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Modeling photosynthetic resource 
allocation connects physiology 
with evolutionary environments
Esther M. Sundermann, Martin J. Lercher* & David Heckmann*

The regulation of resource allocation in biological systems observed today is the cumulative result 
of natural selection in ancestral and recent environments. To what extent are observed resource 
allocation patterns in different photosynthetic types optimally adapted to current conditions, and 
to what extent do they reflect ancestral environments? Here, we explore these questions for C3, C4, 
and C3–C4 intermediate plants of the model genus Flaveria. We developed a detailed mathematical 
model of carbon fixation, which accounts for various environmental parameters and for energy and 
nitrogen partitioning across photosynthetic components. This allows us to assess environment-
dependent plant physiology and performance as a function of resource allocation patterns. Models of 
C4 plants optimized for conditions experienced by evolutionary ancestors perform better than models 
accounting for experimental growth conditions, indicating low phenotypic plasticity. Supporting 
this interpretation, the model predicts that C4 species need to re-allocate more nitrogen between 
photosynthetic components than C3 species to adapt to new environments. We thus hypothesize that 
observed resource distribution patterns in C4 plants still reflect optimality in ancestral environments, 
allowing the quantitative inference of these environments from today’s plants. Our work allows us to 
quantify environmental effects on photosynthetic resource allocation and performance in the light of 
evolutionary history.

Metabolic efficiency is an important determinant of organismal fitness1,2. Major constraints on metabolic fluxes 
can arise from scarcity of chemical compounds, e.g., nitrogen necessary to produce enzymes3, or from the 
limited solvent capacity of cellular compartments4,5. To ensure optimal metabolic efficiency, gene regulation 
has to balance available resources appropriately. Modern methods of modeling metabolism rely strongly on the 
assumption of metabolic optimality under physicochemical constraints6–8. Accordingly, resource allocation and 
its constraints are under intense investigation, although these studies are mostly restricted to unicellular organ-
isms. However, the metabolic efficiency of a given metabolic system is not static, but depends on the environ-
ment. Thus, uncertainties about the environmental properties that an organism has adapted to remain a major 
obstacle in the application of these methods. Autotrophic systems, such as plant leaves, are ideal to study the 
interaction of the environment and resource allocation, as the diversity of nutrient sources is much lower than 
for heterotrophs, which results in a reduced complexity of the space of possible environments. Furthermore, 
the effect of environmental factors on plant performance, e.g., the rate of CO2 assimilation, have been studied 
intensively9. In particular, C3 and C4 photosynthesis represent complementary gene expression and resource 
allocation patterns that result in high fitness in specific ecological niches.

In all plants, the fixation of carbon from CO2 is catalyzed by the enzyme ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) as part of the Calvin-Benson cycle. Rubisco also shows an affinity for O2, resulting in 
a toxic by-product, which needs to be recycled by the photorespiratory pathway and causes a significant loss of 
carbon and energy10. Rubisco is an important resource sink in the leaf proteome of plants: it utilizes up to 30% 
of leaf nitrogen and up to 65% of total soluble protein11,12. While C3 plants operate the Calvin-Benson cycle in 
their mesophyll cells to fix carbon, C4 plants express it in the bundle sheath cells and use phosphoenolpyruvate 
(PEP) carboxylase (PEPC) in their mesophyll cells for the initial fixation of carbon. The resulting C4 acids are 
eventually decarboxylated in the bundle sheath cells, creating a local high-CO2 environment around Rubisco 
that suppresses photorespiration. While the exact biochemical implementation of the C4 cycle varies between 
species, the C4 cycle is completed by the regeneration of PEP by pyruvate, phosphate dikinase (PPDK).

Compared to C3 photosynthesis, C4 metabolism requires additional nitrogen to produce the C4 enzymes; 
this additional investment is counteracted by reduced Rubisco requirements due to the concentration of CO2 
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around Rubisco13. The energy requirements of C4 metabolism also differ from those of the C3 pathway14, as fur-
ther ATP is needed for the regeneration of PEP, while ATP and NADPH requirements of the photorespiratory 
pathway are reduced. The metabolic efficiencies of the C3 and C4 system depend strongly on the environment. 
To achieve optimal metabolic efficiency, plants have to coordinate gene expression of the Calvin-Benson cycle, 
photorespiration, light reactions, and, in the case of C4 plants, the C4 cycle; this coordination occurs in a complex 
response to the availability of light energy and nitrogen and of factors that influence the rate of photorespiration. 
The diversity of photosynthetic resource allocation patterns is emphasized by the existence of C3–C4 intermedi-
ate photosynthesis in some plants, where features of the archetypical C4 syndrome are only partially expressed. 
The genus Flaveria contains closely related species that employ the C3, C3–C4 intermediate, and C4 versions of 
photosynthetic metabolism, making it an ideal system to study the interaction between resource allocation and 
environment in photosynthesis.

The selection pressures caused by environmental factors over evolutionary time scales are expected to lead 
to corresponding adaptations of gene regulation. In contrast, environmental variation on the time scale of indi-
vidual generations may select for regulatory programs that adjust plant metabolism to the environment they 
currently face, a process called phenotypic plasticity. Reviewing the occurrence of phenotypic plasticity in C3 and 
C4 plants, Sage and McKown15 argued that C4 plants show limited regulation of Rubisco content in response to 
environmental factors like sunflecks and low temperatures. Although the extent of phenotypic plasticity in plants 
is intensively studied e.g.15–18, the plasticity in terms of resource allocation is not fully understood. In particular, 
it is not clear whether the phenotypic plasticity of different plant lineages is sufficient to acclimate optimally to 
the current environment; instead, many plants might still allocate at least parts of their resources in patterns that 
were optimal in the environments that dominated their recent evolutionary history.

The areas where C4 dicotyledonous plants are assumed to have evolved are regions of low latitude showing 
combinations of heat, drought, and salinity13. For Flaveria, analyses that combine phylogenetic context and 
environmental information point toward an evolutionary origin in open habitats with high temperatures13,19,20.  
The last common C3 ancestor of the current Flaveria species lived 2–3 million years ago21, when CO2 levels were 
significantly lower than the current, postindustrial level22,23. In summary, Flaveria species likely faced high light 
intensities, high temperatures, and low atmospheric CO2 levels during their recent evolutionary history.

The standard method to model the CO2 assimilation rate of C3, C4, and C3–C4 intermediate plants is based on 
the mechanistic biochemical models of Berry and Farquhar24, Farquhar et al.25, and von Caemmerer9,26. These 
models predict the light- and enzyme-limited CO2 assimilation rate with great success, and take into consid-
eration enzymatic activities and various environmental parameters, including mesophyll CO2 level and light 
intensities. In many ecosystems, the most limiting resource for plant growth is nitrogen27,28, and a high propor-
tion of nitrogen is used in photosynthesis29. The increased nitrogen-use efficiency of C4 species compared to C3 
relatives indicates that nitrogen availability may have played a major role in C4 evolution30. Models of optimal 
nitrogen allocation were successfully used to understand the response to environmental factors like elevated 
CO2

31,32, light33,34, and temperature35, but these approaches were limited to C3 plants. In order to understand 
how optimal resource allocation patterns shifted during C4 evolution, a new modeling framework is required.

