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Fast and scalable likelihood 
maximization for Exponential 
Random Graph Models with local 
constraints
Nicolò Vallarano1, Matteo Bruno1, Emiliano Marchese1, Giuseppe Trapani1, Fabio Saracco1, 
Giulio Cimini2, Mario Zanon1 & Tiziano Squartini1,3*

Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted 
into statistical physics, the ERGMs framework has been successfully employed for reconstructing 
networks, detecting statistically significant patterns in graphs, counting networked configurations 
with given properties. From a technical point of view, the ERGMs workflow is defined by two 
subsequent optimization steps: the first one concerns the maximization of Shannon entropy and 
leads to identify the functional form of the ensemble probability distribution that is maximally non-
committal with respect to the missing information; the second one concerns the maximization of the 
likelihood function induced by this probability distribution and leads to its numerical determination. 
This second step translates into the resolution of a system of O(N) non-linear, coupled equations 
(with N being the total number of nodes of the network under analysis), a problem that is affected 
by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these 
problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton 
method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and 
weighted constraints in both a directed and an undirected fashion. While Newton’s method performs 
best for relatively little networks, the fixed-point recipe is to be preferred when large configurations 
are considered, as it ensures convergence to the solution within seconds for networks with hundreds 
of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing 
the three aforementioned algorithms on all the ERGMs considered in the present work.

Over the last 20 years, network theory has emerged as a successful framework to address problems of scientific and soci-
etal relevance1: examples of processes that are affected by the structural details of the underlying network are provided 
by the spreading of infectious diseases2–4, opinion dynamics5, the propagation of losses during financial crises6, etc.

Within such a context, two needs have emerged quite naturally7: 1) detecting the topological properties of 
a real network that can be deemed as statistically significant - typically those higher-order properties (e.g. the 
assortativity, the clustering coefficient, etc.) that may be not explained by local features of the nodes such as the 
degrees, 2) inferring the relevant details of a given network structure in case only partial information is available. 
Both goals can be achieved by constructing a framework for defining benchmarks, i.e. synthetic configurations 
retaining only some of the properties of the original system - the so-called constraints - and, otherwise, being 
maximally random.

Two different kinds of approaches have been proposed so far, i.e. the microcanonical and the canonical ones. 
Microcanonical approaches8–14 artificially generate many randomized variants of the observed network by enforc-
ing the constraints in a ‘hard’ fashion, i.e. by creating configurations on each of which the constrained properties 
are identical to the empirical ones. On the other hand, canonical approaches15–19 enforce constraints in a ‘soft’ 
fashion, by creating a set of configurations over which the constrained properties are on average identical to 
the empirical ones. Softening the requirement of matching the constraints has a clear advantage: allowing the 
mathematical expression for the probability of a generic configuration, G , to be obtained analytically, as a func-
tion of the enforced constraints.
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In this second case, a pivotal role is played by the formalism of the Exponential Random Graph Models 
(ERGMs)20 whose popularity has steadily increased over the years. The ERGMs mathematical framework dates 
back to Gibbs’ (re)formulation of statistical mechanics and is based upon the variational principle known as 
maximum entropy, stating that the probability distribution that is maximally non-committal with respect to the 
missing information is the one maximizing the Shannon entropy21. This allows self-consistent inference to be 
made, by assuming maximal ignorance about the unknown degrees of freedom of the system.

In the context of network theory, the ERGMs framework has found a natural application to the resolution of 
the two aforementioned problems, i.e. 1) that of defining null models of the original network, in order to assess 
the significance of empirical patterns - against the hypothesis that the network structure is solely determined by 
the constraints themselves and 2) that of deriving the most probable configurations that are compatible with the 
available details about a specific network.

In both cases, after the functional form of the probability distribution has been identified, via the maximum 
entropy principle, one also needs to numerically determine it: to this aim, the likelihood maximization principle 
can be invoked, stating to maximize the probability of observing the actual configuration. This prescription 
typically translates into the resolution of a system of O(N) non-linear, coupled equations - with N representing 
the number of nodes of the network under analysis.

Problems like these are usually affected by the issues of accuracy, speed and scalability: the present paper aims 
at addressing them at once, by comparing the performance of three algorithms, i.e. Newton’s method, a quasi-
Newton method and a recently-proposed fixed-point recipe22,23, to solve a variety of ERGMs, defined by binary 
and weighted constraints in both a directed and an undirected fashion.

We would like to stress that, while the theoretical architecture of ERGMs is well established, an exhaustive 
study of the computational cost required for their numerical optimization, alongside with a comparison among 
the most popular algorithms designed for the task, is still missing. Our work aims at filling precisely this gap. 
Additionally, we provide a Python code implementing the three aforementioned recipes on all the ERGMs 
considered in the present work.

General theory
Canonical approaches aim at obtaining the mathematical expression for the probability of a generic configura-
tion, G , as a function of the observed constraints: ERGMs realize this by maximizing the Shannon entropy15,16.

The Maximum Entropy Principle.  Generally speaking, the problem to be solved in order to find the 
functional form of the probability distribution to be employed as a benchmark reads 

 where Shannon entropy reads

and �C(G) is the vector of constraints representing the information defining the benchmark itself (notice that 
C0 = �C0� = 1 sums up the normalization condition). The solution to the problem above can be found by maxi-
mizing the Lagrangian function

with respect to P(G) . As a result one obtains

with H(G, �θ) = �θ · �C(G) = ∑M
i=1 θiCi(G) representing the Hamiltonian, i.e. the function summing up the proper, 

imposed constraints and Z(�θ) = ∑

G P(G) = ∑

G e−H(G,�θ) representing the partition function, ensuring that 
P(G) is properly normalized. Constraints play a pivotal role, either representing the information to filter, in order 
to assess the significance of certain quantities, or the only available one, in order to reconstruct the inaccessible 
details of a given configuration.

The maximum likelihood principle.  The formalism above is perfectly general; however, it can be 
instantiated to study an empirical network configuration, say G∗ . In this case, the Lagrange multipliers ‘act-
ing’ as unknown parameters in Eq. (4) can be numerically estimated by maximizing the associated likelihood 
function15,24. The latter is defined as

(1a)argmax
P

S[P]

(1b)s.t.
∑

G

P(G)Ci(G) = �Ci�, i = 0 . . .M

(2)S[P] = −
∑

G

P(G) ln P(G)

(3)L(P, �θ) ≡ S[P] +
M
∑

i=0

θi

[

−
∑

G

P(G)Ci(G)+ �Ci�
]

(4)P(G|�θ) = e−H(G,�θ)

Z(�θ)
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and must be maximized with respect to the vector �θ  . Remarkably, whenever the probability distribution is expo-
nential (as the one deriving from the Shannon entropy maximization), the likelihood maximization problem

is characterized by first-order necessary conditions for optimality reading

and leading to the system of equations

to be solved. These conditions, however, are sufficient to characterize a maximum only if L (�θ) is concave. This 
is indeed the case, as we prove by noticing that

i.e. that the Hessian matrix, H , of our likelihood function is ‘minus’ the covariance matrix of the constraints, 
hence negative semidefinite by definition. The fourth passage is an example of the well-known fluctuation-
response relation20.

A graphical representation of how the two principles work is shown in Fig. 1.

Combining the MEP and the MLP principles.  The Maximum Entropy Principle (MEP) and the Maxi-
mum Likelihood Principle (MLP) encode two different prescriptions aiming, respectively, at determining the 
functional form of a probability distribution and its numerical value. In optimization theory, the problem (the 
problem 1) is known as primal problem: upon noticing that the Shannon entropy is concave, while the imposed 
constraints are linear in P(G) , one concludes that the primal problem is convex (it is easy to see this, by rewriting 
it as a minimization problem for −S[P]).

As convexity implies strong duality, we can, equivalently, consider an alternative version of the problem to 
optimize, know as dual problem. In order to define it, let us consider the Lagrangian function

(5)L (�θ) ≡ ln P(G∗|�θ) = −H(G∗, �θ)− lnZ(�θ)

(6)argmax
�θ

L (�θ)

(7)

∇θiL (�θ) = ∂L (�θ)
∂θi

=− Ci(G
∗)− ∂ lnZ(�θ)

∂θi

=− Ci(G
∗)+

∑

G

Ci(G)P(G)

=− Ci(G
∗)+ �Ci� = 0, i = 1 . . .M

(8)∇L (�θ) = �0 =⇒ �C(G∗) = ��C�

(9)
Hij =∇2

θiθj
L (�θ) = ∂2L (�θ)

∂θi∂θj
= −∂2 lnZ(�θ)

∂θi∂θj

=∂�Cj�
∂θi

= −Cov[Ci ,Cj], i, j = 1 . . .M

(10)L(P, �θ) ≡ S[P] +
M
∑

i=1

θi

[

−
∑

G

P(G)Ci(G)+ Ci(G
∗)

]

Figure 1.   Graphical visualization of how the MEP and the MLP work: while the MEP allows the functional 
form of a probability distribution to be determined analytically, the MLP provides the recipe to numerically 
determine the parameters defining it.
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where, now, the generic expectation of the i-th constraint, 〈Ci〉 , has been replaced by the corresponding empirical 
value, Ci(G

∗) . As the dual function is given by

the dual problem reads

which is a convex problem by construction; this is readily seen by substituting Eq. (4) into Eq. (10), operation 
that leads to the expression

i.e. the likelihood function introduced in Eq. (5). In other words, Eq. (12) combines the MEP and the MLP into 
a unique optimization step whose score function becomes the Lagrangian function defined in Eq. (10).

Optimization algorithms for non‑linear problems.  In general, the optimization problem defined in 
Eq. (12) cannot be solved analytically, whence the need to resort to numerical methods. For an exhaustive review 
on numerical methods for optimization we refer the interested reader to25,26: in the following, we present only the 
concepts that are of some relevance for us. The problemis a Nonlinear Programming Problem (NLP). In order to 
solve it numerically, we will adopt a Sequential Quadratic Programming (SQP) approach. Starting from an initial 
guess �θ(0) , SQP solves Eq. (14) by iteratively updating the vector of Lagrange multipliers

according to the rule

∀ i , leading to the set of equations

which can be compactly rewritten as

The stepsize α ∈ (0, 1] is selected to ensure that L (�θ(n+1)) > L (�θ(n)) via a backtracking, line search procedure: 
starting from α = 1 , if the Armijo condition

is violated, we set α ← βα ( γ ∈ (0, 0.5] and β ∈ (0, 1) are the parameters of the algorithm). On the other hand, 
the term H(n) can be selected according to a variety of methods. In the present contribution we focus on the 
following three ones.

Newton’s method. One speaks of Newton’s method in case H(n) is chosen to be

where ∇2
L (�θ) is the Hessian matrix of the likelihood function and the term �H(n) is typically selected 

as small as possible in order to avoid slowing convergence and to ensure that H(n) is negative definite (i.e. 
∇2

L (�θ(n))+�H(n) ≺ 0 ). This choice of H(n) is also referred to as ‘exact Hessian’.
Quasi-Newton methods. Any Hessian approximation which is negative definite (i.e. satisfying H(n) ≺ 0 ) yields 

an ascent direction and guarantees convergence. Although one may choose to consider the simplest prescription 
H(n) = −I , which yields the ‘steepest ascent’ algorithm, here we have opted for the following recipe, i.e. the purely 
diagonal version of Newton’s method: H(n)

ii = ∇2
iiL (�θ(n))+�H

(n)
ii < 0 , ∀ i and H(n)

ij = 0 , ∀ i �= j.
Fixed-point iteration on modified KKT conditions. In addition to the (classes of) algorithms above, we will 

also consider an iterative recipe which is constructed as a fixed-point iteration on a modified version of the 
Karush-Kuhn-Tucker (KKT) conditions, i.e. F(�θ) = �0 or, analogously, �θ = G(�θ) ; the iterate can, then, be made 
explicit by rewriting the latter as

The condition above will be made explicit, for each network model, in the corresponding subsection. We also 
observe that this choice yields a non-standard SQP method as H(n) is typically not symmetric, for our models.

(11)P(G∗|�θ) ≡ argmax
P

L(P, �θ),

(12)argmax
�θ

argmin
P

−L(P(�θ), �θ)

(13)−L(P(�θ), �θ) = −�θ · �C(G∗)− lnZ(�θ) = L (�θ),

(14)�θ(n+1)
i = �θ(n)i + α��θ(n)i , i = 1 . . .M

(15)��θ(n)i = argmax��θi



∇�θiL (�θ)��θi +
�

j,k

1

2
��θjH(n)

jk ��θk





(16)∇iL (�θ)+
∑

j

H
(n)
ij ��θ = 0, i = 1 . . .M

(17)��θ(n) = −H(n)−1∇L (�θ).

(18)L (�θ(n) + α��θ(n)) < L (�θ(n))+ γα∇L (�θ)⊤��θ ,

(19)H(n) = ∇2
L (�θ(n))+�H(n)

(20)�θ(n) = G(�θ(n−1)).
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A note on convergence. Provided that the Hessian approximation H(n) is negative definite, the direction ��θ  is 
an ascent one; as such, it is guaranteed to yield an improvement of the objective function, for a step size α that is 
sufficiently small. The role of the backtracking line search is that of finding a step size α that yields such an improve-
ment, while making sufficient progress towards the solution. As discussed in25, Newton’s method has local quadratic 
convergence, while the quasi-Newton method and the fixed-point iteration algorithm have local linear convergence.

Applications
Let us now apply the algorithms described in the previous section to a number of specific cases of interest. The 
taxonomy of the models considered in the present paper is shown in Fig. 2 while the constraints defining each 
model are illustrated in Fig. 3.

UBCM: binary undirected graphs with given degree sequence.  Let us start by considering binary, undi-
rected networks (BUNs). The simplest, non-trivial set of constraints is represented by the degrees of nodes: the degree of 
node i, i.e. ki(A) =

∑N
j(�=i)=1 aij , counts the number of its neighbours and coincides with the total number of 1s along 

the i-th row (or, equivalently, along the i-th column) of the adjacency matrix A ≡ {aij}Ni,j=1 . The benchmark defined by 
this set of constraints is known as Undirected Binary Configuration Model (UBCM) and its Hamiltonian reads

entropy maximization15,16 leads to the factorized graph probability

where pij = pUBCMij ≡ e
−θi−θj

1+e
−θi−θj

 . In this case, the canonical ensemble of BUNs is the set of networks with the 
same number of nodes, N, of the observed graph and a number of (undirected) links varying from zero to the 

maximum value 
(

N
2

)

 . The argument of the problem (6) for the specific network A∗ becomes

(21)HUBCM(A, �θ) =
N
∑

i=1

θiki(A);

(22)
PUBCM(A|�θ) =

N
∏

i=1

N
∏

j = 1
(j < i)

p
aij
ij (1− pij)

1−aij

(23)
LUBCM(�θ) = −

N
∑

i=1

θiki(A
∗)−

N
∑

i=1

N
∑

j = 1
(j < i)

ln
[

1+ e−θi−θj
]

Figure 2.   System diagram illustrating the models discussed in the present paper and implemented in the 
‘NEMTROPY’ package, attached to it: it represents a sort of guide to individuate the best model for analysing 
the system at hand. Our package handles both monopartite and bipartite networks; while the latter ones have 
been considered only in their binary, undirected fashion, the former ones can be modeled either in a binary or a 
weighted fashion, allowing for both undirected and directed links.
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whose first-order optimality conditions read

(24)

∇θiLUBCM =− ki(A
∗)+

N
∑

j = 1
(j �= i)

e−θi−θj

1+ e−θi−θj

=− ki(A
∗)+

N
∑

j = 1
(j �= i)

pUBCMij

=− ki(A
∗)+ �ki� = 0, i = 1 . . .N .

