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Microbial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed
in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons
outwardly across the membrane and are indispensable for light-energy conversion in microorganisms.
Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli
expression system because that enables the rapid production of large amounts of recombinant
proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a
phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (0. marina
rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene
showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic
characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption
maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated
counterion (pK, =3.0) of the protonated Schiff base and (3) a rapid photocycle through several
distinct photointermediates. Those features are similar to those of known eukaryotic proton pump
rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for
understanding and utilizing eukaryotic rhodopsins.

To capture sunlight, organisms use a variety of photoreceptive proteins that are responsible for light-energy con-
version and light-signal transduction in nature. Photoreceptive membrane proteins called microbial rhodopsins
form large phylogenetic clusters in three domains of life, archaea, bacteria and eukarya'2. Microbial rhodopsins
consist of seven-transmembrane a-helices covalently linked to the chromophore all-trans retinal, a derivative
of vitamin-A??. The chromophore retinal covalently binds to a conserved Lys residue located in the 7th helix
of the rhodopsin apoprotein through a protonated Schiff base linkage®. After photoisomerization of the retinal
from an all-trans to a 13-cis configuration, microbial rhodopsins undergo a series of cyclic reactions called a
photocycle in which several spectrally distinct photointermediates are sequentially formed and the initial state is
recovered along with the conformational changes®. During each photocycle, rhodopsins exhibit their biological
functions such as ion transport and photosensing'~. For instance, outward proton pumps produce the molecular
currency adenosine triphosphate (ATP) through the formation of a proton gradient across the cell membrane
like photosynthesis, indicating their physiological significance in microorganisms*.

Archaeal and bacterial rhodopsins have been the basis for research of microbial rhodopsins. Historically,
bacteriorhodopsin (BR) was first rhodopsin discovered from the halophilic archaea Halobacterium salinarum as
an outward proton pump in 1971°. After that, halorhodopsin and sensory rhodopsin I and II were identified from
the halophilic archaea as an inward chloride pump and a phototaxis sensor, respectively'. Many other archaeal
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Figure 1. Characteristics of the eukaryotic rhodopsin OmR2. (A) Phylogenetic tree of microbial rhodopsins
from eukaryotes (see “Methods” for detail). The scale bar indicates the number of substitutions per site. The
numbers (i.e., 78 and 100) represent the bootstrap probabilities. (B) List of representative amino acid residues
responsible for the function in OmR2 and the well-characterized outward proton pump rhodopsins, OmR1,

LR, ARIL BR, AR3, PR, TR and O. marina rhodopsins (Genbank accession number: ADY17806, ADY17809,
ABV22427, ABV22430, ABV22432, AIN36547, AIN36548, AIN36549). Abbreviations of the rhodopsins are

as follows: Acetabularia rhodopsin II, ARII; archaerhodopsin-3, AR3; bacteriorhodopsin, BR; Chlamydomonas
reinhardtii channelrhodopsin-1, CrChR1; Chlamydomonas reinhardtii channelrhodopsin-2, CrChR2; Coccomyxa
subellipsoidea rhodopsin, CsR; Fusarium fujikuroi rhodopsin, CarO; Guillardia theta anion channelrhodopsin-2,
GtACR2; Leptosphaeria maculans rhodopsin, LR; Neurospora crassa rhodopsin, NR; Oxyrrhis marina
rhodopsin-1, OmR1; Oxyrrhis marina rhodopsin-2, OmR2; proteorhodopsin, PR; thermophilic rhodopsin, TR.

rhodopsins have also been extensively characterized photochemically and their ion transport and signal transduc-
tion mechanisms have been established at the atomic level with a high temporal resolution®®. In 2000, a bacterial
outward proton pump rhodopsin, proteorhodopsin (PR), was identified from the marine y-Proteobacteria, which
opened a new era of genomic exploration of unknown microbial rhodopsins’. Since then, numerous bacterial
rhodopsins, such as a thermally stable outward proton pump rhodopsin, thermophilic rhodopsin (TR), were
identified from the extremely thermophilic bacterium Thermus thermophilus. An outward sodium pump rho-
dopsin, Krokinobacter rhodopsin 2 (KR2) from Krokinobacter eikastus, and a transcriptional regulator, Anabaena
sensory rhodopsin (ASR), were unveiled by genomic analysis and have been extensively characterized as have
archaeal rhodopsins’'% To photochemically characterize rhodopsins in detail, large amounts of proteins are
required. For rhodopsins from H. salinarum, abundant proteins can be obtained from the native and mutant
strains of H. salinarum, which has accelerated their research. However, it has been difficult in general to obtain
native proteins of many microbial rhodopsins from native organisms due to their low expression levels and the
difficulty of cultivating cells that express them. In 1997, the functional expression of Natronomonas pharaonis
phoborhodopsin (ppR) in Escherichia coli was achieved by Shimono et al.'*, by which the acquisition of large
amounts of proteins and the efficient production of many mutants can be performed efficiently. Since then, the
E. coli expression system has been widely and successfully used for several types of microbial rhodopsins includ-
ing the rhodopsins mentioned above®*-1,E. coli-based expression system is the foundation for the molecular
analysis of microbial rhodopsins.

