8.6 mm; h2 = 5.3 mm; h7 = 1.0 mm; h8 = 0.9 mm; t1 = t2 = 3 mm; ød1 = 7 mm; 
ød2 = ød3 = 5 mm; and s1 = 6 mm. Plate C: l1 = 248 mm; l2 = 40 mm; w0 = 12 mm; w1 = 14 mm; w2 = 17 mm; 
w5 = 33 mm; w7 = 14 mm; h2 = 1.4 mm; h3 = 2.8 mm; h4 = 7.3 mm; h5 = 8.0 mm; h2 = 4.7 mm; h7 = 1.2 mm; 
h8 = 1.3 mm; t1 = t2 = 3 mm; ød1 = 7 mm; ød2 = ød3 = 5 mm; and s1 = 6 mm. and (d) fit effect of the eagle-shaped 
plate to femur. CATIA URL: https://​www.​3ds.​com/​zh/​produ​cts-​servi​ces/​catia/.

https://www.3ds.com/zh/products-services/catia/
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Figure 7d shows good adhesion between the designed eagle-shaped plate and femur. To prove this further, 
we calculated the distances between the feature points on the femoral contact area and the undersurface of the 
plate. The results show that every distance deviation was controlled within 0.16 mm; this shows that the plate 
designed in this study matches well with the bone and thus guarantees the design requirement of the bone plate. 
Table 3 presents the comparison results between the proposed method and existing design methods. Notably, 
this method constructs a customized bone plate by blending bone morphological features into the semantic layer 
of the plate feature model; thus, design efficiency can be improved by avoiding the design from scratch while 
ensuring a match between the bone plate and the bone.

Discussion and conclusion
Conventional design methods for customized plates heavily rely on interactions with medical professionals. They 
also have a low level of reusability and often result in large deviations from the design objectives. In this study, 
we extracted bone morphological features using the PCA method and incorporated them as weights into the 
mapping relation to construct plate feature models. The main contributions of this study are as follows:

•	 First, to the best of our knowledge, this is the first study in which the bone’s morphological features and plate 
features are fully encapsulated with an internal correlation mechanism. Undoubtedly, this greatly improved 
the matching degree between the plate and bone. The construction of the feature parameter set of the plate 
inherits the existing features and thus avoids unnecessary duplication of features.

•	 For the second contribution, we obtained different plate features by adjusting the upper-level feature param-
eters. This improves the flexibility and applicability of the design, reducing the repetitive tasks required in 
conventional methods and shortening the plate design cycle.

The experimental results show that the constructed plate feature model is competitive in design convenience 
because it facilitates quick and efficient intuitive editing of the feature parameters. The proposed method can be 
easily extended to other types of bones and plates and can provide insights, methods, and techniques for other 
fields of customized design.

Notably, we did not introduce the feature parameter modification sequence of the plate feature model in this 
study. To address this potential disadvantage, future studies should prioritize setting the feature parameters. 
Further consideration should also be given to the hardness parameters of the bone plate and appropriate mate-
rials should be reasonably selected. More exciting research can be conducted on a feature template that can be 
constructed by integrating a group of bone morphological features with the same fracture type and different 
anatomical morphology into a set of semantic feature parameters of the plate object.
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