Figure 3.   Graphical visualization of the constraints defining the ERGMs considered in this work. Notice that 
while the enhanced models (i.e. UECM and DECM) constrain binary and weighted quantities in a joint fashion, 
the conditional models (i.e. the CReM ones) allow for a ‘separate’ specification of them.
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Resolution of the UBCM. Newton’s and the quasi-Newton method can be easily implemented via the recipe 
defined in Eq. (18) (see “Appendix A” for the definition of the UBCM Hessian).

The explicit definition of the fixed-point recipe, instead, requires a preliminary observation, i.e. that the system 
of equations embodying the UBCM first-order optimality conditions can be re-written as follows

i.e. as a set of consistency equations. The observation that the term e−θi appears on both sides of the equation 
corresponding to the i-th constraint suggests an iterative recipe to solve such a system, i.e.

originally proposed in22 and further refined in23. The identification pUBCMij ≡ e
−θ

(∞)
i −θ

(∞)
j

1+e
−θ

(∞)
i −θ

(∞)
j

 , ∀ i < j allows the 

probability coefficients defining the UBCM to be numerically determined.
As any other iterative recipe, the one proposed above needs to be initialized as well. To this aim, we have 

tested three different sets of initial values: the first one is defined by the position θ(0)i = − ln
[

ki(A
∗)√

2L

]

 , ∀ i - usually, 

a good approximation of the solution of the system of Eq. (25), in the ‘sparse case’ (i.e. whenever pUBCMij ≃ e−θi−θj 

the second one is a variant of the position above, reading θ(0)i = − ln
[

ki(A
∗)√
N

]

 , ∀ i ; the third one, instead, pre-
scribes to randomly draw the value of each parameter from a uniform distribution with support on the unit 
interval, i.e. θ(0)i ∼ U(0, 1) , ∀ i.

Reducing the dimensionality of the problem. The problem defining the UBCM can be further simplified by 
noticing that nodes with the same degree, say k, can be assigned the same value of the multiplier θ24 - a result 
resting upon the observation that any value ki(A∗) must match the sum of monotonic, increasing functions. This 
translates into the possibility of rewriting LUBCM(�θ) in a ‘reduced’ fashion, as

where the sums run over the distinct values of the degrees and f(k) counts the number of nodes whose degree is k. 
Rewriting the problem with respect to the set {θk}k leads one to recover simplified versions of the three algorithms 
considered here: Newton’s and the quasi-Newton methods can, now, be solved via a ‘reduced’ version of eq. (18) 
(since both the dimension of the gradient and the order of the Hessian matrix of the likelihood function are, now, 
less than N), while the iterative recipe defined in (26) can be rewritten in terms of the ‘non-degenerate’ degrees, as

∀ k , where, at the denominator, the self-contribution (i.e. the probability that a node links to itself) has been 
explicitly excluded.

Performance testing. The performance of the three algorithms, considered in the present paper, to solve the 
reduced version of Eq. (25), has been tested on a bunch of real-world networks. The latter ones span a wide variety 
of systems, including natural, financial and technological ones. In particular, we have considered the synaptic 
network of the worm C. Elegans28, the network of the largest US airports29, the protein-protein interaction net-
work of the bacterium H. Pylori30, Internet at the level of Autonomous Systems31 and eight daily snapshots of the 
so-called Bitcoin Lightning Network32, chosen throughout its entire history. Before commenting on the results 
of our numerical exercises, let us, first, describe how the latter ones have been carried out.

The accuracy of each algorithm in reproducing the constraints defining the UBCM has been quantified via 
the maximum absolute error metrics, defined, in a perfectly general fashion, as maxi{

∣

∣C∗
i − �Ci�

∣

∣}Ni=1 (where C∗
i  is 

(25)
e−θi = ki(A

∗)
∑N

j = 1
(j �= i)

(

e
−θj

1+e
−θi−θj

) , i = 1 . . .N

(26)θ
(n)
i = − ln

















ki(A
∗)

�N

j = 1
(j �= i)

�

e
−θ

(n−1)
j

1+e
−θ

(n−1)
i −θ

(n−1)
j

�

















, i = 1 . . .N

(27)

L
reduced
UBCM (�θ) =−

∑

k

f (k)θkk(A
∗)

−
∑

k

∑

k′
(k′ ≤ k)

f (k)[f (k′)− δkk′ ]·

· ln
[

1+ e−θk−θk′
]

(28)θ
(n)
k = − ln













k(A∗)

�

k′ [f (k′)− δkk′ ]
�

e
−θ

(n−1)
k′

1+e
−θ

(n−1)
k

−θ
(n−1)
k′

�












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the empirical value of the i-th constraint, Ci ). Naturally, in the UBCM case, Ci = ki , ∀ i and the aforementioned 
error score becomes

(the acronym standing for Maximum Absolute Degree Error). Equivalently, it is the infinite norm of the difference 
between the vector of the empirical values of the constraints and that of their expected values.

For each algorithm, we have considered three different stopping criteria: the first one puts a condition on the 
Euclidean norm of the gradient of the likelihood function, i.e.

the second one puts a condition on the Euclidean norm of the vector of differences between the values of the 
parameters at subsequent iterations, i.e.

the third one concerns the maximum number of iterations: after 1000 steps, any of the three algorithms stops.
The results about the performance of our three algorithms are reported in Table 1. Overall, all recipes perform 

very satisfactorily, being accurate, fast and scalable; moreover, all algorithms stop either because the condition 
on the norm of the likelihood is satisfied or because the condition on the norm of the vector of parameters is 
satisfied.

For what concerns accuracy, the largest maximum error per method spans an interval (across all con-
figurations) that amounts at 10−10 � MADEreducedNewton � 10−6 ,  10−6 ≤ MADEreducedQuasi-Newton ≤ 10−5 and 
10−8 � MADEreducedfixed-point � 10−6 . By looking at each specific network, it is evident that the two most accurate 
methods are systematically Newton’s and the fixed-point ones.

For what concerns speed, the amount of time required by each method to achieve convergence spans an 
interval (across all configurations) that is 0.005 ≤ Treduced

Newton ≤ 0.01 , 0.014 ≤ Treduced
Quasi-Newton ≤ 0.15 and 

0.002 ≤ Treduced
fixed-point ≤ 0.015 (time is measured in seconds). The fastest method is the fixed-point one, although 

Newton’s method approximately requires the same amount of time, when compared to it on each specific con-
figuration. Differences in the speed of convergence of any method, caused by the choice of a particular set of 
initial conditions, are indeed observable: the prescription reading θ(0)i = − ln

[

ki(A
∗)√
N

]

 , ∀ i outperforms the other 
ones.

(29)MADE = max
i
{
∣

∣k∗i − �ki�
∣

∣}Ni=1

(30)||∇L (�θ)||2 =

√

√

√

√

N
∑

i=1

(

∇iL (�θ)
)2

≤ 10−8;

(31)||��θ ||2 =

√

√

√

√

N
∑

i=1

(�θi)
2 ≤ 10−8;

Table 1.   Performance of Newton’s, quasi-Newton and the fixed-point algorithm to solve the reduced system 
of equations defining the UBCM, on a set of real-world BUNs (of which basic statistics as the total number of 
nodes, N, the total number of links, L, and the connectance, c = 2L/N(N − 1) , are provided). All algorithms 
stop either because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied or because the condition ||��θ ||2 ≤ 10
−8 is 

satisfied. For what concerns accuracy, the two most accurate methods are Newton’s and the fixed-point ones; 
for what concerns speed, the fastest method is the fixed-point one (although Newton’s one approximately 
requires the same amount of time on each specific configuration). Only the results corresponding to the best 
choice of initial conditions are reported.

N L c cr

Newton Quasi-Newton Fixed-point

MADE Time (s) MADE Time (s) MADE Time (s)

C. Elegans (nn) 265 1879 ≃ 5 · 10−2 ≃ 1.5 · 10−1 ≃ 8.1 · 10−8 ≃ 0.005 ≃ 1 · 10−6 ≃ 0.03 ≃ 5 · 10−8 ≃ 0.004

US airports 500 2980 ≃ 2 · 10−2 ≃ 1.3 · 10−1 ≃ 8.9 · 10−9 ≃ 0.008 ≃ 1.2 · 10−6 ≃ 0.04 ≃ 2.5 · 10−7 ≃ 0.005

H. Pylori (pp) 732 1465 ≃ 5 · 10−3 ≃ 4.5 · 10−2 ≃ 1.3 · 10−8 ≃ 0.004 ≃ 6.7 · 10−7 ≃ 0.03 ≃ 7 · 10−8 ≃ 0.014

Internet (AS) 11174 23409 ≃ 4 · 10−4 ≃ 1 · 10−2 ≃ 4.1 · 10−7 ≃ 0.03 ≃ 5.1 · 10−6 ≃ 0.10 ≃ 2 · 10−6 ≃ 0.005

BLN 24-01-18 94 152 ≃ 3 · 10−3 ≃ 1.5 · 10−1 ≃ 1 · 10−8 ≃ 0.005 ≃ 1.7 · 10−6 ≃ 0.014 ≃ 4 · 10−8 ≃ 0.002

BLN 25-02-18 499 1010 ≃ 8 · 10−3 ≃ 6.4 · 10−2 ≃ 1.6 · 10−8 ≃ 0.005 ≃ 9.1 · 10−7 ≃ 0.02 ≃ 7.3 · 10−8 ≃ 0.004

BLN 30-03-18 1012 2952 ≃ 5 · 10−3 ≃ 5.2 · 10−2 ≃ 3.4 · 10−10 ≃ 0.005 ≃ 2 · 10−5 ≃ 0.03 ≃ 1.4 · 10−7 ≃ 0.005

BLN 13-07-18 1999 8999 ≃ 4 · 10−3 ≃ 3.8 · 10−2 ≃ 6.7 · 10−10 ≃ 0.01 ≃ 3 · 10−6 ≃ 0.05 ≃ 1.7 · 10−7 ≃ 0.008

BLN 19-12-18 3007 17689 ≃ 4 · 10−3 ≃ 4.5 · 10−2 ≃ 1.7 · 10−6 ≃ 0.03 ≃ 1 · 10−5 ≃ 0.09 ≃ 2 · 10−7 ≃ 0.010

BLN 30-01-19 3996 27429 ≃ 3 · 10−3 ≃ 4.2 · 10−2 ≃ 7.2 · 10−7 ≃ 0.04 ≃ 1.3 · 10−5 ≃ 0.12 ≃ 2.7 · 10−7 ≃ 0.012

BLN 01-03-19 5012 41096 ≃ 3 · 10−3 ≃ 4.7 · 10−2 ≃ 3.9 · 10−10 ≃ 0.03 ≃ 1.7 · 10−4 ≃ 0.13 ≃ 2.6 · 10−7 ≃ 0.013

BLN 17-07-19 6447 54476 ≃ 3 · 10−3 ≃ 3.3 · 10−2 ≃ 4.1 · 10−6 ≃ 0.06 ≃ 1.2 · 10−5 ≃ 0.15 ≃ 3.1 · 10−7 ≃ 0.015
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Let us now comment on the scalability of our algorithms. What we learn from our exercise is that scalability 
is not related to the network size in a simple way: the factors seemingly playing a major role are the ones affect-
ing the reducibility of the original system of equations, i.e. the ones ‘deciding’ the number of different equations 
that actually need to be solved.

While reducibility can be easily quantified a posteriori, e.g. by calculating the coefficient of reduction, cr , 
defined as the ratio between the number of equations that survive to reduction and the number of equations 
defining the original problem (hence, the smaller the better), providing an exhaustive list of the aforementioned 
factors a priori is much more difficult.

In the case of the UBCM, cr is defined as the number of different degrees divided by the total number of 
nodes; one may, thus, argue that reducibility is affected by the heterogeneity of the degree distribution; upon 
considering that the latter can be quantified by computing the coefficient of variation (defined as cv = s/m , where 
s and m are, respectively, the standard deviation and the mean of the degree distribution of the network at hand), 
one may derive a simple rule of thumb: a larger coefficient of variation (pointing out a larger heterogeneity of 
the degree distribution) leads to a larger coefficient of reduction and a larger amount of time for convergence 
will be required. Notice that even if the degree distribution is narrow, outliers (e.g. hubs) may still play a role, 
forcing the corresponding parameters to assume either very large or very small values - hence, slowing down 
the entire convergence process.

In this sense, scalability is the result of a (non-trivial) interplay between size and reducibility. Let us take a 
look at Table 1: Internet is the most reducible network of our basket, although being the largest in size, while 
the neural network of C. Elegans is one of the least reducible networks of our basket, although being the second 
smallest one; as a consequence, the actual number of equations defining the UBCM on C. Elegans is ≃ 30 while 
the actual number of equations defining the UBCM on Internet is ≃ 100 - whence the larger amount of time 
to solve the latter. Remarkably, the time required by our recipes to ensure that the largest system of equations 
converges to the solution ranges from thousandths to tenths of seconds.

As a last comment, we would like to stress that, unlike several popular approximations as the Chung-Lu one27, 
the generic coefficient pUBCMij  always represents a proper probability, in turn implying that eq. (23) also provides 
us with a recipe to sample the canonical ensemble of BUNs, under the UBCM. Notice that the factorization of 
the graph probability PUBCM(A|�θ) greatly simplifies the entire procedure, allowing a single graph to be sampled 
by implementing the Bernoulli trial

for each (undirected) pair of nodes, in either a sequential or a parallel fashion. The sampling process, whose 
computational complexity amounts at O(N2) , can be repeated to generate as many configurations as desired. The 
pseudo-code for explicitly sampling the UBCM ensemble is summed up by Algorithm 1.