Here, we aim for a detailed understanding of the interplay between resource allocation and current and past 
evolutionary environments in relation to CO2 assimilation occurring in C3, C4, and C3–C4 intermediate species. 
To achieve this goal, we developed a mathematical model for these photosynthetic types that integrates knowl-
edge of resource costs and relevant environmental factors. Using this model, we seek to understand (1) to what 
extent resource allocation is phenotypically plastic and to what extent it appears adapted to an environment the 
plants were facing during their evolutionary history; and (2) if resource allocation patterns can be used to identify 
unique environments to which allocation is optimally adapted.

Methods
Model overview.  Here, we present a nitrogen-dependent light- and enzyme-limited model for the steady-
state CO2 assimilation rate, which—depending on its parameterization—can describe C3, C3–C4 intermediate, 
and C4 photosynthetic types. Figure 1 shows a schematic overview, highlighting the relationships between the 
major pools of photosynthetic nitrogen (Rubisco, C4 cycle, and thylakoids). The definitions of the corresponding 
model parameters are listed in Table 1. Not all parameters are represented explicitly in Fig. 1, e.g., the schematic 
figure does not distinguish linear and cyclic electron transport, or the two enzymes PEPC and PPDK that repre-
sent the C4 cycle. In this study, we parameterize the model to describe species from the genus Flaveria; parameter 
values are listed in Supplementary Table S1. Before describing the model components in detail, we provide an 
overview of the model in the following paragraphs.

We extended the light- and enzyme-limited C3–C4 models originally developed by von Caemmerer9 and 
modified by Heckmann, et al.2. We added a fixed budget of nitrogen constraining the total abundance of photo-
synthetic proteins using previous knowledge about the major nitrogen requirements of photosynthetic compo-
nents, e.g., Rubisco36. Furthermore, we extended the existing models by explicitly modeling the ATP and NADPH 
production of the linear and cyclic electron transport (LET and CET, respectively). Thus, an environment-
dependent photosynthetic nitrogen budget is distributed across the enzymes of the Calvin-Benson cycle in the 
mesophyll and bundle sheath cell, the C4 cycle, and the proteins of the LET and CET in the thylakoid membranes. 
Combining this model with the temperature dependency of the photosynthetic apparatus37 results in a detailed 
model of photosynthesis that incorporates leaf nitrogen level, light intensity, mesophyll CO2 and O2 levels, and 
the effects of temperature.

In order to understand physiological data in the context of environmental adaptation, we aim to find optimal 
resource allocation in a given environment. To this end, we assume that resource allocation has been optimized 
by natural selection to maximize the CO2 assimilation rate (A, [µmol m−2 s−1])23,38,39. We developed a robust 
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optimization pipeline that reliably finds optimal resource allocation dependent on environments and photo-
synthetic types. In previous work, optimality assumptions were successfully used in a variety of photosynthetic 
systems; examples are the explanation of the coordination of ribulose-1,5-bisphosphate carboxylation and regen-
eration during C3 photosynthesis40,41, optimal nitrogen allocation in C3 plants in different environments31–35,42, the 
exploration of evolutionary trajectories from C3 to C4 photosynthesis2, the exploration of alternative inter-cellular 
transport pathways in C2 plants43, and the prediction of proteome allocation in cyanobacteria44.

We use optimality of the modeled CO2 fixation rate to determine (1) the optimal relative investment of 
nitrogen into Rubisco, the C4 cycle enzymes, and the proteins of the light-dependent reactions, (2) the optimal 
partitioning of NADPH between the Calvin-Benson cycle and the photorespiratory pathway, (3) the optimal 
partitioning of ATP across the Calvin-Benson cycle, photorespiratory pathway, and C4 cycle (if relevant), and 
(4) the optimal proportion of LET and CET.

Environmental factors and evolutionary parameters.  We specify the environment in terms of the 
following factors: light intensity, leaf nitrogen level, temperature, and CO2 and O2 mesophyll partial pressures. 
The photosynthetic type is defined by six parameters: the Rubisco distribution between mesophyll and bundle 
sheath cells (β); the Rubisco kinetics, (specified through a single parameter, kccat [s−1], due to the known trade-
off relationships between the kinetic parameters45); the maximal C4 cycle activity (Vpmax, [µmol m−2 s−1]); the 
fraction of glycine decarboxylated by the glycine decarboxylase complex in the bundle sheath cell that is derived 
from oxygenation by Rubisco in the mesophyll cell (ξ); the Michaelis constant of PEPC for bicarbonate (Kp, 
[µbar]), and the bundle sheath cell conductance for CO2 (gs, [µmol m−2 s−1]) (see Heckmann, et al.2 for details). 
The values for the parameters are taken from the literature (see Supplementary Table S1 for details).

Nitrogen allocation.  To calculate the CO2 assimilation rate, we focus on the photosynthetic nitrogen pool 
(Nps, [µmol m−2]). In our model, Nps can be allocated across the following major pools of leaf photosynthetic 
nitrogen: the main enzyme of the Calvin-Benson cycle (nEtot), Rubisco; the main enzymes of the C4 cycle (nC4), 
PEPC and PPDK (we decided to focus on PEPC and PPDK as the major nitrogen pools of the C4 cycle based on 
the enzyme molecular weights and turnover numbers46); and the thylakoids (nJmax), which include the photo-
synthetic electron transport chains. The CO2 assimilation rate and other model parameters can be predicted for 
a freely chosen nitrogen allocation. Note that we are interested in determining the optimal nitrogen allocation 
(see Section “Optimization procedure” for details). The environment-specific Nps is calculated as a fraction of 
total leaf nitrogen (Nt, [µmol m−2]) based on phenomenological observations (see Supplementary Methods S1 
for details).

Nitrogen allocated to Rubisco.  We only consider the nitrogen requirements of Rubisco in the Calvin-Benson 
cycle, as it accounts for the major nitrogen costs of this cycle47. The amount of catalytic sites of Rubisco (Etot, 
[µmol m−2]) is calculated from the invested nitrogen by Eq. (1), where nEtot represents the fraction of Nps invested 
into Rubisco:

The number of catalytic sites per nitrogen is 1.27 × 10–3 [ cE, µmol catalytic sites (µmol nitrogen)−1] and was 
derived from Harrison et al. 36.