Recently, advances in genomic analysis have revealed the presence of numerous microbial rhodopsins in
eukaryotes (Fig. 1A). Neurospora crassa rhodopsin (NR) was identified from the filamentous fungus, Neurospora
crassa, in 1999 although its molecular function was unclear'’. After that, eukaryotic proton pump rhodopsins
such as Leptosphaeria rhodopsin (LR) from Leptosphaeria maculans, Acetabularia rhodopsin I and II (ARI
and ARII) from Acetabularia acetabulum, Oxyrrhis marina rhodopsin-1 (OR1 or OmR1) from the dinoflagel-
late, cation channel rhodopsins such as channelrhodopsin-1 and -2 from the alga Chlamydomonas reinhardtii
(CrChR1 and CrChR2) and anion channelrhodopsins such as anion channelrhodopsin-1 and -2 from the alga
Guillardia theta (GtACR1 and GtACR2), have also been identified and characterized'®-%’. In addition, eukary-
otic ion transporting rhodopsins have attracted attention as a molecular tool for optogenetics®!. While cation
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channelrhodopsins are used to induce neural activation, outward proton pump rhodopsins and anion chan-
nelrhodopsins are used to induce neural silencing?"*%. Therefore, the molecular characterization of eukaryotic
ion transporting rhodopsins should provide useful information for their modification and development as new
optogenetics tools.

Although eukaryotic rhodopsins can be characterized by heterologous expression systems using yeast cells,
Xenopus oocytes, mammalian cells, insect cells and cell-free system323’25, it is generally difficult to achieve their
functional expression in E. coli cells. Nonetheless, we previously succeeded in expressing CrChR1 in E. coli cells
by truncating the N- and C-termini of the proteins, although the truncated mutants showed constitutive activities
that are different from the wild-type proteins®. We also succeeded in the functional expression and mutational
analysis of GFACR?2 in E. coli cells, which could provide a characteristic mutant for new optogenetics tools?’ .
However, we were not able to purify the photoactive protein of GtACR2 from E. coli cells probably due to its
denaturation during the solubilization step in detergent micelles. One research group fused the Mistic domain,
a membrane-associated protein from Bacillus subtilis, into the N- and C-termini of ARI and CrChR1, to allow
their functional expression in E. coli cells and successfully characterized the photochemical properties of the
purified proteins®. However, the yields of the purified proteins were 0.12 mg for Mistic-fused ARI and 0.04 mg
for Mistic-fused CrChR1 per liter of culture medium, which is more than tenfold lower than those of bacterial
rhodopsins (2 and 5 mg for TR and Salinibacter ruber sensory rhodopsin I, respectively)®>.

While organisms usually have several rhodopsin genes in their genome, the eukaryotic dinoflagellate O.
marina uniquely shows more than 10 putative rhodopsin genes (Fig. 1B)*'~*. O. marina is a heterotrophic dino-
flagellate that is widely distributed on earth*. Noteworthy, O. marina shows several important characteristics
as follows: (1) it can be isolated from the environment and easily cultured in medium, (2) genetic approaches
are available, and (3) it is inexpensive to obtain, maintain and is practical to use. Therefore, O. marina has been
widely used as a model for dinoflagellates for over 100 years in various scientific fields including phylogeny,
biogeography and ecology®’. By employing those characteristics, it has been reported that putative rhodopsin
genes can be expressed as transcripts and proteins in O. marina, which suggests that those genes encode func-
tional proteins®*%. Hartz et al. reported that O. marina can orient to light based on rhodopsins and may use that
photosensory response to detect algal prey based on chlorophyll autofluorescence®. Based on that background,
we assume that O. marina rhodopsins (OmRs) would be good candidates for the functional expression and
analysis of eukaryotic rhodopsins. So far, one OmR, OmR1 (Genbank accession number: ABV22426) has been
characterized by a heterologous expression system in yeast, but not by the E. coli cell expression system™. Thus,
for expression in E. coli cells, we focused on the other gene named O. marina rhodopsin-2 (OmR2) (Genbank
accession number: AIN36546). OmR2 contains several amino acids that are responsible for its outward proton
pump functions such as Asp88, Thr92, Asp99 and Asp209, which correspond to Asp139, Thr143, Asp150 and
Asp266 in LR, respectively (Fig. 1B and Fig. S1). Thus, OmR2 should work as an outward proton pump. It is
noteworthy that OmR2 is phylogenetically distinct from OmR1 and other eukaryotic rhodopsins (Fig. 1A), where
the amino acid identities and similarities of OmR2 with LR (15.8% identity, 32.1% similarity) and OmR1 (17.8%
identity, 39.4% similarity) are relatively lower than those between other characterized eukaryotic rhodopsins,
suggesting its phylogenetically distinct feature.

In this study, we characterize the function and molecular properties of OmR2 as a new model for eukaryotic
rhodopsins. We show that OmR2 can functionally work in E. coli cells as a recombinant protein with a light-
driven outward proton pump activity, which is confirmed to be consistent with the electrophysiological results
obtained with the mammalian expression system. By taking advantage of the E. coli cell expression system, we
obtained highly purified photoactive proteins and successfully performed spectroscopic analyses. The results
indicate that OmR2 has similar photochemical properties to the well-characterized eukaryotic proton pump rho-
dopsins, which suggests that OmR2 can be a model for eukaryotic proton pump rhodopsins. Thus, the successful
expression, purification and characterization of OmR2 in E. coli cells could build a basis towards understanding
the molecular mechanism of eukaryotic rhodopsins.

Results and discussion

Absorption spectrum and electrophysiological experiments of OmR2 in mammalian cells. To
investigate whether the OmR2 gene encodes a photosensitive protein, we first expressed and purified its recom-
binant protein using the HEK293 cell expression system, which has been utilized for the functional expres-
sion of several eukaryotic rhodopsins from microbes and animal rhodopsins*?%. The purified OmR2 protein in
detergent DDM micelles was colored purple and its absorption spectrum showed an absorption peak at 533 nm
(Fig. 2A), indicating that OmR2 works as a green light sensitive protein.