We explicitly acknowledge the existence of the algorithm proposed in33 for sampling binary, undirected 
networks from the Chung-Lu model (i.e. the ‘sparse case’ approximation of the UBCM), a recipe that is applicable 
whenever the condition pCLij = kikj

2L < 1 , ∀ i < j is verified. As explicitly acknowledged by the authors of 33. 
However, it does not hold in several cases of interest: an example of paramount importance is provided by sparse 
networks whose degree distribution is scale-free. In such cases, kmax ∼ N

1
γ−1 : hence, the hubs establish a con-

nection with probability pCLij ∼ N
2

γ−1

N−N
1

γ−1
 that becomes larger than 1 when 2 < γ ≤ 3 and diverges for γ → 2 , 

thus leading to a strong violation of the requirement above.

DBCM: binary directed graphs with given in‑degree and out‑degree sequences.  Let us now 
move to consider binary, directed networks (BDNs). In this case, the simplest, non-trivial set of constraints is 
represented by the in-degrees and the out-degrees of nodes, where kini (A) =

∑N
j(�=i)=1 aji counts the number of 

(32)aij =
{

0 1− p
UBCM
ij

1 p
UBCM
ij
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nodes ‘pointing’ to node i and kouti (A) = ∑N
j( �=i)=1 aij counts the number of nodes i ‘points’ to. The benchmark 

defined by this set of constraints is known as Directed Binary Configuration Model (DBCM) whose Hamiltonian 
reads

as in the undirected case, entropy maximization15,16 leads to a factorized probability distribution, i.e.

where pij = pDBCMij ≡ e
−αi−βj

1+e
−αi−βj

 . The canonical ensemble of BDNs is, now, the set of networks with the same 
number of nodes, N, of the observed graph and a number of (directed) links varying from zero to the maximum 
value N(N − 1) . The argument of the problem (6) for the specific network A∗ becomes

whose first-order optimality conditions read

and

Resolution of the DBCM. Newton’s and the quasi-Newton method can be easily implemented via the recipe 
defined in Eq. (18) (see “Appendix A” for the definition of the DBCM Hessian).

The fixed-point recipe for solving the system of equations embodying the DBCM first-order optimality condi-
tions can, instead, be re-written in the usual iterative fashion as follows

(33)HDBCM(A, �α, �β) =
N
∑

i=1

[αikouti (A)+ βik
in
i (A)];

(34)
PDBCM(A|�α, �β) =

N
∏

i=1

N
∏

j = 1
(j �= i)

p
aij
ij (1− pij)

1−aij

(35)

LDBCM(�α, �β) = −
N
∑

i=1

[αikouti (A∗)+ βik
in
i (A

∗)]

−
N
∑

i=1

N
∑

j = 1
(j �= i)

ln
[

1+ e−αi−βj
]

(36)

∇αiLDBCM =− kouti (A∗)+
N
∑

j = 1
(j �= i)

e−αi−βj

1+ e−αi−βj

=− kouti (A∗)+
N
∑

j = 1
(j �= i)

pDBCMij

=− kouti (A∗)+ �kouti � = 0, i = 1 . . .N

(37)

∇βiLDBCM =− kini (A
∗)+

N
∑

j = 1
(j �= i)

e−αj−βi

1+ e−αj−βi

=− kini (A
∗)+

N
∑

j = 1
(j �= i)

pDBCMji

=− kini (A
∗)+ �kini � = 0, i = 1 . . .N .
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Analogously to the undirected case, the initialization of this recipe has been implemented in three different ways. 
The first one reads α(0)

i = − ln
[

kouti (A∗)√
L

]

 , i = 1 . . .N and β(0)
i = − ln

[

kini (A∗)√
L

]

 , i = 1 . . .N and represents a good 
approximation to the solution of the system of equations defining the DBCM in the ‘sparse case’ (i.e. whenever 

pDBCMij ≃ e−αi−βj ); the second one is a variant of the position above, reading α(0)
i = − ln

[

kouti (A∗)√
N

]

 , i = 1 . . .N 

and β(0)
i = − ln

[

kini (A∗)√
N

]

 , i = 1 . . .N  ; the third one, instead, prescribes to randomly draw the value of each 
parameter from a uniform distribution defined on the unit interval, i.e. α(0)

i ∼ U(0, 1) , ∀ i and β(0)
i ∼ U(0, 1) , 

∀ i . As for the UBCM, the identification pDBCMij ≡ e
−α

(∞)
i −β

(∞)
j

1+e
−α

(∞)
i −β

(∞)
j

 , ∀ i �= j allows the probability coefficients defin-

ing the DBCM to be numerically determined.
Reducing the dimensionality of the problem. As for the UBCM, we can define a ‘reduced’ version of the DBCM 

likelihood, accounting only for the distinct (pairs of) values of the degrees. By defining kout ≡ k and kin ≡ h , in 
order to simplify the formalism, the reduced DBCM recipe reads

the implementation of the algorithms considered here must be modified in a way that is analogous to the one 
already described for the UBCM. In particular, the fixed-point recipe for the DBCM can be re-written by assign-
ing to the nodes with the same out- and in-degrees (k, h) the same pair of values (α,β) , i.e. as

where the sums, now, run over the distinct values of the out- and in-degrees, n(k, h) is the number of nodes 
whose out-degree is k and whose in-degree is h and, as usual, the last term at the denominator excludes the self-
contribution (i.e. the probability that a node links to itself).

Performance testing. As for the UBCM, the performance of the three algorithms in solving the reduced ver-
sion of Eqs. (37) and (38) has been tested on a bunch of real-world networks. The latter ones span economic, 
financial and social networks. In particular, we have considered the World Trade Web (WTW) during the decade 
1992–200234, a pair of snapshots of the Bitcoin User Network at the weekly time scale (the first day of those weeks 
being 13-02-12 and 27-04-15, respectively)35 and of the corresponding largest weakly connected component 
(whose size is, respectively, ≃ 65% and ≃ 90% of the full network size) and a snapshot of the semantic network 
concerning the Twitter discussion about the Covid-19 pandemics (more precisely: it is the network of re-tweets of 
the (online) Italian debate about Covid-19, collected in the period 21st February–20th April 2020)36. Before com-
menting on the results of our numerical exercises, let us, first, describe how the latter ones have been carried out.

The accuracy of each algorithm in reproducing the constraints defining the DBCM has been quantified via 
the maximum absolute error metrics that, in this case, reads

(38)

α
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i = − ln
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, i = 1 . . .N

(39)

L
reduced
DBCM (�θ) =−

∑

k

∑

h

n(k, h)[αk,hk(A∗)+ βk,hh(A
∗)]

−
∑

k,h

∑

k′ ,h′
n(k, h)[n(k′, h′)− δkk′δhh′ ]·

· ln
[

1+ e−αk,h−βk′ ,h′
]

;

(40)α
(n)
k,h =− ln




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





k(A∗)

�
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(41)β
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k,h =− ln













h(A∗)

�

k′ ,h′ [n(k′, h′)− δkk′δhh′ ]
�

e
−α

(n−1)
k′ ,h′

1+e
−α

(n−1)
k,h

−β
(n−1)
k′ ,h′

�













, ∀ k, h



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15227  | https://doi.org/10.1038/s41598-021-93830-4

www.nature.com/scientificreports/

and accounts for the presence of two different degrees per node. As for the UBCM, it is the infinite norm of the 
difference between the vector of the empirical values of the constraints and that of their expected values.

The three different ‘stop criteria’ we have considered match the ones adopted for analysing the undi-
rected case and consist in a condition on the Euclidean norm of the gradient of the likelihood function, i.e. 
||∇L (�θ)||2 ≤ 10−8 , in a condition on the Euclidean norm of the vector of differences between the values of the 
parameters at subsequent iterations, i.e. ||��θ ||2 ≤ 10−8 , and in a condition on the maximum number of itera-
tions: after 10,000 steps, any of the three algorithms stops.

The results about the performance of our three algorithms are reported in Table 2. Overall, all recipes perform 
very satisfactorily, being accurate, fast and scalable; however, while Newton’s and the quasi-Newton methods stop 
because the condition on the norm of the likelihood is satisfied, the fixed-point recipe is always found to satisfy 
the limit condition on the number of steps (i.e. it runs for 10000 steps and, then, stops).

Let us start by commenting the results concerning the WTW. For what concerns accuracy, the largest max-
imum error per method spans an interval, across all configurations, that amounts at MADEreducedNewton ≃ 10−9 , 
10−10 � MADEreducedQuasi-Newton � 10−6 and MADEreducedfixed-point ≃ 10−2 . By looking at each specific network, it is evident 
that the most accurate method is systematically the quasi-Newton one.

For what concerns speed, the amount of time required by each method to achieve convergence spans an inter-
val (across all configurations) that is 0.5 ≤ Treduced

Newton ≤ 13 , 0.21 ≤ Treduced
Quasi-Newton ≤ 0.33 and 2.5 ≤ Treduced

fixed-point ≤ 4.4 
(time is measured in seconds). The fastest method is the quasi-Newton one, followed by Newton’s method and 
the fixed-point recipe. The latter is the slowest method since it always reaches the limit of 10000 steps while the 
other two competing ones stop after few iterations. Appreciable differences in the speed of convergence of any 
method, caused by the choice of a particular set of initial conditions, are not observed.

The observations above hold true when the WTW is considered. The picture changes when very large net-
works, as Bitcoin and Twitter, are considered. First, let us notice that Bitcoin and Twitter ‘behave’ as the undi-
rected version of Internet considered to solve the UBCM, i.e. they are very redundant, hosting many nodes with 
the same out- and in-degrees (in fact, the coefficient of reduction, cr , is, now, defined as the number of different 
‘out-degree - in-degree’ pairs divided by twice the number of nodes). To provide a specific example, out of the 
original 676688 equations defining the DBCM for one of the two Bitcoin snapshots considered here, only ≃ 339 
equations survive the reduction; by converse, the WTW can be reduced to a much smaller extent (to be more 
specific, out of the original 324 equations defining the DBCM for the WTW in 1997, only ≃ 291 equations survive 

(42)MADE = max
i
{
∣

∣k∗i − �ki�
∣

∣,
∣

∣h∗i − �hi�
∣

∣}Ni=1

Table 2.   Performance of Newton’s, quasi-Newton and the fixed-point algorithm to solve the reduced system 
of equations defining the DBCM, on a set of real-world BDNs (of which basic statistics as the total number 
of nodes, N, the total number of links, L, and the connectance, c = L/N(N − 1) , are provided). For what 
concerns the World Trade Web, both Newton’s and the quasi-Newton methods stop because the condition 
||∇L (�θ)||2 ≤ 10

−8 is satisfied; the fixed-point recipe, instead, always reaches the limit of 10,000 steps. The 
fastest and most accurate method is systematically the quasi-Newton one. The picture changes when very large 
networks, as Bitcoin and Twitter, are considered: in these cases, the fastest and most accurate method is the 
fixed-point one. Only the results corresponding to the best choice of initial conditions are reported.

N L c cr

Newton Quasi-Newton Fixed-point

MADE Time (s) MADE Time (s) MADE Time (s)

WTW 92 162 5891 ≃ 2.3 · 10−1 ≃ 2.8 · 10−1 ≃ 2.6 · 10−9 ≃ 3 ≃ 1.4 · 10−10 ≃ 0.12 ≃ 3.5 · 10−2 ≃ 2.5

WTW 93 162 7384 ≃ 2.8 · 10−1 ≃ 3.5 · 10−1 ≃ 6.7 · 10−9 ≃ 0.5 ≃ 5.3 · 10−7 ≃ 0.16 ≃ 3.4 · 10−2 ≃ 3.1

WTW 94 162 9395 ≃ 3.6 · 10−1 ≃ 4.1 · 10−1 ≃ 2.6 · 10−9 ≃ 7.4 ≃ 3.1 · 10−10 ≃ 0.18 ≃ 3.5 · 10−2 ≃ 3.7

WTW 95 162 10947 ≃ 4.2 · 10−1 ≃ 4.3 · 10−1 ≃ 4 · 10−9 ≃ 16 ≃ 4 · 10−7 ≃ 0.21 ≃ 3.3 · 10−2 ≃ 3.9

WTW 96 162 11869 ≃ 4.6 · 10−1 ≃ 4.5 · 10−1 ≃ 3.3 · 10−9 ≃ 1.1 ≃ 9.2 · 10−7 ≃ 0.33 ≃ 3.3 · 10−2 ≃ 4.1

WTW 97 162 12840 ≃ 4.9 · 10−1 ≃ 4.5 · 10−1 ≃ 2.4 · 10−9 ≃ 13 ≃ 2.4 · 10−10 ≃ 0.16 ≃ 3.3 · 10−2 ≃ 4.2

WTW 98 162 13344 ≃ 5.1 · 10−1 ≃ 4.5 · 10−1 ≃ 2.4 · 10−9 ≃ 9.3 ≃ 3.9 · 10−10 ≃ 0.16 ≃ 3.3 · 10−2 ≃ 4.2

WTW 99 162 13810 ≃ 5.3 · 10−1 ≃ 4.5 · 10−1 ≃ 2.5 · 10−9 ≃ 13 ≃ 9.4 · 10−7 ≃ 0.3 ≃ 3.3 · 10−2 ≃ 4.1

WTW 00 162 14095 ≃ 5.4 · 10−1 ≃ 4.8 · 10−1 ≃ 1.8 · 10−9 ≃ 10 ≃ 3.9 · 10−10 ≃ 0.17 ≃ 3.3 · 10−2 ≃ 4.4

WTW 01 162 14521 ≃ 5.6 · 10−1 ≃ 4.7 · 10−1 ≃ 6.8 · 10−9 ≃ 10 ≃ 4.2 · 10−6 ≃ 0.22 ≃ 3.4 · 10−2 ≃ 4.3

WTW 02 162 13911 ≃ 5.3 · 10−1 ≃ 4.6 · 10−1 ≃ 3.8 · 10−9 ≃ 13 ≃ 5.8 · 10−10 ≃ 0.18 ≃ 3.3 · 10−2 ≃ 4.3

BTC
CC

week-1
13576 20604 ≃ 1.1 · 10−4 ≃ 1 · 10−2 ≃ 3 · 10−7 ≃ 1.3 ≃ 1.5 · 10−4 ≃ 0.4 ≃ 4 · 10−6 ≃ 0.1

BTCweek-1 20984 25553 ≃ 5.8 · 10−5 ≃ 6.6 · 10−3 ≃ 5.1 · 10−4 ≃ 4 ≃ 2.7 · 10−7 ≃ 0.11 ≃ 6 · 10−6 ≃ 0.05

BTC
CC

week-2
297338 554643 ≃ 6 · 10−6 ≃ 2 · 10−3 ≃ 9 · 10−9 ≃ 12 ≃ 7.4 · 10−5 ≃ 7 ≃ 8 · 10−6 ≃ 0.65

BTCweek-2 338334 571551 ≃ 5 · 10−6 ≃ 1.9 · 10−3 ≃ 1.5 · 10−4 ≃ 16 ≃ 9.5 · 10−4 ≃ 2.3 ≃ 1.1 · 10−5 ≃ 0.5

Twitter 436551 1489857 ≃ 7.8 · 10−6 ≃ 4.6 · 10−3 ≃ 9.5 · 10−9 ≃ 6 ≃ 4.9 · 10−3 ≃ 40 ≃ 1.3 · 10−5 ≃ 7.6
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the reduction). Interestingly, a good proxy of the reducibility of the directed configurations considered here is 
provided by their connectance (i.e. the denser the network, the less reducible it is).