(1)Etot = nEtot · Nps · cE,

Figure 1.   An overview of the nitrogen-dependent light- and enzyme-limited model. CO2 entering the 
mesophyll cell (M) can be fixed by Rubisco (C3 and intermediates) or PEPC (C4 and intermediates); The C4 
cycle then shuttles CO2 fixed by PEPC to the bundle sheath cell (BS) and releases it, allowing it to be re-fixed 
by Rubisco. The fixation of O2 by Rubisco leads to photorespiration (PCO). Blue arrows indicate the nitrogen 
allocation and yellow arrows represent the energy allocation considered in the model.
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Abbrev Explanation Value Units

A Achieved CO2 assimilation rate (A = min
(

Aj, Ac

)

) µmol m−2 s−1

Ac CO2 assimilation rate when the electron transport rate is not limiting µmol m−2 s−1

Aj Light-limited CO2 assimilation rate (Aj = min
(

AATP
j , ANADPH

j

)

) µmol m−2 s−1

AATP
j ATP-limited CO2 assimilation rate µmol m−2 s−1

ANADPH
j NADPH-limited CO2 assimilation rate µmol m−2 s−1

cE Number of Rubisco catalytic sites per nitrogen 1.27 × 10–3 36 µmol × (µmol nitrogen)−1

cN Nitrogen costs of cytochrome f 8.8549 mol nitrogen × (mmol cyt)−1

Chl Chlorophyll content µmol m−2

cyt The amount of cytochrome f per chlorophyll mmol × 
(mol Chl)−1

cytJmax The relation of cytochrome f to Jmax 17250 mmol electron × (mmol cyt s)−1

eATP Assumed ratio of electron per ATP in the linear electron transport 4/366 electron × 
ATP−1

Etot The amount of Rubisco catalytic sites µmol m−2

f A correction factor accounting for the spectral quality of the light 0.159 unitless

gs The bundle sheath cell conductance µmol m−2 s−1

I The absorbed light µmol m−2 s−1

Jmax The maximal electron transport rate µmol m−2 s−1

JmaxCET The maximal electron transport rate of the cyclic electron transport µmol m−2 s−1

JmaxCL A factor that describes the scaling of maximal electron transport rate with cytochrome f for the CET 3 (assumption) factor

JmaxLET The maximal electron transport rate of the linear electron transport µmol m−2 s−1

Jt Electron transport rate µmol m−2 s−1

Jmc
Electron transport rate that is available for the Calvin-Benson cycle and the photorespiratory path in the mesophyll 
cell µmol m−2 s−1

Jmp, Electron transport rate that is available for the C4 cycle µmol m−2 s−1

Js
Electron transport rate that is available for the Calvin-Benson cycle and the photorespiratory path in the bundle 
sheath cell µmol m−2 s−1

ICET Irradiance absorbed by the pigments of the cyclic electron transport µmol m−2 s−1

ILET Irradiance absorbed by the pigments of the linear electron transport µmol m−2 s−1

kccat Turn-over rate of Rubisco s−1

kcat,PEPC Turn-over rate of PEPC 6646 s−1

kcat,PPDK Turn-over rate of PPDK 6.0246 s−1

Kp Michaelis constant of PEPC for bicarbonate µbar

LHC Light harvesting complexes mmol × 
(mol Chl)−1

MWPEPC The nitrogen requirement of a catalytic site of PEPC 96,00046 Da

MWPPDK The nitrogen requirement of a catalytic site of PPDK 95,00046 Da

nC4 The fraction of photosynthetic nitrogen pool invested into the main enzymes of the C4 cycle: PEPC and PPDK fraction

nevoC4
The optimal fraction of photosynthetic nitrogen pool invested into the main enzymes of the C4 cycle under the 
evolutionary scenario fraction

n
growth
C4

The optimal fraction of photosynthetic nitrogen pool invested into the main enzymes of the C4 cycle under the 
growth scenario fraction

nChl
Empirical factor that relates the amount of nitrogen invested into thylakoids to the amount of chlorophyll in C3 
plants 0.015888739 factor

nEtot The fraction of photosynthetic nitrogen pool invested into the Calvin-Benson cycle fraction

nevoEtot
The optimal fraction of photosynthetic nitrogen pool invested into the Calvin-Benson cycle under the evolutionary 
scenario fraction

n
growth
Etot

The optimal fraction of photosynthetic nitrogen pool invested into the Calvin-Benson cycle under the growth 
scenario fraction

nfit
The proportion of nitrogen invested into the thylakoids as a function of the leaf nitrogen level (a fit to empirical 
data) fraction

nJmax
The fraction of photosynthetic nitrogen pool invested into the thylakoids, which include the electron transport 
chains fraction

nevoJmax The optimal fraction of photosynthetic nitrogen pool invested into the thylakoids under the evolutionary scenario fraction

n
growth
Jmax

The optimal fraction of photosynthetic nitrogen pool invested into the thylakoids under the growth scenario fraction

nRubisco Empirical nitrogen investment of C3 Flaveria species into Rubisco fraction

Nps Photosynthetic nitrogen pool µmol m−2

Nt Total leaf nitrogen µmol m−2

Nthy Nitrogen invested into the thylakoids µmol × 
(µmol Chl)−1

Continued
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Nitrogen allocated to enzymes of the C4 cycle.  We calculated the nitrogen cost of C4 cycle enzymes from data on 
enzyme kinetics. The nitrogen requirements of the C4 cycle consider co-limitation of PEPC and PPDK, whose 
molecular weights (MW, [Da]) and turn-over rates (kcat, [s−1]) are used to calculate the maximal rate of C4 
cycle activity46,48. Equation 2 represents the relationship between the maximal turnover rate, Vpmax, and nitrogen 
investment into the C4 enzymes (nC4 Nps),

where MW* ([Da]) represents the nitrogen requirement of a catalytic site, assuming the nitrogen content of the 
protein is 16%11; indices indicate the considered enzyme.

Nitrogen and the maximal electron transport rate.  Nitrogen invested into the thylakoids (Nthy, [µmol (µmol 
Chl)−1]) is related to the maximal electron transport rate (Jmax, [µmol m−2 s−1]) via the amount of cytochrome f 
per chlorophyl (cyt, [mmol (mol Chl)−1]) and by considering photosystems I and II (PSI and PSII, [mmol (mol 
Chl)−1]) as well as the light harvesting complexes (LHC, [mmol (mol Chl)−1]). In the following, we describe these 
relationships in quantitative detail [Eqs. (3)–(15)]; indices represent the considered pathway:

We use previous knowledge about the relationship of thylakoid nitrogen costs and cyt as well as data from 
Ghannoum et al.49 for abundances of PSI and PSII to include phenomenological stoichiometry rules between 

(2)Vpmax =
nC4 · Nps

(

MW∗
PPDK

kcat,PPDK

)

+

(

MW∗
PEPC

kcat,PEPC

)

(3)PSILET = 2 · p

(4)PSICET = 2 ·
(

1− p
)

(5)PSII = 2.5

(6)LHCLET =
1000 · p− PSII · pIIChl − PSILET · pIChl

lChl

(7)LHCCET =
1000 ·

(

1− p
)

− PSICET · pIChl

lChl

Abbrev Explanation Value Units

p proportion of linear electron transport fraction

PSI Photosystem I 249 mmol × 
(mol Chl)−1

PSICET Photosystem I that is associated with the cyclic electron transport mmol × 
(mol Chl)−1

PSILET Photosystem I that is associated with the linear electron transport mmol
 × (mol Chl)−1