We then performed an electrophysiological study to investigate the function of OmR2. For expression in
ND7/23 cells, the cDNA for OmR2 and EYFP were inserted downstream of the CMV promoter with the traf-
ficking signal (TS) and endoplasmic reticulum export signal (ER) to enhance the membrane localization. The
corresponding gene constructs have been utilized for functional expression in mammalian cells for various
kinds of microbial rhodopsins such as sodium pump rhodopsins and halorhodopsin®***. For transfected ND7/23
cells, the yellow fluorescence from EYFP was observed especially at the plasma membrane of the cells (Fig. 2B).
This indicates the successful expression and localization of OmR2 in the plasma membrane. We then per-
formed electrophysiological analysis to confirm the ion transport activity of OmR2. A positive photocurrent
upon illumination was observed under conditions where the extracellular and intracellular pH were 7.4 and
7.3, respectively, and the holding membrane potential was 0 mV (Fig. 2C). We also measured the peak currents
at membrane potentials from — 60 to 60 mV to obtain the current-voltage relationship (I-V curve) (Fig. 2D).
The positive peaks were kept at all potentials, which suggests that OmR2 works as an outward cation pump or
an inward anion pump. To further identify the substrate ion of OmR2, we measured the photocurrents under
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Figure 2. Absorption spectrum and electrophysiological experiments of OmR2 in mammalian cells. (A)
Absorption spectrum of OmR2 purified from HEK293 cells in Buffer A containing 50 mM Tris-HCI (pH 7.0),

1 M NaCl and 0.05% (w/v) DDM. The inset photograph represents the color of purified OmR2. (B) Phase-
contrast image (upper panel) and fluorescence image (lower panel) of ND7/23 cells with the expression plasmid
of OmR2. The scale bars represent 30 pm. (C) Light-induced photocurrent signal at the membrane potential of
0 mV. The green bar indicates the period of illumination for 1.0 s. (D) Current-voltage relationship (I-V curve)
of OmR2. The intracellular pH values were fixed at 7.3. Error bars indicate S.E. (n=11-19 cells). (E) Comparison
of relative peak currents at 0 mV with different extracellular medium conditions. There was no significant
difference between the value with NaCl and the other values (P >0.05; Dunnett’s test).

different extracellular ion compositions. It was first observed that the higher the extracellular pH was set, with
an intracellular pH of 7.3, the higher the positive peaks were at all membrane potentials (Fig. 2D). Thus, the
amplitudes of peak currents were sensitive to the extracellular pH values. On the other hand, when NaCl in the
extracellular solution was replaced by CsCl, KCI or sodium gluconate, no significant change in the amplitudes
was observed (Fig. 2E). These results indicate that OmR2 works as a light-driven outward proton pump. The peak
photocurrent (~ 100 pA) was comparable to that of archaerhodopsin-3, AR3 (~ 100 pA)* and a sodium pump
rhodopsin KR2 (~ 100 pA)*. The successful expression and robust outward photocurrents of OmR2 suggest its
applicability as a neural silencing tool for optogenetics similar to AR3 and KR22%%,

Functional expression of OmR2in E. coli cells. So far, the E. coli cell expression system has been widely
utilized for various archaeal and bacterial rhodopsins®'**4:42, Since OmR2 is phylogenetically distinct from the
other characterized eukaryotic rhodopsins, we sought to express the OmR2 recombinant protein using the E. coli
cell expression system. We cultured E. coli BL21(DE3) cells harboring expression plasmids of OmR2. To prove
that the OmR2 protein works as a photoactive protein, its light-dependent ion transport activity was observed
as light-induced pH changes of a suspension of E. coli cells (Fig. 3). Illumination induced a pH decrease in the
cell suspension, which would reflect the outward proton movement across the membrane while no pH decrease
was observed in E. coli cells harboring the empty vector without the OmR2 gene (Fig. 3). The pH change disap-
peared in the presence of a proton-selective ionophore, CCCP, which works to collapse the proton motive force
across the membrane. These results indicate that OmR2 has a light-dependent outward proton transport activity.
In other words, OmR2 works as an outward proton pump in E. coli cells, which is consistent with the electro-
physiological results for OmR2 expressed in ND7/23 cells (Fig. 2). Therefore, we concluded that the functional
expression of OmR2 can be realized as a recombinant protein in E. coli cells. As far as we know, there has been
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Figure 3. Outward proton pump activity of OmR2 in E. coli cells. Light-induced pH changes of solutions
containing E. coli cells with the expression plasmid for OmR2 (upper panel) or the empty vector pET21a (lower
panel) in the presence (red dashed lines) or absence (red solid lines) of the proton-selective ionophore, CCCP
(10 uM). The initial pH ranged from 6.4 to 6.6. The white-filled region indicates the period of illumination.

no report that successfully obtained recombinant proteins of eukaryotic rhodopsins in E. coli cells, except for a
few examples?®27%,

To discuss what is the factor required for the successful expression of OmR2 in E. coli cells, we compared
the amino acid sequences of OmR2 and other typical eukaryotic rhodopsins (Fig. 1). Among the characterized
eukaryotic rhodopsins, NR is the phylogenetically closest to OmR2 but cannot be functionally expressed in
E. coli cells in amounts sufficient for analysis*’. It should be noted that the amino acid identity and similarity
between them are 19.8 and 41.3%, respectively, and therefore it is difficult to identify which element is essential
for the functional expression of OmR2 in E. coli cells from the comparison between them. In addition to OmR2,
uncharacterized and phylogenetically distinct microbial rhodopsins have been continuously identified from
various eukaryotes. From comprehensive comparisons of amino acid sequences among these possible molecules
that can be functionally expressed in E. coli cells, it may be possible to identify which region in eukaryotic
rhodopsins is responsible for the functional expression in E. coli cells. To prove this concept, we will identify
other molecules that can be functionally expressed in E. coli cells from a comprehensive expression analysis of
eukaryotic rhodopsins. The region(s) conserved among them will then be introduced into molecules that could
not be expressed in E. coli cells, such as NR, LR and OmR1. That approach should lead to the identification of
underlying element(s) in eukaryotic rhodopsins that allow the successful functional expression in E. coli cells.