On the one hand, this feature, common to the very large networks considered here, is what guarantees their 
resolution in a reasonable amount of time; on the other one, it seems not to be enough to let Newton’s and the 
quasi-Newton method be as fast as in the undirected case. For our binary, directed networks, in fact, the fastest 
(and, for some configurations, the most accurate) method becomes the fixed-point one. In order to understand 
this result we need to consider that both Newton’s and the quasi-Newton method require (some proxy of) the 
Hessian matrix of the DBCM to update the value of the parameters: since the order of the latter is O(N2) for 
Newton’s method and O(N) for the quasi-Newton one, its calculation can be (very) time demanding - beside 
requiring a lot of memory for the step-wise update of the corresponding Hessian matrix. However, while this is 
compensated by a larger accuracy in the case of Newton’s method, this is no longer true when the quasi-Newton 
recipe is considered - the reason maybe lying in the poorer approximation provided by the diagonal of the Hes-
sian matrix in case of systems like these.

As a last comment, we would like to stress that, as in the undirected case, the generic coefficient pDBCMij  rep-
resents a proper probability, in turn implying that Eq. (35) also provides us with a recipe to sample the canonical 
ensemble of BDNs, under the DBCM. Notice that the factorization of the graph probability PDBCM(A|�θ) greatly 
simplifies the entire procedure, allowing a single graph to be sampled by implementing the Bernoulli trial

for each (directed) pair of nodes, in either a sequential or a parallel fashion. The sampling process, whose com-
putational complexity amounts at O(N2) , can be repeated to generate as many configurations as desired. The 
pseudo-code for explicitly sampling the DBCM ensemble is summed up by Algorithm 2.

BiCM: bipartite binary undirected graphs with given degree sequences.  So far, we have consid-
ered monopartite networks. However, the algorithm we have described for solving the DBCM can be adapted, 
with little effort, to solve a null model designed for bipartite, binary, undirected networks (BiBUNs), i.e. the 
so-called Bipartite Configuration Model (BiCM)37. These networks are defined by two distinct layers (say, ⊤ and 
⊥ ) and obey the rule that links can exist only between (and not within) layers: for this reason, they can be com-
pactly described via a biadjacency matrix B ≡ {biα}i,α whose generic entry biα is 1 if node i belonging to layer 
⊥ is linked to node α belonging to layer ⊤ and 0 otherwise. The constraints defining the BiCM are represented 
by the degree sequences {ki}i∈⊥ and {dα}α∈⊤ where ki =

∑

α∈⊤ biα counts the neighbors of node i (belonging to 
layer ⊤ ) and dα = ∑

i∈⊥ biα counts the neighbors of node α (belonging to layer ⊥).
Analogously to the DBCM case,

where piα = pBiCMiα ≡ e−γi−βα

1+e−γi−βα
 . The canonical ensemble of BiBUNs includes all networks with, say, N nodes 

on one layer, M nodes on the other layer and a number of links (connecting nodes of different layers) ranging 
from zero to the maximum value N ·M.

The BiCM likelihood function reads

whose first-order optimality conditions read

(43)aij =
{

0 1− p
DBCM
ij

1 p
DBCM
ij

(44)P(B| �γ , �β) =
∏

i∈⊥

∏

α∈⊤
p
biα
iα (1− piα)

1−biα

(45)

LBiCM( �γ , �β) = −
∑

i∈⊥
γiki(B

∗)−
∑

α∈⊤
βαdα(B

∗)

−
∑

i∈⊥

∑

α∈⊤
ln
[

1+ e−γi−βα
]
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Resolution of the BiCM. As for the DBCM case, Newton’s and the quasi-Newton methods can be implemented 
by adapting the recipe defined in Eq. (18) to the bipartite case (see “Appendix A” for the definition of the BiCM 
Hessian).

As for the DBCM, the fixed-point recipe for the BiCM can be re-written in the usual iterative fashion as 
follows

and the initialization is similar as well: in fact, we can employ the value of the solution of the BiCM in the sparse 
case, i.e. γ (0)

i = − ln
[

ki(B
∗)√
L

]

 , ∀ i ∈ ⊥ and β(0)
α = − ln

[

dα(B
∗)√
L

]

 , ∀α ∈ ⊤ (only this set of initial conditions has 
been employed to analyse the bipartite case).

Reducing the dimensionality of the problem. Exactly as for the DBCM case, the presence of nodes with the 
same degree, on the same layer, leads to the appearance of identical equations in the system above; hence, the 
computation of the solutions can be sped up by writing

where f(k) is the number of nodes, belonging to layer ⊥ , whose degree is k and g(d) is the number of nodes, 
belonging to layer ⊤ , whose degree is d.

Performance testing. The performance of the three algorithms in solving Eq. (49) has been tested on 16 snap-
shot of the bipartite, binary, undirected version of the WTW, gathering the country-product export relationships 
across the years 1995–201037. Before commenting on the results of our numerical exercises, let us, first, describe 
how the latter ones have been carried out.

The accuracy of each algorithm in reproducing the constraints defining the BiCM has been quantified via the 
maximum absolute error metrics that, now, reads

to account for the degrees of nodes on both layers.
The three different ‘stop criteria’ match the ones adopted for analysing the UBCM and the DBCM and consist 

in a condition on the Euclidean norm of the gradient of the likelihood function, i.e. ||∇L (�θ)||2 ≤ 10−10 , in a 
condition on the Euclidean norm of the vector of differences between the values of the parameters at subsequent 
iterations, i.e. ||��θ ||2 ≤ 10−10 , and a condition on the maximum number of iterations: after 1000 steps, any of 
the three algorithms stops.

The results about the performance of our three algorithms are reported in Table 3. Overall, all recipes are 
accurate, fast and scalable; all methods stop because the condition on the norm of the likelihood is satisfied.

For what concerns accuracy, the largest maximum error per method spans an interval (across 
all configurations) that amounts at MADEreducedNewton ≃ 10−13 ,  10−7 � MADEreducedQuasi-Newton � 10−5 and 
10−5 � MADEreducedfixed-point � 10−4 . By looking at each specific network, it is evident that the most accurate method 
is systematically Newton’s one.

For what concerns speed, the amount of time required by each method to achieve convergence spans an 
interval (across all configurations) that is Treduced

Newton ≃ 0.0023 (on average), Treduced
Quasi-Newton ≃ 0.016 (on average) 

(46)

∇γiLBiCM =− ki(B
∗)+

∑

α∈⊤

e−γi−βα

1+ e−γi−βα
, i ∈ ⊥

∇βαLBiCM =− dα(B
∗)+

∑

i∈⊥

e−γi−βα

1+ e−γi−βα
, α ∈ ⊤

(47)
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MADE = max{

∣

∣k∗1 − �k1�
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and Treduced
fixed-point ≃ 0.018 (on average) (time is measured in seconds). The fastest method is Newton’s one and is 

followed by the quasi-Newton and the fixed-point recipes. The gain in terms of speed due to the reducibility 
(now quantified by the ratio between the number of different pairs of degrees divided by the total number of 
nodes) of the system of equations defining the BiCM is also evident: while solving the original problem would 
have required handling a system of ≃ 103 equations, the reduced one is defined by just ≃ 102 distinct equations. 
Overall, a solution is always found within thousandths or hundredths of seconds.

As for the DBCM case, the ensemble of BiBUNs can be sampled by implementing a Bernoulli trial 
biα ∼ Ber[piα] for any two nodes (belonging to different layers) in either a sequential or a parallel fashion. The 
computational complexity of the sampling process amounts at O(N ·M) and can be repeated to generate as 
many configurations as desired. The pseudo-code for explicitly sampling the BiCM ensemble is summed up by 
Algorithm 3.

UECM: weighted undirected graphs with given strengths and degrees.  So far, we have consid-
ered purely binary models. Let us now focus on a class of ‘mixed’ null models for weighted networks, defined 
by constraining both binary and weighted quantities. Purely weighted models such as the Undirected and the 
Directed Weighted Configuration Model have not been considered since, as it has been proven elsewhere38, they 
perform quite poorly when employed to reconstruct networks. Let us start by the simplest model, i.e. the one 

Table 3.   Performance of Newton’s, quasi-Newton and the fixed-point algorithm to solve the reduced system 
of equations defining the BiCM, on a set of real-world BiUNs (of which basic statistics as the total number 
of nodes, N, the total number of links, L, and the connectance, c = L/(N ·M) , are provided). All algorithms 
stop because the condition ||∇L (�θ)||2 ≤ 10

−10 is satisfied. For what concerns both accuracy and speed, the 
best performing method is Newton’s one, followed by the quasi-Newton and the fixed-point recipes. Only the 
results corresponding to the best choice of initial conditions are reported.

N +M L c cr

Newton Quasi-Newton Fixed-point

MADE Time (s) MADE Time (s) MADE Time (s)

WTW 95 1277 18947 ≃ 1.1 · 10−1 ≃ 1.3 · 10−1 ≃ 1.1 · 10−13 ≃ 0.0022 ≃ 3.0 · 10−6 ≃ 0.012 ≃ 7.7 · 10−6 ≃ 0.012

WTW 96 1277 19934 ≃ 1.2 · 10−1 ≃ 1.3 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0023 ≃ 1.5 · 10−6 ≃ 0.014 ≃ 1.1 · 10−4 ≃ 0.023

WTW 97 1277 20222 ≃ 1.2 · 10−1 ≃ 1.3 · 10−1 ≃ 1.7 · 10−13 ≃ 0.0022 ≃ 3.5 · 10−6 ≃ 0.02 ≃ 2.4 · 10−4 ≃ 0.013

WTW 98 1277 20614 ≃ 1.2 · 10−1 ≃ 1.4 · 10−1 ≃ 2.8 · 10−13 ≃ 0.0024 ≃ 1.2 · 10−6 ≃ 0.015 ≃ 1.8 · 10−4 ≃ 0.018

WTW 99 1277 20949 ≃ 1.3 · 10−1 ≃ 1.4 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0024 ≃ 2.8 · 10−5 ≃ 0.012 ≃ 2.1 · 10−4 ≃ 0.019

WTW 00 1277 21257 ≃ 1.3 · 10−1 ≃ 1.4 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0025 ≃ 1.3 · 10−6 ≃ 0.016 ≃ 2.8 · 10−5 ≃ 0.018

WTW 01 1277 21326 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 1.7 · 10−13 ≃ 0.0023 ≃ 3.4 · 10−5 ≃ 0.015 ≃ 2.5 · 10−5 ≃ 0.015

WTW 02 1277 21333 ≃ 1.3 · 10−1 ≃ 1.4 · 10−1 ≃ 1.7 · 10−13 ≃ 0.0024 ≃ 4.1 · 10−6 ≃ 0.018 ≃ 2.1 · 10−4 ≃ 0.016

WTW 03 1277 21330 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 2.8 · 10−13 ≃ 0.0023 ≃ 1.1 · 10−6 ≃ 0.015 ≃ 4.3 · 10−5 ≃ 0.014

WTW 04 1277 21479 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 1.7 · 10−13 ≃ 0.0024 ≃ 2.2 · 10−7 ≃ 0.018 ≃ 2.1 · 10−4 ≃ 0.019

WTW 05 1278 21841 ≃ 1.3 · 10−1 ≃ 1.4 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0024 ≃ 2.2 · 10−6 ≃ 0.013 ≃ 2.3 · 10−4 ≃ 0.027

WTW 06 1279 21945 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0023 ≃ 1.3 · 10−5 ≃ 0.016 ≃ 2.2 · 10−4 ≃ 0.012

WTW 07 1279 22036 ≃ 1.3 · 10−1 ≃ 1.4 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0024 ≃ 2.0 · 10−6 ≃ 0.017 ≃ 2.1 · 10−4 ≃ 0.023

WTW 08 1279 21889 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 1.1 · 10−13 ≃ 0.0023 ≃ 1.5 · 10−5 ≃ 0.017 ≃ 2.5 · 10−4 ≃ 0.024

WTW 09 1279 21621 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0025 ≃ 2.1 · 10−6 ≃ 0.021 ≃ 2.4 · 10−4 ≃ 0.018

WTW 10 1279 21010 ≃ 1.3 · 10−1 ≃ 1.3 · 10−1 ≃ 2.3 · 10−13 ≃ 0.0022 ≃ 1.6 · 10−6 ≃ 0.015 ≃ 2.6 · 10−4 ≃ 0.022
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constraining the degrees and the strengths in an undirected fashion. While ki(A) =
∑N

j( �=i)=1 aij counts the 
number of neighbors of node i, si(W) = ∑N

j( �=i)=1 wij defines the weighted equivalent of the degree of node i, i.e. 
its strength. For consistency, the binary adjacency matrix can be defined via the Heaviside step function, �[.] , 
as A ≡ �[W] a position indicating that aij = 1 if wij > 0 , ∀ i < j and zero otherwise. This particular model is 
known as Undirected Enhanced Configuration Model (UECM)38–40 and its Hamiltonian reads

it induces a probability distribution which is halfway between a Bernoulli and a geometric one39, i.e.

with

for any two nodes i and j such that i < j and pUECMij = e
−αi−αj−βi−βj

1−e
−βi−βj+e

−αi−αj−βi−βj
 . Notice that the functional form 

above is obtained upon requiring that the weights only assume (non-negative) integer values (i.e. wij ∈ [0,+∞) , 
∀ i < j ): hence, the canonical ensemble is now constituted by the weighted configurations with N nodes and a 

number of (undirected) links ranging between zero and the maximum value 
(

N
2

)

.

The argument of the problem (6) for the specific network W∗ now becomes

whose first-order optimality conditions read

Resolution of the UECM Newton’s and the quasi-Newton methods can be easily implemented via the recipe 
defined in Eq. (18) (see “Appendix A” for the definition of the UECM Hessian).