PSII Photosystem II 2.549 mmol × 
(mol Chl)−1

pIChl Mol chlorophyll per mol complex of PSI 18449 mol Chl × 
(mol complex)−1

pIIChl Mol chlorophyll per mol complex of PSII 6049 mol Chl × 
(mol complex)−1

pIN Nitrogen costs of PSI 32.849 mol nitrogen × 
(mol Chl)−1

pIIN Nitrogen costs of PSII 83.349 mol nitrogen × 
(mol Chl)−1

lChl Mol chlorophyll per mol complex of LHC 1349 mol Chl × 
(mol complex)−1

lN Nitrogen costs of the LHC 2649 mol nitrogen × 
(mol Chl)−1

Vpmax Maximal C4 cycle activity µmol m−2 s−1

α Leaf absorptance 0.849 fraction

β Rubisco distribution between mesophyll and bundle sheath cells fraction

δn Required nitrogen re-allocation fraction

Θ The convexity of the transition between the initial slope and the plateau of the hyperbola 0.79 unitless

ξ The fraction of glycine decarboxylated in the bundle sheath cell that is derived from oxygenation by Rubisco in the 
mesophyll cell fraction

Table 1.   A list of all parameters used in the mathematical model. For each parameter, we list abbreviation 
(abbrev.), explanation, default value (if this exists, with reference) and units.
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LHC and the components of the electron transport chain [Eqs. (3)–(7)]; pIIChl, pIChl, and lChl represent mol Chl 
(mol complex)−1 for PSII, PSI, and LHC, respectively). While we parameterize our model for Flaveria, the data of 
Ghannoum et al.49 is for C4 grasses and for C3 dicots; however, as the data was very similar between the diverse 
species examined, it is likely that values in Flaveria are very similar. We assume that the chlorophyll content is 
shared between PSI, PSII, and LHC [Eqs. (6), (7)]. We extended the previous work by splitting these complexes 
according to the proportion of LET (p) and CET (1—p).

For the LET, Jmax is related to Nthy as described in Eqs. (8)–(11). NthyLET
 represents the available amount of 

nitrogen for the thylakoids with nJmax representing the fraction of photosynthetic nitrogen pool invested into the 
thylakoids [Eq. (8)], accounting for LHC, PSII, PSI, and cyt [Eqs. (9), (10)]. The amount of cyt can be calculated 
according to Eq. (10) and related to Jmax via the empirical cytJmax; cytJmax describes the relation of cyt to Jmax and 
was measured by Niinemets and Tenhunen50, who determined 156 mmol e- (mmol cyt s)−1 across various C3 
species. We are not aware of a comparable data set for C4 plants. Assuming 95% of LET in C3 plants, this leads 
to a capacity of 172 mmol e- (mmol cyt s)−1 for cytJmax.

Chlorophyll content (Chl, [µmol m−2]) is calculated based on an empirical factor39 that relates the amount 
of nitrogen invested into thylakoids to the amount of chlorophyll in C3 plants (see Supplementary Methods S2 
for details). We again use work from Ghannoum et al.49 to relate Nthy to the amount of cyt [Eqs. (8)–(10)]; cN 
represents mol nitrogen per mmol cyt, and pIIN, pIN, and lN represent mol nitrogen per mol Chl for PSII, PSI, 
and LHC, respectively).

The derivation for the CET is analogous to the case of the LET:

in the last equation, we additionally required the factor JmaxCL, which describes the scaling of Jmax with cyt for 
the CET. This factor is assumed to be 3, as PSII is more expensive in terms of nitrogen compared to PSI47,49.

In summary, the free optimization parameters related to nitrogen allocation to the light reactions, p and nJmax, 
affect Jmax in LET and CET via the cytochrome f content.

Optimization procedure.  Theoretically, model predictions can be made using a freely chosen resource 
allocation. To understand the raised questions about environmental adaptation, we will analyze the fittest plants, 
i.e., plants with the resource allocation that results in the maximal CO2 assimilation rate. To find the maximal 
CO2 assimilation rate under the given environmental, physiological, and biochemical constraints, we optimize 
the allocation of photosynthetic nitrogen (assumed to depend only on total leaf nitrogen) into Rubisco (nEtot), 
C4 cycle (nC4), LET, and CET (the latter two represented by p and nJmax) through an augmented Lagrangian 
approach using the auglag-function of the package ‘nloptr’51. The optimization is constrained to make sure that 
the results are biologically realistic with respect to the modeled photosynthetic type, e.g., C3 species were not able 
to invest nitrogen into the C4 cycle (see Supplementary Table S2 for details). The model and its optimization were 
implemented in the R environment52 (see Supplementary Methods S3 for details).

Modeling the effect of light.  The relationship of the electron transport rate (Jt, [µmol m−2 s−1]) and the 
absorbed light of a certain irradiance (I, [µmol m−2  s−1]) is presented in Eqs. (16)–(18). I is related to Jt by a 
widely accepted empirical hyperbolic function [Eq. (16)], 9,53 that includes the following parameters: (1) Jmax, the 
maximum electron transport rate; (2) Θ, the convexity of the transition between the initial slope and the plateau 
of the hyperbola; (3) α, the leaf absorptance; (4) f, a correction factor accounting for the spectral quality of the 
light; and (5) p, the fraction of absorbed quanta that reaches PSI and PSII of LET (with (1 − p) reaching the CET). 
Iabso is set to either ILET or ICET depending on the considered path of electron transport. The fraction of irradiance 

(8)NthyLET
=

nJmax ·Nps · p

Chl

(9)NLHLET = PSII · pIIN · pIIChl · 10
−3 + PSILET · pIN · pIChl · 10

−3 + LHCLET · lN · lChl · 10
−3

(10)cytLET =
1

cN

(

NthyLET − NLHLET

)

(11)JmaxLET = max

(

0,
cytLET · Chl · cytJmax

1000

)

(12)NthyCET =
nJmax · Nps ·

(

1− p
)

Chl

(13)NLHCET = PSICET · pIN · pIChl · 10
−3 + LHCCET · lN · lChl · 10

−3

(14)cytCET =
1

cN

(

NthyCET − NLHCET

)

(15)JmaxCET = max

(

0,
cytCET · Chl · cytJmax · JmaxCL

1000

)

,
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that is absorbed by the LET is shared equally between PSI and PSII [resulting in the factor 0.5 in Eq. (17)], while 
the fraction of irradiance that is absorbed by the CET is assumed to reach PSI in full.

In our model it is assumed that the electron transport chain is the only source of ATP and NADPH and that 
both are used exclusively for CO2 fixation9. As NADPH production results from LET, the amount of electrons 
is calculated using Eqs. (16) and (18). The amount of electrons utilized for ATP production depends on both 
LET and CET. There are multiple pathways of CET55; the model considers those pathways with an active Q-cycle 
and a ratio of two protons per electron. Note that Rubisco is assumed to be fully activated, independent of the 
irradiance9.