In addition to the sequence information, it is known that post-translational modifications (PTMs), such as
glycosylation and disulfide bond formation, play important roles in the functional and structural maintenance
of membrane proteins while many types of PTMs are deficient in bacteria*. We speculate that eukaryotic rho-
dopsins can be expressed in mammalian cells partially due to PTMs. The PTMs of OmR?2 are still unclear, and
therefore, further investigation is required in the future.

Purification and photochemical properties of OmR2.  Asdescribed in “Methods”, the E. coli cells were
solubilized in DDM, after which the solubilized OmR2 proteins were purified by Ni-affinity column chromatog-
raphy and had a purple color similar to the purified OmR2 expressed in HEK293 cells (Figs. 2A and 4A). The
absorption spectrum of the purified OmR2 in E. coli cells showed an absorption peak at 533 nm (Fig. 4A), which
is consistent with the result from the purified OmR2 in HEK293 cells (Fig. 2A). Thus, OmR2 obtained from E.
coli cells forms a photoactive pigment in the detergent micelles without significant denaturation. As far as we
know, this is the first demonstration where a eukaryotic rhodopsin was purified in detergent micelles using the
E. coli cell expression system, except for the previous report of Mistic-fused ARI and CrChR1 proteins®. The
yield of purified OmR2 protein was 1 mg per liter of culture medium, which is more than ninefold higher than
the yields of Mistic-fused ARI (0.12 mg) and Mistic-fused CrChR1 (0.04 mg) and is comparable to the yield of
TR (2 mg)’. The absorption of OmR2 at ~280 nm represents the absorption of aromatic residues such as Trp
and Tyr. From the ratio of absorbance at 280 and 533 nm with the molecular coefficient of microbial rhodopsins
(~50,000 cm™ M), we roughly estimated the purity of the sample as 67.5%.

Using the purified proteins from E. coli cells, we performed the photochemical characterization of OmR2.
We first performed HPLC analysis to determine the retinal configuration (Fig. 4B). The HPLC patterns of
the retinal oxime isomers in the dark- and light-adapted states predominantly exhibited the peaks of all-trans
isomers. The ratios of all-trans isomers were estimated to be 95 and 99%, respectively, in the dark- and light-
adapted states by calculating the area under the peaks considering the molecular coefficient of each isomer as
previously described!***. This indicates that OmR2 possesses all-trans retinal regardless of the light environment
and functions with all-trans retinal. It is generally known that archaeal proton pump rhodopsins, such as BR
and AR3, possess both all-trans and 13-cis retinals whose ratio is dynamically changed according to the light
environment***. On the other hand, bacterial and eukaryotic proton pump rhodopsins, such as PR, TR, LR and
ARII, possess all-trans retinal predominantly both in dark- and in light-adapted conditions’. Similarly, OmR2
was found to possess all-trans retinal predominantly regardless of the light environment (Table 1).

Scientific Reports |

(2021) 11:14765 | https://doi.org/10.1038/s41598-021-94181-w nature portfolio



www.nature.com/scientificreports/

(A) , ‘ , (B) , , . ‘
20 c b
5 £l -
=15 3 Dark Ta
§ % ar L "
g10 g 1
2 05 <| _
<0 T

@ | Light
00} . I , . N J.
300 400 500 600 700 O 5 10 15 20 25

Wavelength (nm)

Retention Time (min)

Figure 4. Absorption spectrum and retinal configuration of OmR2 expressed in E. coli cells. (A) Absorption
spectrum of OmR2 purified from E. coli cells in Buffer A containing 50 mM Tris-HCI (pH 7.0), 1 M NaCl and
0.05% (w/v) DDM. The inset photograph represents the color of purified OmR2. (B) HPLC patterns of OmR2
in dark- and light-adapted states (upper and lower traces, respectively). Ts and Ta represent all-trans-15-syn and
all-trans-15-anti retinal oximes, respectively.

Absorption Retinal PK, of the M-decay rate O-decay rate
Opsin Origin maximum (nm) composition (%) | counterion (ms™) (ms™) Refs.
OmR2 Eukarya | 533 All-trans (95) 3.0 (Asp88) 0.16 0.03 This study
OmR1 Eukarya | 520 All-trans (90) 4 (Asp100) 0.24 0.03 37
LR Eukarya | 542 All-trans (97) N.D 0.12 0.05 24
ARII Eukarya | 534 All-trans (96) 2.6 (Asp81) 0.13 0.13 8
All-trans (47) 1950
BR Archaea | 568 13-cis (53) 2.6 (Asp85) 0.3 0.1
All-trans (53) 51
AR3 Archaea | 552 13-cis (47) 3.1 (Asp95) 0.45 0.03
PR Bacteria | 525 All-trans (95) 7.5 (Asp97) 4.0 2.8x1073 2
TR Bacteria | 530 All-trans (98) 3.4 (Asp95) 3.85x 1073 3.95x1073 9
Table 1. Molecular properties of OmR2 and comparison with other microbial rhodopsins (N.D., not
determined).