As for the purely binary models, the fixed-point recipe for solving the UECM first-order optimality conditions 
transforms the following set of consistency equations

(with i = 1 . . .N ) into the usual iterative fashion, by considering the parameters at the left hand side and at the 
right hand side, respectively at the n-th and at the (n− 1)-th iteration. It is important to remark that a reduced 

(50)HUECM(W, �α, �β) =
N
∑

i=1

[αiki(A)+ βisi(W)];

(51)
QUECM(W|�α, �β) =

N
∏

i=1

N
∏

j = 1
(j < i)

qij(wij)

(52)qij(w) =
{

1− pUECMij , w = 0

pUECMij (e−βi−βj )w−1(1− e−βi−βj ), w > 0

(53)

LUECM(�α, �β) = −
N
∑

i=1

[αiki(A∗)+ βisi(W
∗)]

−
N
∑

i=1

N
∑

j = 1
(j < i)

ln

[

1+ e−αi−αj

(

e−βi−βj

1− e−βi−βj

)]

(54)
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N
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version of the iterative recipe above can indeed be written, by assigning the same pair of values (α,β) to the 
nodes with the same pair of values (k, s): however, the larger heterogeneity of the strengths causes this event to 
happen more rarely than for purely binary models such as the UBCM and the DBCM.

As for the purely binary cases, three different sets of initial conditions have been considered, whose definition 
follows from the simplest conceivable generalization of the purely binary cases. In particular, the first set of values 
reads α(0)

i = − ln
[

ki(A
∗)√

2L

]

 , i = 1 . . .N and β(0)
i = − ln

[

si(W
∗)√

2W

]

 , i = 1 . . .N ; the second set is a variant of the first, 

reading α(0)
i = − ln

[

ki(A
∗)√
N

]

 , i = 1 . . .N and β(0)
i = − ln

[

si(W
∗)√

N

]

 , i = 1 . . .N ; the third recipe, instead, prescribes 
to randomly draw the value of each parameter from the uniform distribution defined on the unit interval, i.e. 
α
(0)
i ∼ U(0, 1) , ∀ i and β(0)

i ∼ U(0, 1) , ∀ i.
Performance testing The performance of the three algorithms to solve the system of equations defining the 

UECM has been tested on a bunch of real-world networks. In particular, we have considered the WTW during 
the decade 1990–200041. Since the weights defining the configurations of the WTW are real numbers, we have 
rounded them to the nearest integer value, before running the UECM. Before commenting on the results of our 
numerical exercises, let us, first, describe how the latter ones have been carried out.

The accuracy of each algorithm in reproducing the constraints defining the UECM has been now quantified 

via the maximum relative error metrics, defined, in a perfectly general fashion, as maxi

{ |C∗
i −�Ci�|
Ci

}N

i=1
 (where 

C∗
i  is the empirical value of the i-th constraint, Ci ). In the UECM case, we can define two variants of the afore-

mentioned error, i.e.

(the acronyms standing for Maximum Relative Degree Error and Maximum Relative Strength Error). The reason 
driving this choice lies in the evidence that, in absolute terms, strengths are affected by a larger numerical error 
than degrees: this, however, doesn’t necessarily mean that a given algorithm performs poorly, as the magnitude 
of an error must be always compared with the numerical value of the quantity it refers to - whence the choice 
of considering relative scores.

The three different ‘stop criteria’ we have considered for each algorithm match the ones adopted for analysing 
the binary cases, consisting in a condition on the Euclidean norm of the gradient of the likelihood function, i.e. 
||∇L (�θ)||2 ≤ 10−8 , and in a condition on the Euclidean norm of the vector of differences between the values of 
the parameters at subsequent iterations, i.e. ||��θ ||2 ≤ 10−8 . The third condition concerns the maximum number 
of iterations: after 10000 steps, any of the three algorithms stops.

The results about the performance of our three algorithms are reported in Table 4. Overall, two out of three 
algorithms (i.e. Newton’s and the quasi-Newton methods) perform very satisfactorily, being accurate, fast and 

(56)MRDE =max
i

{ |k∗i − �ki�|
ki

}N

i=1

(57)MRSE =max
i

{ |s∗i − �si�|
si

}N

i=1

Table 4.   Performance of Newton’s and the quasi-Newton method to solve the reduced system of equations 
defining the UECM, on a set of real-world WUNs (of which basic statistics as the total number of nodes, N, the 
total number of links, L, and the connectance, c = 2L/N(N − 1) , are provided). While Newton’s method stops 
because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied, the quasi-Newton one always reaches the limit of 10000 
steps. The results on accuracy and speed clearly indicate that Newton’s method outperforms the quasi-Newton 
one. Only the results corresponding to the best choice of initial conditions are reported. The results of the 
fixed-point recipe are not shown.

N L c

Newton Quasi-Newton

MRDE MASE MRSE Time (s) MRDE MASE MRSE Time (s)

WTW 90 169 7991 ≃ 0.3 ≃ 2.6 · 10−10 ≃ 5 · 10−6 ≃ 2 · 10−10 ≃ 0.4 ≃ 7.8 · 10−4 ≃ 2 · 10−1 ≃ 3 · 10−4 ≃ 25

WTW 91 184 8712 ≃ 0.3 ≃ 2.1 · 10−10 ≃ 1 · 10−10 ≃ 1.2 · 10−10 ≃ 0.5 ≃ 9.2 · 10−5 ≃ 7 · 10−2 ≃ 6.6 · 10−5 ≃ 28

WTW 92 185 8928 ≃ 0.3 ≃ 1.2 · 10−10 ≃ 7 · 10−7 ≃ 1.3 · 10−10 ≃ 0.5 ≃ 7 · 10−2 ≃ 2 · 10−4 ≃ 1.3 · 10−4 ≃ 28

WTW 93 187 9220 ≃ 0.3 ≃ 3.4 · 10−6 ≃ 2 · 10−10 ≃ 2.2 · 10−10 ≃ 0.5 ≃ 1.4 · 10−4 ≃ 1 · 10−1 ≃ 7.6 · 10−5 ≃ 28

WTW 94 187 9437 ≃ 0.3 ≃ 1.8 · 10−10 ≃ 2 · 10−10 ≃ 1.8 · 10−10 ≃ 0.7 ≃ 7 · 10−5 ≃ 2 · 10−1 ≃ 1.5 · 10−4 ≃ 28

WTW 95 187 9578 ≃ 0.3 ≃ 2.8 · 10−10 ≃ 3 · 10−6 ≃ 2.9 · 10−10 ≃ 0.6 ≃ 2.5 · 10−4 ≃ 3 · 10−1 ≃ 6.7 · 10−5 ≃ 28

WTW 96 187 10002 ≃ 0.3 ≃ 1.4 · 10−5 ≃ 1 · 10−10 ≃ 1.1 · 10−10 ≃ 0.7 ≃ 1.7 · 10−5 ≃ 2 · 10−1 ≃ 3 · 10−5 ≃ 28

WTW 97 187 10251 ≃ 0.3 ≃ 1.1 · 10−5 ≃ 4 · 10−10 ≃ 6.7 · 10−10 ≃ 0.7 ≃ 4.4 · 10−5 ≃ 8 · 10−2 ≃ 1.6 · 10−4 ≃ 28

WTW 98 187 10254 ≃ 0.3 ≃ 1 · 10−5 ≃ 3 · 10−10 ≃ 4 · 10−10 ≃ 0.6 ≃ 1.7 · 10−4 ≃ 8 · 10−2 ≃ 5.3 · 10−5 ≃ 28

WTW 99 187 10252 ≃ 0.3 ≃ 4.7 · 10−10 ≃ 1 · 10−10 ≃ 8 · 10−10 ≃ 0.7 ≃ 1.6 · 10−4 ≃ 7 · 10−2 ≃ 6.2 · 10−5 ≃ 28

WTW 00 187 10252 ≃ 0.3 ≃ 5 · 10−10 ≃ 2 · 10−10 ≃ 2.4 · 10−10 ≃ 0.7 ≃ 1.5 · 10−4 ≃ 9 · 10−2 ≃ 5.4 · 10−5 ≃ 29
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scalable; the third one (i.e. the fixed-point recipe), instead, performs very poorly. Moreover, while Newton’s 
method stops because the condition on the norm of the likelihood is satisfied, both the quasi-Newton and the 
fixed-point algorithms are always found to satisfy the limit condition on the number of steps (i.e. they run for 
10000 steps and, then, stop).

For what concerns accuracy, the largest maximum error made by Newton’s method (across all configurations) 
amounts at 10−10 � MRDENewton � 10−5 and MRSENewton � 10−10 ; on the other hand, the largest maximum 
error made by the quasi-Newton method (across all configurations) amounts at 10−5 � MRDEQuasi-Newton � 10−1 
and 10−5 ≤ MRSEQuasi-Newton ≤ 10−4 . For what concerns speed, Newton’s method employs tenths of seconds to 
achieve convergence on each configuration while the quasi-Newton one always requires tens of seconds (specifi-
cally, almost thirty seconds for each considered configuration). The results above indicate that the fastest and 
two most accurate method is systematically Newton’s one, suggesting that the ‘complexity’ of the model is such 
that the information encoded into the Hessian matrix cannot be ignored without consequences on the quality 
of the solution. The fixed-point algorithm, instead, stops after seconds but is affected by errors whose order of 
systematically magnitude amounts at MRDEfixed-point ≃ 102 and 1 � MRSEfixed-point � 102.

We also explicitly notice that the MADE basically coincides with the MRDE for all considered configurations, 
meaning that the largest error, made by the algorithms considered here to solve the UECM, affects the nodes with 
the lowest degree (i.e. equal to one). On the other hand, strengths are affected by a larger absolute error (i.e. the 
MASE, defined as MASE = maxi{

∣

∣s∗i − �si�
∣

∣}Ni=1 ) than the degrees: if we calculate the MRSE, however, we realize 
that the largest errors affect very large strengths - hence being perfectly acceptable. For example, let us consider 
the WTW in 1993: the MASE amounts at 0.1 but, as the MRSE reveals, it affects a strength of the order of 103.

Lastly, differences in the speed of convergence of the two methods discussed in this section, caused by the 
choice of a particular set of initial conditions, are observable: the ‘uniform’ prescription outperforms the other 
ones.

Finally, let us comment on the algorithm to sample the UECM ensemble and that can be compactly achieved 
by implementing a two-step procedure. Let us look back at the formal expression for the pair-specific probability 
distribution characterizing the UECM: it induces coefficients reading

in turn suggesting that, for a specific pair of vertices i, j (with i < j ), the appearance of the first link is ruled by a 
Bernoulli distribution with probability pUECMij  while the remaining (w − 1) ones can be drawn from a geometric 
distribution whose parameter reads e−βi−βj ; in other words, the weight (w − 1) is drawn conditionally on the pres-
ence of a connection between the two considered nodes. The computational complexity of the sampling process 
is, again, O(N2) . The pseudo-code for explicitly sampling the DBCM ensemble is summed up by Algorithm 4. 
Notice that the way our sampling procedure is written requires the support of the geometric distribution to 
coincide with the positive integers.

DECM: weighted directed graphs with given strengths and degrees.  Let us now extend the 
‘mixed’ model introduced in the previous section to the case of directed networks. Constraints are, now, rep-
resented by four sequences of values, i.e. {kouti }Ni=1 , {kini }Ni=1 , {souti }Ni=1 , {sini }Ni=1 where the generic out-degree and 
in-degree are, respectively, defined as kouti (A) = ∑N

j(�=i)=1 aij and kini (A) =
∑N

j(�=i)=1 aji and analogously for the 
generic out-strength and in-strength, reading souti (W) = ∑N

j(�=i)=1 wij and sini (W) = ∑N
j(�=i)=1 wji . Consistency 
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requires that A ≡ �[W] as for the UECM case. This model is known as Directed Enhanced Configuration Model 
(DECM) and its Hamiltonian reads

in turn, inducing the directed counterpart of the UECM distribution, i.e.

with

for any two nodes i and j such that i  = j and pDECMij = e
−αi−βj−γi−δj

1−e
−γi−δj+e

−αi−βj−γi−δj
 . As for the undirected case, weights 

are required to assume only (non-negative) integer values (i.e. wij ∈ [0,+∞) , ∀ i �= j ): hence, the canonical 
ensemble is constituted by the weighted configurations with N nodes and a number of (directed) links ranging 
between zero and the maximum value N(N − 1).

The argument of the problem (14) for the specific network W∗ becomes

where zij =
[

1+ e−αi−βj

(

e
−γi−δj

1−e
−γi−δj

)]

 , ∀ i �= j and whose first-order optimality conditions read

Resolution of the DECM. Newton’s and the quasi-Newton methods can be easily implemented via the recipe 
defined in Eq. (18) (see “Appendix A” for the definition of the DECM Hessian).

As for the UECM, the fixed-point recipe for solving the DECM first-order optimality conditions transforms 
the following set of consistency equations
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(with i = 1 . . .N  ) into the usual iterative fashion, by considering the parameters at the left hand side and at 
the right hand side, respectively at the n-th and at the (n− 1)-th iteration. The reduced version of such a recipe 
would assign the same set of values (α,β , γ , δ) to the nodes for which the quantities (kout , kin, sout , sin) have the 
same value: however, the larger heterogeneity of the strengths causes the DECM to be much less reducible than 
the purely binary models we have considered in the present contribution.

The three different sets of initial conditions that have been considered generalize the UECM ones: in particu-
lar, the first set of values reads α(0)

i = − ln
[

kouti (A∗)√
L

]

 , i = 1 . . .N  , β(0)
i = − ln

[

kini (A∗)√
L

]

 , i = 1 . . .N  , 

γ
(0)
i = − ln

[

souti (W∗)√
W

]

 , i = 1 . . .N and δ(0)i = − ln
[

sini (W∗)√
W

]

 , i = 1 . . .N ; the second set of initial conditions can 
be obtained by simply replacing L with N; the third recipe, as usual, prescribes to randomly draw the value of 
each parameter from the uniform distribution defined on the unit interval.

Performance testing The performance of the three algorithms to solve the system of equations defining the 
DECM has been tested on a bunch of real-world networks. In particular, we have considered the Electronic Ital-
ian Interbank Market (e-MID) during the decade 2000–201042. Since e-MID weights are real numbers, we have 
rounded them to the nearest integer value, before running the DECM. Before commenting on the results of our 
numerical exercises, let us, first, describe how the latter ones have been carried out
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Table 5.   Performance of Newton’s and the quasi-Newton method to solve the reduced system of equations 
defining the DECM, on a set of real-world WDNs (of which basic statistics as the total number of nodes, N, the 
total number of links, L, and the connectance, c = L/N(N − 1) , are provided). While Newton’s method stops 
because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied, the quasi-Newton one always reaches the limit of 10000 
steps. The results on accuracy and speed clearly indicate that Newton’s method outperforms the quasi-Newton 
one. Only the results corresponding to the best choice of initial conditions are reported. The results of the 
fixed-point recipe are not shown.