The available energy needs to be partitioned between five pools: (1) the Calvin-Benson cycle in the mesophyll; 
(2) the Calvin-Benson cycle in the bundle sheath; (3) the photorespiratory pathway in the mesophyll; (4) the 
photorespiratory pathway in the bundle sheath cell; and (5) the C4 pathway. This means that the available energy 
is calculated in total and then partitioned54 into Jmp, Jmc, and Js, the fractions of Jmax invested into the C4 cycle, 
the Calvin-Benson cycle and the photorespiratory pathway in the mesophyll, and the Calvin-Benson cycle and 
the photorespiratory pathway in the bundle sheath cell, respectively. During optimization, the activity of each 
process is constrained by its allocated energy pool, i.e., the energy allocation equals the relative energy alloca-
tion of the processes (see Supplementary Methods S3 for details). In summary, the optimal energy allocation is 
a function of the nitrogen pools.

CO2 assimilation rate.  A limitation in the production of both ATP and NADPH arises under light-limited 
conditions9. The ATP-limited ( AATP

j  ) and the NADPH-limited ( ANADPH
j  ) CO2 assimilation rate are calculated 

according to the light-limiting model of von Caemmerer9 (see Supplementary Methods S5 for equations). The 
light-limited CO2 assimilation rate is:

The model for the CO2 assimilation rate when the electron transport rate is not limiting (Ac) is taken from 
Heckmann et al.2 and extended by a parameter representing the fraction of PSII activity in the bundle sheath 
cells, which affects O2 generation. This parameter is set to p. In the whole model, each limitation is considered 
independently; the plant’s CO2 assimilation rate is determined by the lower of the two limitations:

Temperature‑dependence.  Temperature affects the CO2 assimilation rate by changing the maximal 
activity of the C4 cycle, the carboxylation rate of Rubisco, and the electron transport rate. Temperature also 
affects the specificity of Rubisco and the Michaelis constants of Rubisco and PEPC. We model the tempera-
ture response by an extended Arrhenius function that describes two counteracting effects: rate increases with 
increasing temperature and enzyme inactivation through thermal instability37. We use parameters taken from 
literature or fitted to available data.

The extended Arrhenius function is given by Massad et al.37:

The parameters of the extended Arrhenius function are: (1) the value of the considered enzyme at tempera-
tures 25 °C (k25); (2) the activation energy (E); (3) the deactivation energy (H); (4) an entropy factor (S); (5) the 
universal gas constant (R); and (6) the temperature considered (T). (see Supplementary Methods S6 for details 
and Table S3 for the parameters).

Data used in the analyses.  As the raw data of Vogan and Sage39 were not available, we extracted it from 
the corresponding figures using the Graph Grabber software provided by Quintessa Limited (Version 1.5.5). The 
measured data include curves of the CO2 assimilation rate as a function of intercellular CO2 concentration (Ci) 
and the ratio of atmospheric CO2 concentration (Ca) and Ci. We derive the CO2 concentration in the mesophyll 
cell (Cm) for a given Ca by considering this Ca/Ci-ratio and assuming that the ratio of Cm to Ci is 0.85 (as CO2 
enters the mesophyll through diffusion, the Cm / Ci ratio has to be below 1). As can be seen from our sensitivity 
analysis (see below and Supplementary Fig. S1), the exact value for the Cm / Ci ratio does not affect our conclu-
sions.

To transform the in vitro PEPC activity given by Dwyer et al.56 to an in vivo activity, the in vitro value is 
divided by 357–59.

(16)Jt =
Iabso + Jmax −

√

(Iabso + Jmax)
2 − 4θIabsoJmax

2θ

(17)ILET = I · α ·
(

1− f
)

· p · 0.5

(18)ICET = I · α ·
(

1− f
)

·
(

1− p
)

(19)Aj = min
(

AATP
j , ANADPH

j

)

(20)A = min
(

Aj, Ac

)

(21)f (T) = k25exp

[

E
T − 298.15

298.15RT

]

[

1+ exp
(

298.15S−H
298.15R

)]

[

1+ exp
(

TS−H
TR
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Required nitrogen re‑allocation (δn).  Required nitrogen re-allocation (δn, [fraction]) is defined as the 
total fraction of nitrogen that needs to be re-allocated between photosynthetic pools to optimally adjust photo-
synthesis from the evolutionary scenario ( nevoEtot, n

evo
C4 , nevoJmax ) to a given experimental growth environment ( ngrowthEtot

, ngrowthC4 , ngrowthJmax ):

Statistical information.  The differences between adaptation scenarios are tested with Wilcoxon rank sum 
tests. For details about the calculation of the resource allocation for the data set of Vogan and Sage30 (Fig. 3) see 
Supplementary Methods S8. All statistical analyses were conducted in R52. The difference of δn for various pho-
tosynthetic types was tested by sign tests.

Results
Optimal resource allocation in the evolutionarily relevant environment explains physiological 
data and outperforms models based on the experimental growth environment in C4 Flave-
ria plants.  Do photosynthetic types exhibit differences in phenotypic plasticity, i.e., do they differ in their 
ability to adjust their photosynthetic resource allocation to optimally fit the environment in which they were 
grown? Or is resource investment static and reflects past environments in which the plants’ ancestors evolved? 
To compare these competing hypotheses in the genus Flaveria, we predict physiological data of plants that are 
either optimally adapted to the experimental growth conditions (EGC) used in the respective studies (‘growth 
scenario’) or to the environments in which they likely evolved (‘evolutionary scenario’); with respect to our 
model, these environments differ in terms of atmospheric CO2 concentration, temperature, and light intensity 
(Supplementary Tables S4-S7). This in silico experiment also serves as validation for our modeling framework; 
if the parameterization for Flaveria and our optimality assumptions are correct, we would expect the model to 
explain physiological responses in one of the two or in an intermediate scenario.

To predict the physiological data of plants that are optimally adapted to the evolutionary scenario, we use our 
model to identify the optimal resource allocation for C3, C3–C4 intermediate, and C4 Flaveria species in the evolu-
tionary environment. This environment is based on the suggested environment of C4 evolution in Flaveria13,19,20, 
with high light intensities, high temperature, and 280 µbar atmospheric CO2 concentration (see Supplementary 
Table S4 for parametrization). For comparison, we identify the optimal resource allocation under the EGCs of 
the following studies, which provide information about all considered environmental factors: (1) Vogan and 
Sage39, (2) Vogan and Sage30, and (3) Dwyer et al.56. Vogan and Sage39 measured the net CO2 assimilation rate 
as a function of intercellular CO2 concentration (A-Ci curve) and as a function of temperatures between 15 °C 
and 45 °C for C3, C3–C4 intermediate, and C4 Flaveria species. In this experiment, plants were grown at light 
intensities of 560 µmol quanta m−2 s−1, 37 °C at daytime, current atmospheric O2 concentration, and 380 µbar 
or 180 µbar atmospheric CO2 concentrations (Supplementary Table S5). In an independent experiment, Vogan 
and Sage30 measured the dependence of CO2 assimilation rate on leaf nitrogen levels in C3, C3–C4 intermedi-
ate, C4-like, and C4 Flaveria species. The plants were grown at 554 µmol quanta m−2 s−1 light intensity, 30 °C at 
daytime, at 380 µbar atmospheric CO2 and current atmospheric O2 concentrations (Supplementary Table S6). 
Dwyer et al.56 performed detailed experiments on the photosynthetic resource allocation and performance of 
the C4 species F. bidentis. The Dwyer et al.56 data set allows us to compare the predicted nitrogen investment 
into the three major photosynthetic components—Rubisco, C4 cycle, and electron transport chain—, and the 
corresponding CO2 assimilation rate, to experimentally observed resource allocation patterns. The plants were 
grown under 25 °C or 35 °C at daytime, 550 µmol quanta m−2 s−1, 380 µbar CO2, and current atmospheric O2 
concentrations (Supplementary Table S7).