The proton pump rhodopsins are known to transfer the substrate protons through some proton acceptable
charged residues such as Asp and Glu inside the proteins via the Grotthuss mechanism®. The protonated Schiff
base of the retinal chromophore is stabilized by an aspartic acid as a counterion, which accepts the substrate
proton from the Schiff base during the photocycle for the proton pumping function. To estimate the pK, value
of the counterion of OmR2, we measured its spectral changes upon acidification. When the pH values decreased
from 7.1 to 1.7, a large spectral red-shift from 533 to 549 nm was observed (Fig. 5A). Interestingly, when the
pH value further decreased to 0.98, OmR2 showed a small spectral blue-shift from 549 to 548 nm. The spectral
red-shift can be interpreted as the protonation of the counterion leading to a decrease in the energy gap between
the electronic ground and excited state, which is commonly observed in outward proton pump rhodopsins®**.
Judging from the sequence alignment between OmR2 and other proton pump rhodopsins, Asp88 (Asp 85 in
BR) is assigned to the putative counterion in OmR2 (Fig. 1B and Fig. S1). Since a spectral blue-shift is observed
at low pH in BR and is assigned to the protonation of Asp212 as a secondary counterion®>, the observed small
spectral blue-shift at the extremely low pH would be the protonation of Asp209 (corresponding to Asp212
in BR) as a putative secondary counterion in OmR2 (Fig. 1B). The difference spectra showed the increase in
absorbance at 591 nm and the concomitant decrease in absorbance at 516 nm. These difference spectra did not
show an isosbestic point (Fig. 5B), indicating that the process of spectral changes reflects the transition between
more than three states, probably the deprotonated and protonated states of the putative counterions (Asp88 and
Asp209). The plots of the difference absorbance at 591 and 516 nm against the acidic pH values (Fig. 5C) were
well fitted using the Henderson-Hasselbalch equation assuming two pK, values. From the fitting analysis, the
pK, values for the spectral red-shift and blue-shift were estimated to be 3.0+ 0.04 and 1.5+ 0.22, respectively.
Since both spectral shifts correspond to the protonation process of Asp88 and Asp209, we estimated the pK, of
the putative counterion Asp88 in OmR2 as 3.0 £ 0.04, and the value of the secondary putative counterion Asp209
as 1.5+0.22. The pK, of the counterion in ARII was estimated as 2.6, which is a value similar to that of OmR2
(Table 1). To determine the counterion residues of OmR2 and further clarify this issue, mutational analysis of
Asp88 and Asp209 will be required as future work.
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Figure 5. pH titration experiments of OmR2 at acidic conditions. (A) Absorption spectra of OmR2 at acidic
pH from 7.1 to 0.98 in Buffer A containing 50 mM Tris-HCI, 1 M NaCl and 0.05% (w/v) DDM. (B) Difference
absorption spectra; each spectrum was obtained by subtracting the spectrum at pH 7.1. (C) Plots of the
difference absorbance at 516 and 591 nm against the pH values. The titration curve was analyzed using the
Henderson-Hasselbalch equation assuming double pK, values (solid lines).
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Figure 6. Photocycle and proton transport model of OmR2. (A) Flash-induced difference absorption spectra
over the spectral range of 380 to 710 nm in Buffer A containing 50 mM Tris-HCI (pH 7.0), 1 M NaCl and 0.05%
(w/v) DDM. (B) Time courses of absorbance changes at 400, 540 and 600 nm. The black solid lines indicate the
fitting curves. The absorption changes of pyranine monitored at 450 nm were enlarged 2 times and are shown as
a gray solid line. (C) Proposed photocycle model of OmR2 with the timing of the proton release and uptake. (D)
The proton transport mechanism through some residues in OmR2. The pathway for putative proton transport
and key residues are indicated on the homology model of OmR2, which was constructed from the crystal
structure of ARII (PDB 3AMS6) by SWISS model (https://swissmodel.expasy.org/).

Although we attempted to estimate the pK, of the protonated Schiff base of OmR2 by measuring its spectral
changes upon alkalinization, the protein denaturation under alkaline conditions (>~ pH 10.5) made the estima-
tion impossible.

To analyze the photocycle of OmR2, we then performed flash-photolysis experiments. Figure 6A shows the
flash-induced difference spectra over the spectral range of 380-710 nm. The depletion and recovery of absorbance
at ~ 540 nm correspond to the bleaching of the original state, while an increase and decrease of absorbance at
~400 and 600 nm were characteristically observed. Figure 6B shows the time courses of the difference absorbance
changes at the three wavelengths of 400, 540 and 600 nm. Following the illumination, an absorption increase at
~600 nm was observed together with the depletion of the original state. An absorption increase at ~400 nm was
then observed with a concomitant absorption decrease at ~600 nm within 0.1 ms. Considering the temporal and
spectral ranges of the absorption changes, the absorbances at 600 and 400 nm were tentatively attributed to the
K- and M-intermediates, respectively. The absorbance at ~400 nm decreased with the concomitant absorbance
increase at ~600 nm, which was tentatively assigned as the O-intermediate, within 50 ms. Finally, the absorbance
at ~600 nm was depleted with recovery of the original state within 1 s. Thus, after the light absorption, OmR2
sequentially forms K-, M- and O-intermediates, and then returns to the original state. To estimate the decay
time constants of the intermediates, the temporal absorption changes at 400, 540 and 600 nm were fitted with a
triple-exponential function assuming the irreversible sequential model. The decay time constants of the K-, M-
and O-intermediates were estimated as 0.015, 6.4 and 30 ms, respectively. Finally, we investigated how proton
uptake and release happen during the photocycle since OmR2 exhibits a proton pumping function. We measured
the flash-induced absorption change at 450 nm of a pH-sensitive fluorochrome, pyranine, which reflects the
solvent pH changes as previously described'**2. As a result, the absorbance of pyranine decreased within 10 ms
and then increased within 100 ms. The time constants of the absorbance decrease and increase processes were
estimated as 1.5 and 47 ms, respectively, which were consistent with the formation and decay time constants
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of the O-intermediate (Fig. 6B). This suggests that the substrate proton was first released from OmR2 upon the
O-formation and then taken up from the bulk solution upon the O-decay during the photocycle.