N L c

Newton Quasi-Newton

MRDE MASE MRSE Time (s) MRDE MASE MRSE Time (s)

e-MID 00 196 10618 ≃ 0.28 ≃ 1.4 · 10−10 ≃ 5 · 10−9 ≃ 1.5 · 10−10 ≃ 0.5 ≃ 1.7 · 10−7 ≃ 3 · 10−1 ≃ 5.4 · 10−7 ≃ 0.1

e-MID 01 185 8951 ≃ 0.26 ≃ 1.4 · 10−11 ≃ 6 · 10−9 ≃ 2 · 10−10 ≃ 0.4 ≃ 1.4 · 10−7 ≃ 10 ≃ 7 · 10−5 ≃ 0.2

e-MID 02 177 7252 ≃ 0.23 ≃ 1.4 · 10−15 ≃ ·10−4 ≃ 1 · 10−5 ≃ 0.5 ≃ 9.5 · 10−8 ≃ 6 · 10−1 ≃ 7.4 · 10−6 ≃ 0.1

e-MID 03 179 6814 ≃ 0.21 ≃ 1.6 · 10−10 ≃ 2 · 10−5 ≃ 4.4 · 10−10 ≃ 0.9 ≃ 9.6 · 10−8 ≃ 50 ≃ 1.1 · 10−3 ≃ 0.2

e-MID 04 180 6136 ≃ 0.19 ≃ 6.5 · 10−13 ≃ 9 · 10−7 ≃ 3.4 · 10−12 ≃ 0.9 ≃ 1 · 10−7 ≃ 700 ≃ 4.2 · 10−3 ≃ 0.2

e-MID 05 176 6203 ≃ 0.2 ≃ 3 · 10−12 ≃ 1 · 10−5 ≃ 9.4 · 10−11 ≃ 1.2 ≃ 4.8 · 10−8 ≃ 300 ≃ 2.4 · 10−3 ≃ 0.3

e-MID 06 177 6132 ≃ 0.19 ≃ 1.5 · 10−14 ≃ 2 · 10−7 ≃ 1.8 · 10−11 ≃ 0.9 ≃ 5 · 10−8 ≃ 60 ≃ 2.5 · 10−3 ≃ 0.2

e-MID 07 178 6330 ≃ 0.2 ≃ 8.4 · 10−15 ≃ 1 · 10−4 ≃ 2.5 · 10−6 ≃ 0.7 ≃ 1.8 · 10−8 ≃ 3 ≃ 7.6 · 10−5 ≃ 0.1

e-MID 08 173 4767 ≃ 0.16 ≃ 2.3 · 10−9 ≃ 2 · 10−9 ≃ 7.7 · 10−10 ≃ 0.6 ≃ 1.8 · 10−8 ≃ 20 ≃ 1.2 · 10−3 ≃ 0.3

e-MID 09 156 2961 ≃ 0.12 ≃ 2.6 · 10−15 ≃ 1 · 10−7 ≃ 4.9 · 10−12 ≃ 0.6 ≃ 1.7 · 10−8 ≃ 1 ≃ 9 · 10−5 ≃ 0.1

e-MID 10 135 2743 ≃ 0.15 ≃ 6.3 · 10−8 ≃ 3 · 10−6 ≃ 5.9 · 10−10 ≃ 0.7 ≃ 1.6 · 10−8 ≃ 4 ≃ 5.2 · 10−5 ≃ 0.1
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The accuracy of each algorithm in reproducing the constraints defining the DECM has been quantified via 
the maximum relative error metrics, now reading

(the acronyms standing for for Maximum Relative Degree Error and Maximum Relative Strength Error) where 
we have defined kout ≡ k , kin ≡ h , sout ≡ s and sin ≡ t in order to simplify the formalism.

The three different ‘stop criteria’ we have adopted are the same ones we have considered for both the binary 
and the undirected, ‘mixed’ model, i.e. the condition on the Euclidean norm of the gradient of the likelihood 
function, i.e. ||∇L (�θ)||2 ≤ 10−8 ), the condition on the Euclidean norm of the vector of differences between 
the values of the parameters at subsequent iterations (i.e. ||��θ ||2 ≤ 10−8 ) and the condition on the maximum 
number of iterations (i.e. after 10000 steps, any of the three algorithms stops).

The results about the performance of our three algorithms are reported in Table 5. Overall, Newton’s method 
performs very satisfactorily, being accurate, fast and scalable; the quasi-Newton method is accurate as well 
although (in some cases, much) slower. The fixed-point recipe, instead, performs very poorly, as for the undi-
rected case. Moreover, while Newton’s method stops because the condition on the norm of the likelihood is 
satisfied, both the quasi-Newton and the fixed-point algorithms are always found to satisfy the limit condition 
on the number of steps (i.e. they run for 10,000 steps and, then, stop).

For what concerns accuracy, the largest maximum error made by Newton’s method (across all configu-
rations) amounts at 10−14 � MRDENewton � 10−7 and 10−12 � MRSENewton � 10−5 ; on the other hand, 
the largest maximum error made by the quasi-Newton method (across all configurations) amounts at 
10−8 � MRDEQuasi-Newton � 10−7 and 10−4 � MRSEQuasi-Newton � 10−3 . For what concerns speed, Newton’s 
method employs tens of seconds to achieve convergence on each configuration; the time required by the quasi-
Newton method is of the same order of magnitude, although it is systematically larger than the time required 
by Newton’s one. Overall, these results indicate that the fastest and two most accurate method is Newton’s one. 
As in the undirected case, the fixed-point algorithm, instead, stops after seconds but is affected by errors whose 
order of systematically magnitude amounts at 10 � MRDEfixed-point � 102 and 1 � MRSEfixed-point � 102.

As for the UECM, the MADE basically coincides with the MRDE, for all considered configurations, while 
strengths are affected by a larger absolute error than the degrees: still, upon calculating the MRSE, we realize 
that the largest errors affect very large strengths - hence being perfectly acceptable.

Lastly, differences in the speed of convergence of the two methods discussed in this section, caused by the 
choice of a particular set of initial conditions, are observable: the ‘uniform’ prescription outperforms the other 
ones.

Finally, let us comment on the algorithm to sample the DECM ensemble: as for the UECM, it can be com-
pactly achieved by implementing the directed counterpart of the two-step procedure described above. Given 
a specific pair of vertices i, j (with i  = j ), the first link can be drawn by sampling a Bernoulli distribution with 
probability pDECMij  while the remaining (w − 1) ones can be drawn from a geometric distribution whose param-
eter reads e−γi−δj . The computational complexity of the sampling process is, again, O(N2) and the pseudo-code 
for explicitly sampling the DECM ensemble is summed up by Algorithm 5. Notice that the way our sampling 
procedure is written requires the support of the geometric distribution to coincide with the positive integers.

Two‑step models for undirected and directed networks.  The need of considering network models 
defined in a two-step fashion arises from a number of considerations. First, the amount of information concern-
ing binary and weighted quantities is often asymmetric: as it has been pointed out in43, information concerning 
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a given network structure ranges from the knowledge of just a single, aggregated piece of information (e.g. the 
link density) to that of entire subgraphs. Indeed, models exist that take as input any binary, either probabilistic 
or deterministic, network model (i.e. any P(A) ) while placing link weights optimally, conditionally on the input 
configurations19,43.

Second, recipes like the UECM and the DECM are, generally speaking, difficult to solve; as we have already 
observed, only Newton’s method performs in a satisfactory way, both for what concerns accuracy and speed: 
hence, easier-to-solve recipes are welcome.

In what follows, we will consider the conditional reconstruction method (hereby, CReM) induced by the 
Hamiltonian

in case of undirected networks, it induces a conditional probability distribution reading

where, for consistency, qij(wij = 0|aij = 0) = 1 and qij(wij = 0|aij = 1) = 0 . The meaning of these relationships 
is the following: given any two nodes i and j, the absence of a link, i.e. aij = 0 , admits the only possibility wij = 0 ; 
on the other hand, the presence of a link, i.e. aij = 1 , rules out the possibility that a null weight among the same 
vertices is observed.

In general, the functional form of qij(wij|aij = 1) depends on the domain of the weights. In all cases consid-
ered in19,43, weights are assumed to be continuous; since the continuous distribution that maximizes Shannon 
entropy while constrained to reproduce first-order moments is the exponential one, the following functional form

(for any undirected pair of nodes) remains naturally induced. As shown in43, the problem (14) has to be slightly 
generalized; still, its argument for the specific network W∗ becomes

where the quantity fij =
∑

A P(A)aij represents the expected value of aij over the ensemble of binary configura-
tions defining the binary model taken as input (i.e. the marginal probability of an edge existing between nodes 
i and j). It follows that the CReM first-order optimality conditions read

Resolution of the CReM Newton’s and the quasi-Newton method can still be implemented via the recipe 
defined in Eq. (18) (see “Appendix A” for the definition of the CReM Hessian).

As for the UECM and the DECM, the fixed-point recipe for solving the system of equations embodying the 
CReM transforms the set of consistency equations

into an iterative recipe of the usual form, i.e. by considering the parameters at the left hand side and at the right 
hand side, respectively at the n-th and at the (n− 1)-th iteration. Although a reduced recipe can, in principle, 
be defined, an analogous observation to the one concerning the UECM and the DECM holds: the mathematical 
nature of the strengths (now, real numbers) increases their heterogeneity, in turn causing the CReM algorithm 
to be reducible even less than the ‘mixed’ models defined by discrete weights.

The initialization of the iterative recipe for solving the CReM has been implemented in the usual threefold 
way. The first set of initial values reads θ(0)i = − ln

[

si(W
∗)√

2W

]

 , i = 1 . . .N ; the second one is a variant of the position 

above, reading θ(0)i = − ln
[

si(W
∗)√

N

]

 ; the third one, instead, prescribes to randomly draw the value of each param-
eter from the uniform distribution defined on the unit interval, i.e. θ(0)i ∼ U(0, 1) , ∀ i.
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When considering directed networks, the conditional probability distribution defining the CReM reads

for any two nodes i and j such that i  = j ; the set of Eq. (73) can be generalized as follows

and analogously for the sets of values initializing them.
Rescaling the CReM algorithm. Although the equations defining the CReM algorithm cannot be effectively 

reduced, they can be opportunely rescaled. To this aim, let us consider directed configurations and the system

where the sufficient statistics has been divided by an opportunely defined factor (in this case, κ ) and the symbols 
αi(κ) , αj(κ) , βi(κ) and βj(κ) stress that the solution we are searching for is a function of the parameter κ itself. 
In fact, a solution of the system above reads

as it can be proven upon substituting it back into Eq. (76) and noticing that {α∗
i }Ni=1 and {β∗

i }Ni=1 are solutions 
of the system of equations defined in (76). As our likelihood maximization problem admits a unique, global 
maximum, the prescription above allows us to easily identify it. Rescaling will be tested in order to find out if 
our algorithms are enhanced by it under some respect (e.g. accuracy or speed).

Performance testing Before commenting on the performance of the three algorithms in solving the system of 
equations defining the CReM, let us stress once more that the formulas presented so far are perfectly general, 
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Table 6.   Performance of Newton’s, quasi-Newton and the fixed-point algorithm to solve the system of 
equations defining the (undirected version of the) CReM, on a set of real-world WUNs. While Newton’s and 
the fixed-point method stop because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied, the quasi-Newton one often 
reaches the limit of 10,000 steps. The results on accuracy and speed indicate that Newton’s and the fixed-point 
method compete, outperforming the quasi-Newton one. Only the results corresponding to the best choice of 
initial conditions are reported.

Newton Quasi-Newton Fixed-point

MRDE MASE MRSE Time (s) MRDE MASE MRSE Time (s) MRDE MASE MRSE Time (s)

BLN1 ≃ 4 · 10−8 ≃ 10−9 ≃ 10−4 ≃ 0.08 ≃ 6 · 10−8 ≃ 10−4 ≃ 10−6 ≃ 5 ≃ 2 · 10−9 ≃ 10−2 ≃ 10−1 ≃ 0.01

BLN2 ≃ 2 · 10−8 ≃ 10−8 ≃ 10−5 ≃ 3.2 ≃ 9 · 10−8 ≃ 10−4 ≃ 10−1 ≃ 100 ≃ 1 · 10−9 ≃ 10−2 ≃ 10−1 ≃ 0.73

BLN3 ≃ 1 · 10−8 ≃ 10−9 ≃ 10−4 ≃ 14 ≃ 1 · 10−7 ≃ 10−4 ≃ 10−2 ≃ 388 ≃ 1 · 10−9 ≃ 10−7 ≃ 10−6 ≃ 11

BLN4 ≃ 2 · 10−8 ≃ 10−9 ≃ 10−4 ≃ 71 ≃ 5 · 10−8 ≃ 10−2 ≃ 3 ≃ 1538 ≃ 9 · 10−10 ≃ 20 ≃ 6 · 10−1 ≃ 1.3

BLN5 ≃ 2 · 10−9 ≃ 10−9 ≃ 10−4 ≃ 200 ≃ 4 · 10−7 ≃ 10−1 ≃ 6 ≃ 3633 ≃ 6 · 10−10 ≃ 10−7 ≃ 10−8 ≃ 5.7

BLN6 ≃ 2 · 10−9 ≃ 10−9 ≃ 10−4 ≃ 382 ≃ 3 · 10−8 ≃ 10−2 ≃ 3 ≃ 5980 ≃ 6 · 10−10 ≃ 10−3 ≃ 10−3 ≃ 550

BLN7 ≃ 5 · 10−8 ≃ 10−9 ≃ 10−4 ≃ 648 ≃ 4 · 10−7 ≃ 10−2 ≃ 2 ≃ 10177 ≃ 5 · 10−10 ≃ 10−2 ≃ 10−1 ≃ 36

BLN8 ≃ 5 · 10−12 ≃ 10−10 ≃ 10−6 ≃ 1188 ≃ 3 · 10−7 ≃ 10−4 ≃ 10−1 ≃ 15888 ≃ 5 · 10−10 ≃ 10−2 ≃ 10−1 ≃ 70
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working for any binary recipe one may want to employ. In what follows, we will test the CReM by posing 
fij ≡ pUBCMij  and fij ≡ pDBCMij .

To test the effectiveness of our algorithms in solving the CReM on undirected networks we have considered 
the synaptic network of the worm C. Elegans28 and the eight daily snapshots of the Bitcoin Lightning Network32; 
the directed version of the CReM has, instead, been solved on the Electronic Italian Interbank Market (e-MID) 
during the decade 2000-201042. Before commenting on the results of our numerical exercises, let us, first, describe 
how the latter ones have been carried out.