In the three studies, the experimental measurement conditions (EMC) differ from both the EGC and the 
evolutionary condition. Typically, the EMC shows higher light intensities than the EGC. In contrast, the major 
difference between the evolutionary environment and the EMC is the atmospheric CO2 concentration. There are 
additional differences between the conditions that are study-specific, e.g., differences in temperature; detailed 
comparisons of conditions are listed in Supplementary Tables S4–S7.

For C3 Flaveria species (F. pringlei or F. robusta), the model results assuming an optimal allocation under the 
evolutionary scenario agree qualitatively with the measured data of Vogan and Sage30,39, and visually, they appear 
to fit the data better than results assuming optimality under the EGC30 (Figs. 2, 3; Supplementary Figs. S2–S5). 
To allow a statistical comparison between the quality of the two predictions, for each of the two scenarios, we 
calculated the squared residuals across all C3 Flaveria data points in Figs. 2, 3 and Supplementary Figs S2–S5 (see 
Supplementary Table S9); these two distributions were then compared through a Wilcoxon rank sum test. This 
test was not statistically significant at the 5% level (P = 0.31). Thus, it is possible that the somewhat better fit for 
the evolutionary scenario is caused by random fluctuations or experimental errors rather than by a superiority 
of one scenario over the other. 

The result was very similar for the C3-C4 intermediates, F. ramosissima and F. floridana. Again, the predictions 
assuming an optimal allocation under the evolutionary scenario agree qualitatively with the measured data of 
Vogan and Sage30,39, and seem to fit the data better than predictions under the EGC (Figs. 2, 3; Supplementary 
Figs. S2–S5); however, the prediction errors are again not statistically significantly different between the two 
scenarios (P = 0.86, Wilcoxon rank sum tests, Supplementary Table S9).

The C4-like species F. palmeri is only considered in the data set of Vogan and Sage30 (Fig. 3). The model results 
for F. palmeri assuming optimal resource allocation in the evolutionary scenario are consistent with the measured 

(22)δn =
∑

i∈{Etot,C4,Jmax}

∣

∣

∣
nevoi − n

growth
i

∣

∣

∣
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Figure 2.   Model results based on optimality in the evolutionary scenario (solid lines) describe the measured 
data (circles ± SE) better than the model assuming optimal adaptation to the EGC (dashed lines) for F. robusta 
(C3), F. ramosissima (C3–C4), and F. bidentis (C4) grown at the 380 µbar atmospheric CO2 (data from Vogan 
and Sage39). (A) The net CO2 assimilation rate as a function of intercellular CO2 concentration, measured at 
30 °C. SE was calculated based on three independently measured plants. (B) The net CO2 assimilation rate as 
a function of temperature at 380 µbar atmospheric CO2 concentration. See Supplementary Table S9 for the 
residual sum of squares. Figure created using R 4.052.

Figure 3.   The dependence of the CO2 assimilation rate on leaf nitrogen levels for various Flaveria species 
is consistent with model results based on optimality in the evolutionary scenario (solid lines). For C3-C4 
intermediate, C4-like, and C4, these results outperform results from simulations assuming optimal phenotypic 
adaptation to the EGC (dashed lines). The modeled species are F. pringlei (C3), F. floridana (C3-C4), F. palmeri 
(C4-like), and F. bidentis (C4) (data from Vogan and Sage30). See Supplementary Table S9 for the residual sum of 
squares. Figure created using R 4.052.
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data. The squared residuals for the evolutionary scenario is significantly smaller than that for the growth scenario 
(P = 0.02, Wilcoxon rank sum tests, Supplementary Table S9).

Focusing on the C4 species F. bidentis, curves calculated from a model parameterized for optimal CO2 assimi-
lation in the EGC are qualitatively different from the experimental curves of Vogan and Sage30,39 (Figs. 2, 3; 
Supplementary Figs. S2–S5), except for the A-Ci curves measured at low CO2 levels, for both 30 °C and 40 °C. In 
contrast, the modeled curves based on a model optimally adapted to the evolutionary scenario are qualitatively 
consistent with the measured curves. Jointly considering all measured curves in Figs. 2, 3 and Supplementary 
Figs. S2–S530,39, we find that the squared residuals for the evolutionary scenario is statistically significantly smaller 
than that for the growth scenario (P = 8.3 × 10–5, Wilcoxon rank sum tests, Supplementary Table S9).

Dwyer et al.56 performed detailed experiments on the photosynthetic resource allocation and performance 
of the C4 species F. bidentis. First, we analyze the discrepancy of each model prediction with the empirical meas-
urement. Model predictions of chlorophyll content and the amount of photosystem II agree within a factor of 
1.10 to 1.22 (this corresponds to a factor 0.13 to 0.28 assuming a log2-scale as presented in Fig. 4) with values 
measured by Dwyer et al.56 (see Supplementary Table S10 for absolute values). For plants grown at 25 °C, the 
resource allocation determined under the evolutionary scenario agrees with the measured data within a factor 
of 0.29 to 1.19 (this corresponds to a factor of − 1.8 to 0.25 assuming a log2-scale; Fig. 4A); at 35 °C, agreement 
is within a factor of 0.29 to 1.09 (this corresponds to a factor − 1.8 to 0.12 assuming a log2-scale; Fig. 4B). In 
both cases, agreement is much lower for predictions in the growth scenario (which are 0.10 to 1.42 or − 3.26 
to 0.50 on a log2-scale for 25 °C (Fig. 4A) and 0.11 to 1.34 or − 3.12 to 0.42 on a log2-scale for 35 °C (Fig. 4B)). 
Then, we analyze the overall discrepancy of model prediction and empirical measurement presented in Fig. 4. 
We determine the deviation (‘error’) between all model predictions and measurements as the squared residuals 
(normalized to fractions of the experimental means).We assessed the statistical significance of the superior per-
formance of the evolutionary scenario (compared to the growth scenario) by comparing the errors. The resource 
allocation calculated for the evolutionary scenario outperforms the growth scenario for the data represented in 
Fig. 4 (P = 1.0 × 10–4, Wilcoxon rank sum test). In Fig. 4, there is a discrepancy between measured in vitro PEPC 
activity and predicted in vivo activity, a disparity that has been noted before57–59. When in vitro PEPC activity 
is corrected using independent data on in vitro-in vivo differences (Supplementary Fig. S8; for derivation see 
Methods), the model successfully predicts all measurements; the agreement is within a factor of 0.86 to 1.19 at 
25 °C and 0.77 to 1.09 at 35 °C (this corresponds to a factor of − 0.21 to 0.25 at 25 °C and − 0.37 to 0.12 at 35 °C 
assuming a log2-scale).