Based on the above results, we propose a photocycle model of OmR2 as shown schematically in Fig. 6C. It
is generally known that proton pump rhodopsins carry one substrate proton per one photocycle. That means
that the strength of proton pumping activities would be proportional to the period of the photocycle, which
is predominantly determined by the decay time of the late intermediate such as the O-intermediate. As the
decay rate of the O-intermediate of OmR2 was relatively fast (0.03 ms™) compared with AR3 and LR (0.03 and
0.05 ms™!, respectively) (Table 1), OmR2 can be thought to show an efficient proton pumping activity, which
was demonstrated by the electrophysiological analysis (Fig. 2). As future work to clarify the photocycle model
of OmR2, structural investigations of each photointermediate, such as vibrational spectroscopic analysis and
X-ray crystallographic analysis, will be necessary.

Comparison of the photochemical properties of OmR2 with other proton pump rho-
dopsins. The photochemical properties of OmR2 are listed with the well-characterized proton pump rho-
dopsins, OmR1, LR and ARII as eukaryotic rhodopsins, BR and AR3 as archaeal rhodopsins, and PR and TR
as bacterial rhodopsins (Table 1). OmR2 possesses a deprotonated counterion (presumably Asp88 with the pK,
value of 3.0) of the protonated Schiff base (Lys213) in the unphotolyzed state and shows an absorption maximum
at 533 nm with the all-trans retinal chromophore. These properties are similar to those of OmR1, LR and ARII.
During the photocycle, OmR2 sequentially forms the red-shifted K-intermediate, the blue-shifted M-interme-
diate and the red-shifted O-intermediate, whose decay rates are similar to those of OmR1, LR and ARII. The
above comparisons suggest that OmR2 exhibits the typical molecular and photochemical properties present in
eukaryotic proton pump rhodopsins.

OmR2 contains the acidic amino acid residues that are key residues for function in outward proton pump
rhodopsins (Fig. 1B and Fig. S1). Asp88 corresponds to the counterion (Asp85 in BR) that works as a proton
acceptor from the Schiff base. Additionally, Asp99 corresponds to a proton donor (Asp96 in BR) and Glu191
and Glu201 correspond to the proton releasing group (Glu194 and Glu204 in BR). From the analogy with BR®,
we propose the proton movement during the photocycle in OmR2 as follows: (i) the proton of the Schiff base is
transferred to the counterion Asp88 during M-formation, (ii) the proton is released from the counterion to the
extracellular side through the putative proton releasing group (Glul91 and Glu201), and simultaneously the pro-
ton of Asp99 is transferred to the Schiff base during M-decay, and (iii) the proton is taken up from the intracel-
lular side to Asp99 during O-decay (Fig. 6D). Noteworthy, our results indicate that the proton release and uptake
process correspond to the formation and decay of the O-intermediate, suggesting the structural importance of
the O-intermediate of OmR2. The proton uptake from the intracellular side to the proton donor residue (Asp96
in BR) is generally thought to disrupt the hydrogen-bonding network between the proton donor residue and the
protonated Schiff base that triggers reisomerization of retinal from the 13-cis to the all-trans form®. In fact, a
proton is taken up during O-formation in BR and ARII**3. In contrast, a proton is taken up during “O-decay” in
OmR2, suggesting its structural difference of the O-intermediate. The structural features of the O-intermediate
should be analyzed by structural and vibrational spectroscopic measurements to further understand of the
detailed proton pumping mechanism in the future. By taking advantage of the successful expression of OmR2
in E. coli cells, OmR2 will be a good model to analyze the functional mechanism of eukaryotic rhodopsins using
structural and spectroscopic measurements in the future.