As for the discrete ‘mixed’ models, the accuracy of each algorithm in reproducing the constraints defining the 
CReM has been quantified via the Maximum Relative Degree Error and the Maximum Relative Strength Error 
metrics, whose definition is provided by Eqs. (57), (58) and (66), (67) for the undirected and the directed case, 
respectively. Analogously, the three ‘stop criteria’ for each algorithm are the same ones that we have adopted for 
the other models (and consist in a condition on the Euclidean norm of the gradient of the likelihood function, 
i.e. ||∇L (�θ)||2 ≤ 10−8 , a condition on the Euclidean norm of the vector of differences between the values of 
the parameters at subsequent iterations, i.e. ||��θ ||2 ≤ 10−8 , and a condition on the maximum number of itera-
tions, i.e. 10,000 steps).

The results about the performance of our three algorithms are reported in Tables 6 and 7. Let us start by 
commenting the results reported in Table 6 and concerning undirected networks. Generally speaking, Newton’s 
method is the most accurate one (its largest maximum errors span intervals, across all configurations, that 
amount at 10−11 � MRDENewton � 10−8 and 10−5 � MRSENewton � 10−4 ) although it scales very badly with 
the size of the network on which it is tested (the amount of time, measured in seconds, required by it to achieve 
convergence spans an interval, across all configurations, that amounts at 0.08 ≤ Treduced

Newton ≤ 1188).
The quasi-Newton method, on the other hand, is very accurate on the degrees (as already observed in the 

UBCM case) but not so accurate in reproducing the weighted constraints (its largest maximum errors span 
intervals, across all configurations, that amount at MRDEQuasi-Newton ≃ 10−7 and 10−6 � MRSEQuasi-Newton � 6 ). 
Moreover, it scales even worse than Newton’s method with the size of the network on which it is tested (the 
amount of time, measured in seconds, required by it to achieve convergence spans an interval, across all con-
figurations, that amounts at 5 ≤ TQuasi-Newton ≤ 15888).

The performance of the fixed-point recipe is, somehow, intermediate between that of Newton’s and the quasi-
Newton method. For what concerns accuracy, it is more accurate in reproducing the binary constraints than in 
reproducing the weighted ones (its largest maximum errors span intervals, across all configurations, that amount 
at MRDEfixed-point ≃ 10−9 and 10−8 � MRSEfixed-point � 10−1 ) although it outperforms Newton’s method, some-
times. For what concerns scalability, the fixed-point method is the less sensitive one to the growing size of the 
considered configurations: hence, it is also the fastest one (the amount of time, measured in seconds, required by 
it to achieve convergence spans an interval, across all configurations, that amounts at 0.01 ≤ Tfixed-point ≤ 550).

Moreover, while Newton’s and the fixed-point method stop because the condition on the norm of the likeli-
hood is satisfied, the quasi-Newton method is often found to satisfy the limit condition on the number of steps 
(i.e. it runs for 10000 steps and, then, stops).

Interestingly, the fact that the CReM cannot be reduced (at least not to a comparable extent with the one 
characterizing purely binary models) reveals a dependence on the network size of Newton’s and the quasi-Newton 
algorithms. The reason may lie in the evidence that both Newton’s and the quasi-Newton method require (some 
proxy of) the Hessian matrix of the system of equations defining the CReM to update the value of the parameters: 

Table 7.   Performance of Newton’s, quasi-Newton and the fixed-point algorithm to solve the system of 
equations defining the (directed version of the) CReM, on a set of real-world WDNs. All algorithms stop 
because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied. For what concerns accuracy, the two most accurate 
methods are Newton’s and the quasi-Newton one; for what concerns speed, the fastest method is the fixed-
point one. Only the results corresponding to the best choice of initial conditions are reported.

N L

Newton Quasi-Newton Fixed-point

MRDE MRSE Time (s) MRDE MRSE Time (s) MRDE MRSE Time (s)

e-MID 00 196 10618 ≃ 3 · 10−7 ≃ 2 · 10−10 ≃ 0.9 ≃ 5 · 10−7 ≃ 2 · 10−6 ≃ 0.9 ≃ 4 · 10−14 ≃ 8 · 10−5 ≃ 0.09

e-MID 01 185 8951 ≃ 3 · 10−15 ≃ 1 · 10−10 ≃ 0.9 ≃ 7 · 10−10 ≃ 5 · 10−6 ≃ 1 ≃ 7 · 10−9 ≃ 1 · 10−4 ≃ 0.12

e-MID 02 177 7252 ≃ 6 · 10−9 ≃ 2 · 10−13 ≃ 0.7 ≃ 3 · 10−8 ≃ 5 · 10−6 ≃ 1 ≃ 8 · 10−6 ≃ 3 · 10−1 ≃ 0.08

e-MID 03 179 6814 ≃ 1 · 10−12 ≃ 2 · 10−10 ≃ 0.8 ≃ 3 · 10−9 ≃ 3 · 10−3 ≃ 0.7 ≃ 4 · 10−15 ≃ 8 · 10−4 ≃ 0.1

e-MID 04 180 6136 ≃ 9 · 10−10 ≃ 2 · 10−7 ≃ 0.9 ≃ 5 · 10−15 ≃ 8 · 10−5 ≃ 0.8 ≃ 5 · 10−9 ≃ 6 · 10−4 ≃ 0.13

e-MID 05 176 6203 ≃ 3 · 10−10 ≃ 5 · 10−9 ≃ 0.7 ≃ 2 · 10−14 ≃ 2 · 10−3 ≃ 0.7 ≃ 5 · 10−9 ≃ 1 · 10−3 ≃ 0.2

e-MID 06 177 6132 ≃ 1 · 10−10 ≃ 7 · 10−12 ≃ 0.7 ≃ 2 · 10−13 ≃ 3 · 10−3 ≃ 0.8 ≃ 8 · 10−11 ≃ 5 · 10−1 ≃ 0.14

e-MID 07 178 6330 ≃ 3 · 10−6 ≃ 3 · 10−13 ≃ 1 ≃ 1 · 10−7 ≃ 8 · 10−6 ≃ 1.2 ≃ 7 · 10−12 ≃ 7 · 10−1 ≃ 0.14

e-MID 08 173 4767 ≃ 3 · 10−10 ≃ 8 · 10−13 ≃ 0.8 ≃ 1 · 10−9 ≃ 1 · 10−3 ≃ 0.7 ≃ 3 · 10−9 ≃ 8 · 10−1 ≃ 0.07

e-MID 09 156 2961 ≃ 4 · 10−11 ≃ 3 · 10−12 ≃ 0.6 ≃ 1 · 10−7 ≃ 9 · 10−5 ≃ 0.7 ≃ 8 · 10−10 ≃ 2 · 10−3 ≃ 0.11

e-MID 10 135 2743 ≃ 2 · 10−11 ≃ 2 · 10−9 ≃ 0.7 ≃ 7 · 10−13 ≃ 5 · 10−5 ≃ 0.5 ≃ 5 · 10−9 ≃ 2 · 10−1 ≃ 0.05
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as already observed, the order of the latter - which is O(N2) for Newton’s method and O(N) for the quasi-Newton 
one - can make its calculation (very) time demanding.

Let us now move to comment on the performance of our algorithms when applied to solve the directed ver-
sion of the CReM (see Table 7). Overall, all methods perform much better than in the undirected case, stopping 
because the condition on the norm of the likelihood is satisfied.

In fact, all of them are very accurate in reproducing the purely binary constraints, their largest maxi-
mum errors spanning intervals, across all configurations, that amount at 10−12 � MRDENewton � 10−6 , 
10−14 � MRDEQuasi-Newton � 10−6 and 10−15 � MRDEfixed-point � 10−8 ; for what concerns the weighted 
constraints, instead, the two most accurate methods are Newton’s and the quasi-Newton one, their largest 
maximum errors spanning intervals, across all configurations, that amount at 10−13 � MRSENewton � 10−7 
and 10−6 � MRSEQuasi-Newton � 10−3 (the fixed-point method performs worse than them, since 
10−3 � MRSEfixed-point � 10−1).

For what concerns speed, the amount of time, measured in seconds, required by Newton’s, the quasi-Newton 
and the fixed-point algorithms to achieve convergence spans an interval, across all configurations, that amounts 
at 0.6 ≤ Treduced

Newton ≤ 1 , 0.5 ≤ Treduced
Quasi-Newton ≤ 1.2 and 0.05 ≤ Treduced

fixed-point ≤ 0.2 , respectively. Hence, all methods 
are also very fast - the fixed-point being systematically the fastest one.

As already stressed above, the fact that the e-MID number of nodes remains approximately constant through-
out the considered time interval masks the strong dependence of the performance of Newton’s and the quasi-
Newton method on the network size.

Lastly, while rescaling the system of equations defining the CReM improves neither the accuracy nor the 
speed of any of the three algorithms considered here, differences in their speed of convergence, caused by the 
choice of a particular set of initial conditions, are observable: the ‘uniform’ prescription outperforms the other 
ones (for both the undirected and the directed version of the CReM).

As usual, let us comment on the algorithm to sample the CReM ensemble - for the sake of simplicity, on the 
undirected cae. As for the UECM it can be compactly achieved by implementing a two-step procedure, the only 
difference lying in the functional form of the distribution from which weights are sampled. Given a specific pair 
of vertices i, j (with i < j ), the first link can be drawn from a Bernoulli distribution with probability pUBCMij  while 
the remaining (w − 1) ones can be drawn from an exponential distribution whose parameter reads θi + θj . The 
computational complexity of the sampling process is, again, O(N2) and the pseudo-code for explicitly sampling 
the CReM ensemble is summed up by Algorithm 6.

Discussion
The exercises carried out so far have highlighted a number of (stylized) facts concerning the performance of the 
three algorithms tested: in what follows, we will briefly sum them up.

Newton’s method Overall, Newton’s method is very accurate - often, the most accurate one - in reproducing 
both the binary and the weighted constraints; moreover, it represent the only viable alternative when the most 
complicated models are considered (i.e. the UECM and the DECM, respectively defined by a system of 2N and 
4N coupled, non-linear equations). However, the time required to run Newton’s method on a given model seems 
to be quite dependent on the network size, especially whenever the corresponding system of equations cannot 
be reduced - see the case of the undirected CReM, run on the Bitcoin Lightning Network. Since one of the rea-
sons affecting the bad scaling of Newton’s method with the network size is the evaluation of the Hessian matrix 
defining a given model, this algorithm has to be preferred for largely reducible networks.

Quasi-Newton method For all the networks considered here, the quasi-Newton method we have implemented 
is nothing else than the diagonal version of the traditional Newton’s method. Even if this choice greatly reduces 
the number of entries of the Hessian matrix which are needed (i.e. just N elements for the undirected version of 
the CReM, 2N elements for the UECM and the directed version of the CReM and 4N elements for the DECM) 
dimensionality may still represent an issue to achieve fast convergence. Moreover, since the diagonal approxima-
tion of the Hessian matrix is not necessarily always a good one, the quasi-Newton method may require more time 
than Newton’s one to achieve the same level of accuracy in reproducing the constraints. However, when such 
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an approximation is a good one, the ‘regime’ in which the quasi-Newton method outperforms the competitors 
seems to be the one of small, non-reducible networks (e.g. see the results concerning the DBCM run on the 
WTW) - althogh, in cases like these, Newton’s method may still be a strong competitor.

Fixed-point method From a purely theoretical point of view, the fixed-point recipe is the fastest one, since the 
time required to evaluate the generic n-th step is (only) due to the evaluation of the model-specific map at the 
(n− 1)-th iteration. Strictly speaking, however, this holds true for a single step: if the number of steps required 
for convergence is large, in fact, the total amount of time required by the fixed-point method can be large as 
well. Overall, however, this algorithm has to be preferred for large, non-reducible networks: this is the case 
of the (undirected version of the) CReM, run on the 8-th snapshot of the Bitcoin Lightning Network (i.e. day 
17-07-19) and requiring a little more than one minute to achieve an accuracy of MRDEfixed-point � 10−10 and 
MRSEfixed-point ≃ 10−1 ; naturally, the method is not as accurate as Newton’s one, for which MRDENewton � 10−12 
and MRSENewton ≃ 10−6 but is much faster as Newton’s algorithm requires ≃ 1188 seconds to converge.

The ‘NEMTROPY’ Python package As an additional result, we release a comprehensive package, coded in 
Python, that implements the three aforementioned algorithms on all the ERGMs considered in the present work. 
Its name is ‘NEMTROPY’, an acronym standing for ‘Network Entropy Maximization: a Toolbox Running On 
Python’, and is freely downloadable at the following URL: https://pypi.org/project/NEMtropy/.

Alternative techniques to improve accuracy and speed have been tested as well, as the one of coupling two 
of the algorithms considered above. In particular, we have tried to solve the (undirected version of the) CReM 
by running the fixed-point algorithm and using the solution of the latter as input for the quasi-Newton method. 
The results are reported in Table 8: as they clearly show, the coupled algorithm is indeed more accurate that the 
single methods composing it and much faster than the quasi-Newton one (for some snapshots, more accurate 
and even faster than Newton’s method). Techniques like these are, in general, useful to individuate better initial 
conditions than the completely random ones: a first run of the fastest method may be, in fact, useful to direct the 
most accurate algorithm towards the (best) solution. This is indeed the case, upon considering that the quasi-
Newton method, now, stops because the condition ||∇L (�θ)||2 ≤ 10−8 is satisfied - and not for having reached 
the limit of 10000 steps.

We would like to end the discussion about the results presented in this contribution by explicitly mention-
ing a circumstance that is frequently met when studying economic and financial networks. When considering 
systems like these, the information about the number of neighbours of each node is typically not accessible: as a 
consequence, the models constraining both binary and weighted information cannot be employed as they have 
presented in this contribution.

Alternatives exist and rest upon the existence of some kind of relationship between binary and weighted 
constraints. In the case of undirected networks, such a relationship is usually written as

and establishes that the Lagrange multipliers controlling for the degrees are linearly proportional to the strengths. 
If this is the case (or a valid reason exists for this to be the case), the expression for the probability that any two 
nodes are connected becomes

the acronym standing for degree-corrected Gravity Model44. The (only) unknown parameter z must be numeri-
cally estimated by employing some kind of topological information; this is usually represented by (a proxy of) 
the network link density, used to instantiate the (only) likelihood condition

(78)e−θi = √
zsi

(79)pdcGMij = zsisj

1+ zsisj
∀ i < j

Table 8.   Performance of the algorithm coupling fixed-point and quasi-Newton to solve the system of 
equations defining the (undirected version of the) CReM, on a set of real-world WUNs. The algorithm stops 
because the condition ||∇L (�θ)||2 ≤ 10

−8 is satisfied. As the results reveal, it is more accurate that the single 
methods composing it and much faster than the quasi-Newton one - for some snapshots, more accurate and 
even faster than Newton’s method. Only the results corresponding to the best choice of initial conditions are 
reported.