Although we could obtain the majority of our model parameters from the literature, the relationship of 
cytochrome f and the maximal electron transport rate of the CET had to be estimated (see Methods). We per-
formed a sensitivity analysis to examine the robustness of the results to changes in the estimated parameters and 
to uncertainties in values obtained from the literature, focusing on parameters with high uncertainty or major 
expected effect on model predictions (Supplementary Methods S7 and Table S11). The predictions based on the 
evolutionary scenario outperform those based on the growth environment consistently across all parameter sets 
(Supplementary Fig. S1).

Adjustments in the nitrogen allocation require substantial changes to protein abundances, which can only be 
achieved through massive protein breakdown and de-novo synthesis (see Moejes, et al.60 for a general discussion 

Figure 4.   A detailed analysis of resource allocation and physiology in F. bidentis (C4) shows a good agreement 
between experimental data56 and model results based on the evolutionary scenario (orange circles). Alternative 
model results assuming optimal phenotypic adaptation to the EGC consistently show higher disagreement with 
the data (purple circles). Values are mean log2(modeled results/measured data) ± SE. (A) Plants grown at 25 °C 
(B) Plants grown at 35 °C. A = net CO2 assimilation rate; N = nitrogen. See Dwyer, et al.56 for sample sizes. Figure 
created using R 4.052.
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and Schmollinger, et al.61 for an example in Chlamydomonas). Thus, we assume that plants require multiple hours 
to days in order to adjust their protein levels to a new environmental condition. Accordingly, we assume that 
plants cannot adapt their resource allocation patterns on the timescale of a measurement, which lasts on the 
order of minutes to hours. This is our rationale for simulating plants optimally adapted to the EGC, even when 
analyzing data collected at rather different EMCs. However, it is conceivable that at least the energy allocation, 
including the proportion of LET, can adjust to the EMC on the timescale of the experiment. We thus performed 
simulations under an alternative model, where nitrogen allocation is optimized for the EGC, but energy allocation 
is subsequently optimized for the EMC. The results are qualitatively similar to the above results from simulations 
where both nitrogen and energy allocation are optimized for the EGC (Supplementary Figs. S9–S16).

The model suggests a unique evolutionary environment for C4 photosynthesis in Flave-
ria.  Compared to a parameterization optimized for the growth scenario, the model optimally adapted to the 
evolutionary scenario leads to superior predictions of plant performance and resource allocation in C4 plants 
across diverse physiological data sets. The inferior performance of the growth scenario model indicates a lack 
of phenotypic plasticity of resource allocation in C4 plants, a result that is in agreement with previous reports 
based on experimental observations15. The lack of phenotypic plasticity points to the possibility that the environ-
ment most relevant for recent evolutionary adaptation of a given C4 plant could be inferred quantitatively from 
observations on plant physiology and resource allocation. Thus, to infer a typical evolutionary environment for 
C4 Flaveria bidentis, we calculated optimal resource allocation under conditions covering plausible ranges of 
mesophyll CO2 partial pressure, temperature, and light intensities, and we then identified the conditions that 
best explain the empirical data (Fig. 5). As atmospheric O2 concentration remained almost constant for at least 
the last few million years23, this environmental parameter is set to a constant value. We compare the simulations 
to the empirical data of Dwyer et al.56, as this data set comprises detailed measurements for each nitrogen pool 
and the resulting CO2 assimilation rate, allowing us to quantify the discrepancy between modeled and measured 
values as the mean squared residuals (normalized to fractions of experimental means).

The model environment that shows the smallest prediction error defines a unique environment (Fig. 5), 
characterized by 1343.75 µmol quanta m−2 s−1 light intensity, 30 °C, a mesophyll CO2 level of 100 µbar, and an 
O2 level of 200 mbar. This environment corresponds to an atmospheric CO2 concentration of about 280 µbar 
(Supplementary Table S8). Some similar environments lead to only slightly worse fits to the empirical data; the 
areas in which the model successfully describes the empirical values generally show high light intensities, inter-
mediate to high temperatures, and a trend towards low CO2 partial pressures (Fig. 5).

In contrast to our findings for C4 and C4-like plants, the performance of the evolutionary and the growth 
scenario models is similar for C3 and C3–C4 intermediate Flaveria species (Figs. 2, 3; Supplementary Figs. S2–S5 
and Table S9). It is conceivable that the lack of superior performance for the evolutionary scenario in C3 Flaveria 
species is due to an inappropriate parameterization of the evolutionary scenario. The environment most relevant 
for the recent evolution of C3 Flaveria may be different from the environment used in the simulations, which 
was chosen based on its relevance for the C4 lineages. To explore this possibility, we simulated a wide range of 
alternative environments, testing if resource allocation optimized for any of these leads to significantly improved 
model predictions for the data from Vogan and Sage39 for C3 plants. However, none of the environments tested 
led to a significant improvement (Supplementary Figs. S6–S7).

Optimal resource allocation patterns are determined by an interplay between the different environmental 
factors. For C4 species, high light intensities (as in the evolutionary scenario) tend to favor an increased nitro-
gen investment into the dark reactions, which goes along with a reduced investment into the electron transport 

Figure 5.   Discrepancy between measured and modeled F. bidentis data across diverse environments. The 
black circle indicates the environment that best explains the experimental data of Dwyer, et al.56. The deviation 
between model predictions and measurements (‘error’) is defined as the mean of the squared residuals (which 
are expressed as fractions of experimental means). Figure created using R 4.052.
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chain. The effect of temperature is of special importance for plants using the C4 cycle, as temperature increases 
PEPC activity drastically37 and therefore reduces the necessary nitrogen investment into the C4 cycle. This allows 
an increased investment into Rubisco and the electron transport chain, both of which show reduced activity at 
elevated temperatures due to thermal instabilities. Lower mesophyll CO2 levels tend to increase the investment 
into the C4 cycle while decreasing the investment into the electron transport chain and (albeit by a small factor) 
into Rubisco.

Limited phenotypic plasticity is linked to a high requirement of nitrogen re‑allocation.  Our 
results indicate that C4 Flaveria species show a lower degree of photosynthetic phenotypic plasticity than closely 
related C3 species (indicated by the inferior performance of the growth model compared to the evolutionary sce-
nario for C4 Flaveria species, there is no significant difference observed in C3 Flaveria species; Figs. 2, 3 and Sup-
plementary Figs S2–S5). On a molecular level, phenotypic plasticity predominantly requires the re-allocation of 
nitrogen between the major photosynthetic protein pools, in addition to post-translational control. After finding 
the optimal nitrogen allocation patterns in the evolutionary and growth scenarios, we calculated the absolute 
difference in the fraction of photosynthetic nitrogen allocated to each major pool of photosynthetic nitrogen 
(Calvin-Benson cycle; C4 cycle; electron transport). We then summed these fractions to quantify the total frac-
tion of nitrogen that needs to be re-allocated between photosynthetic pools to adjust photosynthesis between the 
two optimal nitrogen allocation patterns (δn, see Methods). Table 2 shows this amount of nitrogen re-allocation 
for C3, C3-C4 intermediate, C4-like, and C4 Flaveria species at four different leaf nitrogen levels. We find that pho-
tosynthetic types that utilize C4 photosynthesis require a consistently higher amount of re-allocation compared 
to C3 plants (P = 1.5 × 10–5, sign test). Our results thus indicate a link between required nitrogen re-allocation and 
limited photosynthetic phenotypic plasticity, suggesting a possible causal relationship.