Methods

Construction of the phylogenetic tree of microbial rhodopsins. The protein sequences of eukary-
otic rhodopsins, which were previously reported as putative proton pump rhodopsins, and rhodopsins from
O. marina were obtained from the Genbank database. The protein sequences for Oxyrrhis marina rhodopsin-1
(OmR1, Genbank accession number; ABV22426), Oxyrrhis marina rhodopsin-2 (OmR2, AIN36546), Oxyr-
rhis marina rhodopsins (ADY17806, ADY17809, ABV22427, ABV22430, ABV22432, AIN36547, AIN365438,
AIN36549) (Fig. 1B), Leptosphaeria maculans rhodopsin (LR, AAG01180)*, Phaeosphaeria nodorum rho-
dopsin-1 (SNOG_00807)%, Phaeosphaeria nodorum rhodopsin-2 (SNOG_00341), Bipolaris oryzae rho-
dopsin-1 (AB489199)%8, Bipolaris oryzae rhodopsin-2 (AB489200)%, Sclerotinia sclerotiorum rhodopsin-1
(XP_001597420)%, Sclerotinia sclerotiorum rhodopsin-2 (XP_001594532)*°, Botrytis cinerea rhodopsin
(BC1G_02456)%, Aureobasidium pullulans rhodopsin (KEQ87154)°', Acetabularia acetabulum rhodopsin
I (ARL, AEF12206)%, Acetabularia acetabulum rhodopsin II (ARII, AEF12207)*, Chlorella vulgaris rhodop-
sin (JQ255360)*, Coccomyxa subellipsoidea rhodopsin (CsR, XP_005646688)%, Neurospora crassa rhodop-
sin (NR, AAD45253)", Fusarium fujikuroi rhodopsin (OpsA, CAR82401)*, Fusarium fujikuroi rhodopsin
(CarO, CAD97459)%, Pseudo-nitzschia granii thodopsin (AJA37445)%, Prorocentrum donghaiense rhodopsin
(KM282617)%, Pyrocystis lunula rhodopsin (AF508258)%, and Cyanophora paradoxa rhodopsin (ACV05065)%
were aligned using the MUSCLE algorithm in MEGA-X software (https://www.megasoftware.net/). The phylo-
genetic tree was inferred using the maximum likelihood method of MEGA-X software. At this time, the substi-
tution model was selected as the LG model, a discrete Gamma distribution was used to model evolutionary rate
differences among sites (five categories, + G parameter =2.32), and the rate variation model allowed for sites to
be evolutionarily invariable (1.94% sites). The bootstrap values were given by 100 iterations of the bootstrap test.

Gene preparation, protein expression and electrophysiological studies of ND7/23 cells. The
full-length cDNA for OmR2, whose codons were optimized for human codon usage, was chemically synthesized
by GenScript (Tokyo, Japan) (a kind gift from Drs Haruhiko Bito and Masayuki Sakamoto). The OmR2 gene was
inserted into the CMV promoter-based mammalian expression vector (a kind gift from Drs Hiromu Yawo and
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Toru Ishizuka) as previously described®#. In short, enhanced yellow fluorescent protein (EYFP) was fused to
the C-terminus of OmR2 as a reporter. Also, EYFP was flanked with a membrane trafficking signal (TS) at the
N-terminus and an endoplasmic reticulum export signal (ER) at the C-terminus to improve its expression and
plasma membrane localization. The TS and ER signals were “KSRITSEGEYIPLDQIDINV” and “FCYENEV”,
respectively, derived from the Kir2.1 potassium channel®. Furthermore, the WPRE (Woodchuck hepatitis virus
Post-transcriptional Regulatory Element) sequence was inserted to stabilize the transcribed mRNA and increase
the amount of translated protein. The expression vector encoding OmR2 was prepared with an In-Fusion clon-
ing Kit (Takara Bio, Japan) according to the manufacturer’s instructions as previously described®7°.

Electrophysiological measurements were carried out at room temperature (20-25 °C) with ND7/23 cells.
ND7/23 cells were cultured in Dulbecco’s Modified Eagle Medium (Gibco, DMEM/F12, Thermo Fisher Scien-
tific Life Sciences, USA) supplemented with 10% fetal bovine serum, 0.0625% (w/v) penicillin and 0.01% (w/v)
streptomycin under a 5% CO, atmosphere at 37 °C. The expression plasmid was transiently transfected into
cells using the calcium-phosphate method*. After 6 h incubation of the transfected cells, all-trans retinal (final
concentration = 1 uM) was added into the medium. Electrophysiological experiments were conducted 48-60 h
after transfection. Transfected cells were identified by the presence of EYFP fluorescence. The fluorescence signals
for EYFP were observed using an IX71 inverted microscope (Olympus, Japan) with a fluorescence mirror unit
(U-MYFPHQ, Olympus) and a mercury lamp (U-LHI00HGAPO, Olympus). Photocurrents were measured using
an EPC 10 USB computer-controlled Patch Clamp Amplifier (HEKA Elektronik, Germany) under a whole-cell
patch clamp configuration. The data were analyzed with Patch master software (HEKA Elektronik, Germany). The
internal pipette solution for whole-cell voltage clamp recordings from ND7/23 cells contained 50 mM HEPES,
140 mM CsCl, 3 mM MgCl,, 5 mM Na,EGTA and 2.5 mM MgATP, adjusted to pH 7.3 with CsOH. The cells were
continuously superfused by an extracellular medium (10 mM HEPES, 138 mM NaCl, 3 mM KCl, 1 mM MgCl,,
2 mM CaCl,, 0.1 M glucose, adjusted to pH 9.0, 7.4 and 5.0 with NaOH or HCI). To investigate pump activity
in the absence of extracellular chloride, sodium and the presence of potassium, NaCl was also substituted by
the same amount of sodium gluconate, CsCl, KCl. Current traces were recorded at — 60, —40, —20, 0, 20, 40 and
60 mV. The cells were illuminated with a white LED (THORLABS, USA) through a band-pass filter (520+ 10 nm),
where the light intensity was adjusted to 0.98 mW mm™2.

