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The impact of a closed‑loop 
thalamocortical model 
on the spatiotemporal dynamics 
of cortical and thalamic traveling 
waves
Sayak Bhattacharya 1, Matthieu B. L. Cauchois2, Pablo A. Iglesias 1* & Zhe Sage Chen 3*

Propagation of activity in spatially structured neuronal networks has been observed in awake, 
anesthetized, and sleeping brains. How these wave patterns emerge and organize across brain 
structures, and how network connectivity affects spatiotemporal neural activity remains unclear. 
Here, we develop a computational model of a two‑dimensional thalamocortical network, which 
gives rise to emergent traveling waves similar to those observed experimentally. We illustrate 
how spontaneous and evoked oscillatory activity in space and time emerge using a closed‑loop 
thalamocortical architecture, sustaining smooth waves in the cortex and staggered waves in the 
thalamus. We further show that intracortical and thalamocortical network connectivity, cortical 
excitation/inhibition balance, and thalamocortical or corticothalamic delay can independently or 
jointly change the spatiotemporal patterns (radial, planar and rotating waves) and characteristics 
(speed, direction, and frequency) of cortical and thalamic traveling waves. Computer simulations 
predict that increased thalamic inhibition induces slower cortical frequencies and that enhanced 
cortical excitation increases traveling wave speed and frequency. Overall, our results provide insight 
into the genesis and sustainability of thalamocortical spatiotemporal patterns, showing how simple 
synaptic alterations cause varied spontaneous and evoked wave patterns. Our model and simulations 
highlight the need for spatially spread neural recordings to uncover critical circuit mechanisms for 
brain functions.

Oscillatory neural activities in the brain that propagate across recording electrodes in space are called traveling 
waves. To date,macroscopic or mesoscopic traveling waves, interpreted as spatiotemporal neural dynamics, 
have been reported with various oscillatory frequencies (e.g., theta, alpha, beta, and gamma), spatial coverage 
(whole brain or local circuits), and modalities (e.g., slice physiology, multielectrode array, high-density EEG or 
ECoG, and voltage-sensitive dye optical imaging)1–6. As either neuronal spiking activity or field potentials from 
extracellular recordings, propagating waves have been found in a wide range of cortical, subcortical, and tha-
lamic structures, and have been shown to be modulated in a spontaneous or task-dependent manner at in vivo 
or in vitro brain  states7–10. However, investigating mesoscopic traveling wave patterns based on simultaneous 
multisite multielectrode-array recordings remains a challenge. Moreover, how these spatiotemporal patterns 
emerge because of intra- or inter-network connectivity of local neural circuits is still unclear. Biologically-inspired 
computational models, tightly linked to experimental data, provide a complementary approach to investigate 
these questions and offer new experimental predictions on the circuit mechanism of wave  propagation11–15.

The thalamocortical network and thalamocortical oscillations play important roles in sensory processing, 
memory consolidation, and multisensory and sensorimotor  integration16,17. Rhythmic or synchronous neural 
activity across various frequency bands has been observed in the thalamocortical  system16. Propagating wave 
patterns have also been found in in vitro and in vivo recordings of thalamic and cortical areas at different brain 

OPEN

1Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, 
Baltimore, MD 21218, USA. 2Department of Mechanical Engineering, Whiting School of Engineering, Johns 
Hopkins University, Baltimore, MD 21218, USA. 3Department of Psychiatry, Department of Neuroscience and 
Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, 
USA. *email: pi@jhu.edu; zhe.chen@nyulangone.org

http://orcid.org/0000-0002-0957-7530
http://orcid.org/0000-0002-0840-155X
http://orcid.org/0000-0002-6483-6056
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93618-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14359  | https://doi.org/10.1038/s41598-021-93618-6

www.nature.com/scientificreports/

 states4. In contrast to continuous and smooth monosynaptic traveling waves observed in the cerebral cortex 
(CX), traveling waves often appear discontinuous (polysynaptic “lurching wave”) in the thalamus (TH), which 
involves the reciprocal interaction of excitatory thalamocortical (TC) and inhibitory GABAergic reticular nuclei 
(RE)  cells18–20. In computational models computational models, traveling waves have been previously produced 
in an isolated thalamus or cortex structure, or in a one-dimensional (1D) thalamocortical  system18,21. Never-
theless, the precise nature of how the complete thalamocortical structure, operated as a closed-loop system, 
determines traveling wave patterns is not completely understood. Additionally, whether the traveling patterns 
observed in a two-dimensional (2D) network may be preserved in the 1D projection remains an open ques-
tion. To date, a wide range of models have been developed for traveling waves or spatiotemporal neural activ-
ity in neuronal  networks20,22–25, neural  fields26–29, networks of coupled  oscillators30,31, and the thalamocortical 
 network32. The modeling scale of network size varied between hundreds and tens of thousands of  neurons33. 
The generation of diverse wave patterns—similar to those seen in experiments—mostly relied on neural field 
continuum  approximations34.