Discussion
Our novel modeling framework allows us to study the interplay between photosynthetic performance, the envi-
ronment, and resource investment on the molecular level. Comparisons of model predictions with phenotypic 
and molecular data from the genus Flaveria (Figs. 2, 3, 4) show that models of C4 plants adapted to an evolution-
ary environment outperform models that consider the experimental growth conditions. These results suggest a 
low phenotypic plasticity in terms of resource allocation in C4 plants of the model genus Flaveria, supporting ear-
lier hypotheses on a low photosynthetic plasticity of C4 plants15. In a recent study, Pignon and Long62 found that 
C4 plants do not appear to have adapted their photosynthetic gene expression to modern levels of atmospheric 
CO2, a result that confirms a low phenotypic plasticity in these plants. This limited phenotypic plasticity may 
potentially be explained by the large amount of nitrogen that needs to be re-allocated by C4 plants to optimally 
adapt to a given growth environment (Table 2): adaptation of C4 photosynthesis requires more drastic changes 
in gene expression than C3 photosynthesis. The relatively young age of many C4 species compared to their C3 
ancestors63 might further enhance this effect, because the required gene-regulatory networks had less time to 
evolve than those of their C3 ancestors. Plants with low photosynthetic phenotypic plasticity might contain 
information about their adaptive environment in their relatively static gene expression patterns. Based on this 
reasoning, we make quantitative predictions for the environments that dominated the recent evolution of C4 
Flaveria (Fig. 5). Previously, environments relevant for C4 photosynthesis evolution have been inferred—mostly 
qualitatively—based on C3-C4 habitat comparisons13,19,20 and geophysiological considerations21. Our results are 
consistent with and refine these earlier estimates.

When C4 species grow under low CO2 levels, the model assuming optimality in the growth scenario explains 
the measured data better than the evolutionary model (Supplementary Figs. S3–S4 and Table S9). To some extent 
this is consistent with the results presented in Fig. 5, where lower mesophyll CO2 concentrations and light inten-
sity than assumed in the evolutionary scenario lead to a better fit of simulated and measured data, thus refining 
our prior assumptions about the evolutionary environment.

Although the predictions for total nitrogen investment into the thylakoids based on the evolutionary scenario 
are highly consistent with the measurements performed by Dwyer et al.56, the model overestimates the amount 
of cytochrome f by a factor of 2 (1.56 µmol m−2 instead of the measured 0.87 µmol m−2 for plants grown at 25 °C, 
1.35 µmol m−2 instead of 0.80 µmol m−2 at 35 °C, see Supplementary Table S10). However, the experimental 
error of the measurements is uncertain, as no replicate measurements were performed for this parameter56. 
Discrepancies between model predictions and observations may also be in part due to error propagation from 

Table 2.   Required nitrogen re-allocation (δn, [fraction]) for different leaf nitrogen levels for various 
Flaveria species. The required nitrogen re-allocation represents the total fraction of nitrogen that needs to be 
re-allocated between photosynthetic pools to optimally adjust photosynthesis from the evolutionary scenario 
to a given experimental growth environment.

Leaf nitrogen level

50 mmol m−2 130 mmol m−2 170 mmol m−2 250 mmol m−2

F. pringlei (C3) 0.039 0.105 0.151 0.273

F. floridana (C3-C4) 0.072 0.159 0.222 0.360

F. palmeri (C4-like) 0.100 0.263 0.325 0.415

F. bidentis (C4) 0.109 0.275 0.334 0.414
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modeled amounts of chlorophyll and the photosystems. In each simulation, we optimized resource allocation for 
an environment that represents a static approximation to the dynamic environment a plant is facing. As diurnal 
and annual variations (which are no focus of this work) potentially show short-term trade-offs44,64, these might 
lead to a discrepancy between modeled and real evolutionary scenarios. In particular, the natural ancestral habitat 
must have exhibited periodically as well as randomly fluctuating conditions, compared to the stable EGCs in 
audited growth chambers and the statically modeled evolutionary scenario.

Given the complexity of our physiological model, we needed to make a number of assumptions. We addressed 
uncertainties in model parameters through sensitivity analyses, showing that our conclusions are robust against 
variation in these parameters (Supplementary Fig. S1). Furthermore, our predictions assume that nitrogen 
availability in the evolutionary scenario was identical to current nitrogen availability. As the role of nitrogen 
availability in C4 evolution remains unclear, further research is needed to assess the effect of nitrogen availabil-
ity on plants under the ancestral, current, and transitional environments. Furthermore, while our approach of 
maximizing the assimilation rate per available CO2 concentration will account for water-use efficiency implicitly, 
a promising avenue for future evolutionary studies will be the explicit inclusion of stomatal responses (see, e.g., 
Bellasio and Farquhar65).

There are only a limited number of data sets available that include the information for each considered 
environmental factor. In the three available data sets that included all necessary information, plants were not 
grown under the same conditions under which experiments were performed (i.e., EGC and EMC differed). The 
EGC and EMC show their biggest difference in the light intensities, but other factors differ also, e.g., tempera-
ture (Supplementary Tables S4–S7). While the disparity between EGC and EMC complicated the analysis and 
interpretation, we argue that the analysis of different photosynthetic types (C3, C3–C4 intermediates, and C4) 
across a wide range of environmental conditions provides a solid basis for the presented results. The complexity 
of the analysis is reduced by considering the model genus Flaveria that allows us to focus on the effect of different 
photosynthetic types rather than differences across genera.

In contrast to the findings in C4 and C4-like plants, the predictive performance of the evolutionary and the 
growth scenario models is similar for C3 and C3–C4 intermediate Flaveria species (Supplementary Table S9). 
This similarity could be caused by the similar assimilation rates found for the evolutionary and growth scenario 
models in C3 and C3–C4 plants, which make it difficult to quantify model performance on noisy data (Figs. 2, 
3 and Supplementary Figs. S2–S5). Overall, our results point to a higher phenotypic plasticity of C3 and C3–C4 
intermediate plants compared to C4 and C4-like plants. Thus, in contrast to the latter photosynthetic types, it may 
not be possible to estimate ancestral evolutionary environments for C3 plants based on our approach.

Our model provides a powerful tool to analyze the resource allocation of photosynthetic organisms and its 
dependence on environmental factors, allowing estimates for the maximal electron transport rate for LET and 
CET, the proportion of LET and CET as well as the nitrogen and energy allocation for which measurements 
are currently infeasible or impractical. This may prove to be of particular utility for systematically assessing the 
likely performance of crops in environments distinct from their natural habitats and for suggesting engineering 
targets in cases of limited phenotypic plasticity.
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