Gene preparation, protein expression and purification of HEK293T cells.  For protein expression
and purification, the human codon-optimized OmR2 gene was inserted into a CAG promoter-based mamma-
lian expression vector, pPCAGGS, as previously described”. A hexa-histidine tag was fused to the C-terminus of
OmR2. The expression vector encoding OmR2 was prepared using an In-Fusion cloning Kit. For protein expres-
sion in HEK293T cells, the plasmid was transfected into the cells using the calcium-phosphate method?*.
After 1 day incubation, all-trans-retinal (final concentration = 5 uM) was added to the transfected cells*.
After another day of incubation, the cells were collected by centrifugation and were then solubilized with 1.0%
(w/v) n-dodecyl-B-p-maltoside (DDM, DOJINDO Laboratories, Japan). The solubilized fraction was purified by
Ni?* affinity column chromatography with a linear gradient of imidazole as described previously®. The purified
protein was concentrated by centrifugation using an Amicon Ultra filter (30,000 M,, cut-off; Millipore, USA).
The sample was then loaded into and eluted from a PD-10 column (GE-Healthcare, UK) with Buffer A (50 mM
Tris-HCI, pH 7.0, 1 M NaCl and 0.05% (w/v) DDM).

Gene preparation, protein expression and ion transport measurements of E. coli cells. The
full-length cDNA for OmR2, whose codons were optimized for E. coli codon usage, were chemically synthesized
by Eurofins Genomics and inserted into the NdeI-Xhol site of the pET21a(+) vector as previously described'*.
A hexa-histidine-tag was fused at the C-terminus of OmR2, which was utilized for purification of the expressed
protein. The procedures for protein expression were essentially the same as previously described'**2. E. coli
BL21(DE3) cells harboring the cognate plasmid were grown at 37 °C in LB medium supplemented with ampicil-
lin (final concentration = 50 ug mL™). Protein expression was induced at an optical density at 600 nm (ODgy,)
of 0.8-1.2 with 1 mM isopropyl B-p-1-thiogalactopyranoside (IPTG) and 10 pM all-trans retinal, after which the
cells were incubated at 37 °C for 3 h. The proton transport activity of OmR2 was measured as light-induced pH
changes of suspensions of E. coli cells as previously described'**2 In short, cells expressing OmR2 were washed
more than three times in 150 mM NaCl and were then resuspended in the same solution for measurements.
Each cell suspension was placed in the dark for several min and then illuminated using a 300 W Xenon lamp
(ca. 30 mW cm™2, MAX-303, Asahi spectra, Japan) through a >460 nm long-pass filter (Y48, HOYA, Japan) for
3 min. Measurements were repeated under the same conditions after addition of the protonophore carbonyl
cyanide m-chlorophenylhydrazone (CCCP) (final concentration = 10 uM). Light-induced pH changes were
monitored using a Horiba F-72 pH meter. All measurements were conducted at 25 °C using a thermostat (Eyela
NCB-1200, Tokyo Rikakikai Co. Ltd, Japan).

Purification of OmR2 from E. coli cells and spectroscopic measurements of the purified pro-
tein. Escherichia coli cells expressing OmR2 were disrupted by sonication for 30 min in ice-cold water in
Buffer B containing 50 mM Tris-HCI (pH 7.0) and 300 mM NaCl. The crude membrane fraction was collected
by ultracentrifugation and solubilized with 1.0% (w/v) DDM. The solubilized fraction was purified by Ni** affin-
ity column chromatography with a linear gradient of imidazole as described previously'**. The purified protein
was concentrated by centrifugation using an Amicon Ultra filter (30,000 M,, cut-off; Millipore, USA). The sam-
ple media was then replaced with Buffer A by ultrafiltration for 3-times.

Absorption spectra of purified proteins were recorded using a UV-2450 spectrophotometer (Shimadzu, Japan)
at room temperature in Buffer A. The retinal composition in OmR2 was analyzed by high-performance liquid
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chromatography (HPLC) as described previously'. For light-adaptation, the samples were illuminated for 3 min
at 530+ 10 nm, where the light power was adjusted to ~10 mW cm ™2 The molar compositions of the retinal
isomers were calculated from the areas of the peaks in HPLC patterns monitored at 360 nm using the extinction
coeflicients of retinal oxime isomers as described previously'**. For pH titration experiments, the samples were
suspended in Buffer A. The pH values of the samples were adjusted to the desired acidic values by adding HCI,
after which the absorption spectra were measured at each pH value. All measurements were conducted at room
temperature (approx. 25 °C) under room light. After the measurements, the reversibility of the spectral changes
was checked to confirm that the sample was not denatured during the measurements. The absorption changes
at specific wavelengths were plotted against pH values and the plots were fitted to the Henderson-Hasselbalch
equation assuming double pK, values as previously described*.

Transient time-resolved absorption spectra of the purified proteins from 380 to 700 nm at 5 nm intervals were
obtained using a homemade computer-controlled flash photolysis system equipped with an Nd:YAG laser as an
actinic light source'**%. By using an optical parametric oscillator, the wavelength of the actinic pulse was tuned
at 530 nm for OmR2. The pulse intensity was adjusted to 2 m]J per pulse. All data were averaged to improve the
signal-to-noise ratio (n=30). All measurements were conducted at 25 °C. For these experiments, the samples
were suspended in Buffer A. After the measurements, the reproducibility of the data was checked to confirm
that the sample was not denatured during the measurements. To investigate proton uptake and release during
the photocycle, we used the pH indicator pyranine (final concentration =100 uM, Tokyo Chemical Industry Co.,
Ltd, Japan), which has been extensively used to monitor light-induced pH changes in various rhodopsins'**.
The pH changes in the bulk environment were measured as the absorption changes of pyranine at 450 nm. The
absorption changes of pyranine were obtained by subtracting the absorption changes of samples without pyra-
nine from those of samples with pyranine. The experiments using pyranine were performed in an unbuffered
solution containing 1 M NaCl and 0.05% (w/v) DDM (pH 7.0) to enhance the signals. The results of 1000-traces
were averaged to improve the signal-to-noise ratio.
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