Fixed-point + Quasi-Newton

MRDE MADE MRSE Time (s)

BLN 24-01-18 ≃ 2 · 10−9 ≃ 1.1 · 10−7 ≃ 1 · 10−5 ≃ 0.1

BLN 25-02-18 ≃ 1.3 · 10−9 ≃ 1.5 · 10−6 ≃ 1 · 10−5 ≃ 1.6

BLN 30-03-18 ≃ 1 · 10−9 ≃ 1.3 · 10−7 ≃ 7.8 · 10−7 ≃ 2.2

BLN 13-07-18 ≃ 7.5 · 10−10 ≃ 4.2 · 10−4 ≃ 5.3 · 10−5 ≃ 200

BLN 19-12-18 ≃ 7.5 · 10−10 ≃ 1.7 · 10−8 ≃ 1.1 · 10−9 ≃ 7

BLN 30-01-19 ≃ 6.2 · 10−10 ≃ 1.8 · 10−5 ≃ 4.1 · 10−6 ≃ 614

BLN 01-03-19 ≃ 5.7 · 10−10 ≃ 5.4 · 10−6 ≃ 9.1 · 10−6 ≃ 961

BLN 17-07-19 ≃ 4.9 · 10−10 ≃ 1.3 · 10−3 ≃ 3.5 · 10−3 ≃ 3350
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once the equation above has been solved, the set of coefficients {pdcGMij }Ni,j=1 can be either employed 1) to, first, 
estimate the degrees and, then, solve the UECM45 or 2) within the CReM framework, via the identification 
fij ≡ pdcGMij  , to estimate the parameters controlling for the weighted constraints.

Conclusions
The definition and correct implementation of null models is a crucial issue in network analysis: the present 
contribution focuses on (a subset of) the ones constituting the so-called ERG framework - a choice driven by 
the evidence that they are the most commonly employed ones for tasks as different as network reconstruction, 
pattern detection, graph enumeration. The optimization of the likelihood function associated to them is, however, 
still problematic since it involves the resolution of large systems of coupled, non-linear equations.

Here, we have implemented and compared three algorithms for numerical optimization, with the aim of find-
ing the one performing best (i.e. being both accurate and fast) for each model. What emerges from our results 
is that there is no a unique method which is both accurate and fast for all models on all configurations: under 
this respect, performance is just a trade-off between accuracy and speed. However, some general conclusions 
can still be drawn.

Newton’s method is the one requiring the largest amount of information per step (in fact, the entire Hessian 
matrix has to be evaluated at each iteration): hence, it is the most accurate one but, for the same reason, often 
the one characterized by the slowest performance. A major drawback of Newton’s method is that of scaling very 
badly with the network size.

At the opposite extreme lies the fixed-point algorithm, theoretically the fastest one but, often, among the 
least accurate ones (at least, for what concerns the weighted constraints); the performance if the quasi-Newton 
method often lies in-between the performances of the two methods above, by achieving an accuracy that is larger 
than the one achieved by the fixed-point algorithm, requiring less time that the one needed by Newton’s method.

Overall, while Newton’s method seems to perform best on either relatively small or greatly reducible networks, 
the fixed-point method must be preferred for large, non-reducible configurations. Deviations from this (over 
simplified) picture are, however, clearly visible.

Future work concerns the application of the aforementioned three numerical recipes to the models that have 
not found place here. For what concerns the set of purely binary constraints, the ones defining the Reciprocal 
Binary Configuration Model (RBCM)15 deserve to be mentioned.

For what concerns the ‘mixed’ constraints, instead, the CReM framework is versatile enough to accommodate 
a quite large number of variants. In the present work, we have ‘limited’ ourselves to combine the UBCM and the 
DBCM with (conditional) distributions of continuous weights: a first, obvious, generalization is that of consider-
ing the discrete versions of such models, defined by the positions

with fij ≡ pUBCMij  and

with fij ≡ pDBCMij  ; a second one concerns the continuous versions of the UECM and of the DECM, respectively 
defined by the positions19

and

Appendix A: computing the Hessian matrix
As we showed in the main text, the Hessian matrix of our likelihood function is ‘minus’ the covariance matrix 
of the constraints, i.e.

interestingly, a variety of alternative methods exists to explicitly calculate the generic entry Hij , i.e. 1) taking 
the second derivatives of the likelihood function characterizing the method under analysis, 2) taking the first 

(80)
L(A∗) = �L� =

N
∑

i=1

N
∑

j = 1
(j < i)

zsisj

1+ zsisj
;

(81)�wij�undd-CReM = fij

1− e−βj−βi

(82)�wij�dird-CReM = fij

1− e−γj−δi

(83)pUECMij = e−αi−αj

βi + βj + e−αi−αj

(84)pDECMij = e−αi−βj

γi + δj + e−αi−βj
.

(85)Hij =
∂2L (�θ)
∂θi∂θj

= −Cov[Ci ,Cj], i, j = 1 . . .M;



28

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15227  | https://doi.org/10.1038/s41598-021-93830-4

www.nature.com/scientificreports/

derivatives of the expectation values of the constraints characterizing the method under analysis, 3) calculating 
the moments of the pair-specific probability distributions characterizing each method.

UBCM: binary undirected graphs with given degree sequence.  The Hessian matrix for the UBCM 
is an N × N symmetric table with entries reading

where pij ≡ pUBCMij  . Notice that Var[ki] =
∑N

j = 1
(j �= i)

Cov[ki , kj], ∀ i.

DBCM: binary directed graphs with given in‑degree and out‑degree sequences.  The Hessian 
matrix for the DBCM is a 2N × 2N symmetric table that can be further subdivided into four N × N blocks 
whose entries read

while Cov[kouti , kini ] = Cov[kouti , koutj ] = Cov[kini , kinj ] = 0 and pij ≡ pDBCMij .
Notice that the Hessian matrix of the BiCM mimicks the DBCM one, the only difference being that 

the probability coefficients are now indexed by i and α : for example, in the BiCM case, one has that 
Cov[ki , dα] = piα(1− piα) , ∀ i,α.

UECM: weighted undirected graphs with given strengths and degrees.  The Hessian matrix for 
the UECM is a 2N × 2N symmetric table that can be further subdivided into four blocks (each of which with 
dimensions N × N ). In order to save space, the expressions indexed by the single subscript i will be assumed as 
being valid ∀ i , while the ones indexed by a double subscript i, j will be assumed as being valid ∀ i �= j . The entries 
of the diagonal blocks read

and

where pij ≡ pUECMij  . On the other hand, the entries of the off-diagonal blocks read

with pij ≡ pUECMij .

DECM: weighted directed graphs with given strengths and degrees.  The Hessian matrix for 
the DECM is a 4N × 4N symmetric table that can be further subdivided into four blocks (each of which with 
dimensions N × N ). As for the UECM, in order to save space, the expressions indexed by the single subscript i 
will be assumed as being valid ∀ i , while the ones indexed by a double subscript i, j will be assumed as being valid 
∀ i �= j . The entries of the diagonal blocks read

(86)HUBCM =







Var[ki] =
�N

j = 1
(j �= i)

pij(1− pij), ∀ i

Cov[ki , kj] = pij(1− pij), ∀ i �= j

(87)HDBCM =







































Var[kouti ] = �N

j = 1
(j �= i)

pij(1− pij), ∀ i

Var[kini ] =
�N

j = 1
(j �= i)

pji(1− pji), ∀ i

Cov[kouti , kinj ] = pij(1− pij), ∀ i �= j

Cov[koutj , kini ] = pji(1− pji), ∀ i �= j

(88)HUECM =















∂2LUECM

∂α2i
= Var[ki] =

�N

j = 1
(j �= i)

pij(1− pij)

∂2LUECM

∂αiαj
= Cov[ki , kj] = pij(1− pij)

(89)HUECM =



















∂2LUECM

∂β2
i

= Var[si] =
�N

j = 1
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(1−e
−βi−βj )2

∂2LUECM

∂βiβj
= Cov[si , sj] = pij(1−pij+e

−βi−βj )

(1−e
−βi−βj )2

(90)HUECM =















∂2LUECM

∂αi∂βi
= Cov[ki , si] =

�N

j = 1
(j �= i)

pij(1−pij)

1−e
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∂2LUECM

∂αi∂βj
= Cov[ki , sj] = pij(1−pij)

1−e
−βi−βj
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and

and

and

where pij ≡ pDECMij  . On the other hand, the entries of the off-diagonal blocks read

and

and

and

and

and

with pij ≡ pDECMij .

Two‑step models for undirected and directed networks.  The Hessian matrix for the undirected 
two-step model considered here is an N × N symmetric table reading

(91)HDECM =















∂2LDECM

∂α2i
= Var[kouti ] = �N

j = 1
(j �= i)

pij(1− pij)

∂2LDECM

∂αiαj
= Cov[kouti , koutj ] = 0

(92)HDECM =















∂2LDECM

∂β2
i

= Var[kini ] =
�N

j = 1
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pji(1− pji)

∂2LDECM

∂βiβj
= Cov[kini , kinj ] = 0

(93)HDECM =















∂2LDECM

∂γ 2
i

= Var[souti ] = �N

j = 1
(j �= i)

pij(1−pij+e
−γi−δj )

(1−e
−γi−δj )2

∂2LDECM

∂γiγj
= Cov[souti , soutj ] = 0
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
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
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∂2LDECM

∂αi∂βj
= Cov[kouti , kinj ] = pij(1− pij)

(96)HDECM =















∂2LDECM

∂αi∂γi
= Cov[kouti , souti ] = �N

j = 1
(j �= i)

pij(1−pij)

1−e
−γi−δj

∂2LDECM

∂αi∂γj
= Cov[kouti , soutj ] = 0

(97)HDECM =







∂2LDECM

∂αi∂δi
= Cov[kouti , sini ] = 0

∂2LDECM

∂αi∂δj
= Cov[kouti , sinj ] =

pij(1−pij)

1−e
−γi−δj

(98)HDECM =







∂2LDECM

∂βi∂γi
= Cov[kini , souti ] = 0

∂2LDECM

∂βi∂γj
= Cov[kini , soutj ] = pji(1−pji)

1−e
−γj−δi

(99)HDECM =















∂2LDECM

∂βi∂δi
= Cov[kini , sini ] =

�N

j = 1
(j �= i)

pji(1−pji)

1−e
−γj−δi

∂2LDECM

∂βi∂δj
= Cov[kini , sinj ] = 0

(100)HDECM =







∂2LDECM

∂γi∂δi
= Cov[souti , sini ] = 0

∂2LDECM

∂γi∂δj
= Cov[souti , sinj ] =

pij(1−pij+e
−γi−δj )

(1−e
−γi−δj )2



30

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15227  | https://doi.org/10.1038/s41598-021-93830-4

www.nature.com/scientificreports/

where fij is given. In the directed case, instead, the Hessian matrix for the two-step model considered here is a 
2N × 2N symmetric table that can be further subdivided into four N × N blocks whose entries read

while Cov[souti , sini ] = Cov[souti , soutj ] = Cov[sini , sinj ] = 0 and fij is given.

Appendix B: a note on the change of variables
In all methods we will considered in the present work, the variable θi appears in the optimality conditions only 
through negative exponential functions: it is therefore tempting to perform the change of variable xi ≡ e−θi . 
Although this is often performed in the literature, one cannot guarantee that the new optimization problem 
remains convex: in fact, simple examples can be provided for which convexity is lost. This has several conse-
quences, e.g. (1) convergence to the global maximum is no longer guaranteed (since the existence of a global 
maximum is no longer guaranteed as well), (2) extra-care is needed to guarantee that the Hessian matrix H 
employed in our algorithms is negative definite. While problem (2) introduces additional complexity only for 
Newton’s method, problem (1) is more serious from a theoretical point of view.

Let us now address problem (1) in more detail. First, it is possible to prove that any stationary point for L (�x) 
satisfies the optimality conditions for L (�θ) as well. In fact, the application of the ‘chain rule’ leads to recover 
the set of relationships

notice that requiring ∇θiL (�θ) = 0 leads to require that either ∇xiL (�x) = 0 or xi = 0 . As the second eventuality 
precisely identifies isolated nodes (i.e. the nodes for which the constraint Ci(G

∗) , controlled by the multiplier 
θi , is 0), one can get rid of it by explicitly removing the corresponding addenda from the likelihood function.

For what concerns convexity, let us explicitly calculate the Hessian matrix for the set of variables {xi}Mi=1 . In 
formulas,

according to the ‘chain rule’ for second-order derivatives. More compactly,

where I is the identity matrix, the generic entry of the matrix e� reads 
[

e�
]

ij
≡ eθi+θj , 

∀ i, j and the symbol ‘ ◦ ’ indicates the Hadamard (i.e. element-wise) product of 
matrices. In general, the expression above defines an indefinite matrix, i.e. a neither 
positive nor negative (semi)definite one.Appendix C: fixed point method 
in the multivariate case
Equation (21) can be written as

for the sake of illustration, let us discuss it for the UBCM case. In this particular case, the set of equations above 
can be rewritten as

(101)Hund
CReM =















Var[si] =
�N

j = 1
(j �= i)

fij
(θi+θj)2

, ∀ i

Cov[si , sj] = fij
(θi+θj)2

, ∀ i �= j

(102)Hdir
CReM



































Var[souti ] = �N

j = 1
(j �= i)

fij
(αi+βj)2

, ∀ i

Var[sini ] =
�N

j = 1
(j �= i)

fji
(αj+βi)2

, ∀ i

Cov[souti , sinj ] =
fij

(αi+βj)2
, ∀ i �= j

(103)∂L (�θ)
∂θi

= ∂xi

∂θi

∂L (�x)
∂xi

= −xi
∂L (�x)
∂xi

, i = 1 . . .M;

(104)

∂2L (�x)
∂x2i

=e2θi

(

∂2L (�θ)
∂θ2i

+ ∂L (�θ)
∂θi

)

, i = 1 . . .M,

∂2L (�x)
∂xi∂xj

=eθi+θj

(

∂2L (�θ)
∂θi∂θj

)

, ∀ i �= j

(105)HL (�x) = e� ◦
(

−Cov[Ci ,Cj] + I · ∇�θL (�θ)
)

(106)θ
(n)
i = Gi(�θ(n−1)), i = 1 . . .N;
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Since all components of the map G are continuous on RN , the map itself is continuous on RN . Hence, a fixed 
point exists. Let us now consider its Jacobian matrix and check the magnitude of its elements. In the UBCM 
case, one finds that

and

Let us notice that (1) each element of the Jacobian matrix is a continuous function RN → R and that (2) the 
following relationships hold

unfortunately, however, when multivariate functions are considered, the set of conditions above is not enough 
to ensure convergence to the fixed point for any choice of the initial value of the parameters. What is needed to 
be checked is the condition ||JG(�θ)|| < 1 , with J indicating the Jacobian of the map (i.e. the matrix of the first, 
partial derivatives above) and ||.|| any natural matrix norm: the validity of such a condition has been numeri-
cally verified case by case.
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