The different layers of the thalamocortical system serve as excitable systems capable of sustaining diverse wave 
patterns. Previous studies have reported that controlling different parameters of an excitable system, includ-
ing time-scale separation (the delay between activator and inhibitor rise-times), space-scale separation (faster 
spreading inhibitor than the activator), and threshold (excitation-inhibition balance) can have drastic effects 
on spatiotemporal  patterns35. A multi-layered neural circuit, thus, provides an excellent canvas for such pattern 
generation. For example, the space-scale separation may simply amount to inhibition from one cortical layer that 
spreads faster than another through divergent  connections32,36. Similarly, time-scale separation can be equivalent 
to the conductions delay between long-range connections. Each neuron has an activation threshold, which can 
be easily altered by changing the balance between excitatory and inhibitory synaptic strengths. Thus, by indi-
rectly manipulating these system parameters, it may be possible to generate and control a wide range of complex 
spatiotemporal wave patterns, such as the spiral waves during  sleep5, the repeating planar waves during visual 
responses/perception  tasks10,37, or the bimodal waves propagating in opposite directions during motor  tasks3,6.

Here, we develop a computationally efficient network model of the 2D topographic thalamocortical structure 
that produces dynamic spatiotemporal patterns from the closed-loop interaction of a total of 10,800 cortical and 
thalamic cells. While our proposed network is a reduced version of realistic thalamocortical circuits simplifying 
several biological details, it focuses on other important factors, such as the intracortical connectivity, excitation/
inhibition (E/I) imbalance, thalamocortical (or corticothalamic) delay, and their impact on the spatiotemporal 
traveling waves. Our model demonstrates that rich spatiotemporal patterns can emerge independently or jointly 
from the interactions of these contributing factors. Moreover, our model shows that spatiotemporal patterns and 
characteristics that are commonly observed in different brain states and behavioral tasks can be interchange-
ably controlled through alterations in the aforementioned model parameters, even without the use of complex 
neural-field  approximations34. Furthermore, by modulating specific intracortical or thalamocortical connection 
weights and thalamocortical or corticothalamic delay parameters, the model produces a diverse range of wave 
patterns that may be indiscernible without two-dimensional (2D) recording techniques.

Results
A closed‑loop thalamocortical model architecture sustains propagating waves and oscilla‑
tions. We developed a model of the thalamocortical network consisting of one layer representing cells from 
the cortex (CX) and two layers of the thalamus: the excitatory thalamocortical relay cells (TC) and the inhibitory 
thalamic reticular nuclei  cells18 (RE) (“Methods”; Fig. 1a). Each layer consists of a 60 × 60 two-dimensional (2D) 
array of neurons (Fig. 1b). While it is well known that the cortex is a multi-layered structure with complex and 
potentially long-range  interconnections32, for the sake of simplicity we collapsed the multiple laminar structure 
into a single-layer structure. In each layer, every neuron is modeled using a set of differential equations repre-
senting a two-state excitable system (Fig. 1c). One state, the voltage term (v), has self-enhancing positive feedback 
and is analogous to the neuron’s membrane potential. The other is the gating variable ( η ) which provides negative 
feedback and brings the voltage back to resting equilibrium. This two-state system has an activation threshold 
(owing to a bifurcation point close to the equilibrium, see **“Methods”) which when crossed generates a spike in 
activity (Supplementary Fig. S1a). This threshold depends on the system parameters and can also be modulated 
with external inputs (“Methods”). The two-state dynamical system approximates a spiking neuron by assuming 
instantaneous activation of the sodium current (contributing to the fast voltage term) and a slower potassium 
inactivation (gating variable)38. The differential equations and the parameter values (presented in Tables 1 and 2) 
of the thalamic and cortical neurons were chosen to make each neuron excitable but differ slightly based on the 
frequency of firings that each type of neuron is known to  generate38 (“Methods”).

Additionally, each neuron has a synaptic output equation that describes its effect on its neighbors, which can 
be either excitatory or inhibitory, depending on its effect on the post-synaptic neurons (green or red, respec-
tively, in Fig. 1d). We assume that every neuron in TC is excitatory and that every neuron of RE is inhibitory. 
In contrast, neurons in the cortex layer are randomly chosen from both classes to keep the composition at 80% 
excitatory and 20%  inhibitory33 (Fig. 1e). Every neuron of the CX could be connected to four different neurons 
(a fully connected layer). The overall CX connectivity was varied for different simulations. In simulations when 
the connectivity was less than 100%, random connections were removed until the desired level was reached 
(“Methods”, Fig. 1e).

In addition to connections between nearest-neighbor neurons in each layer, neurons across different layers 
are also connected. The cortex and the thalamus are connected through bottom-up (feedback) and top-down 
(feedforward)  connections39 (Fig. 1b). Within the thalamic layers, the RE and TC neurons are connected recipro-
cally such that activity progresses through the layers via mutual recruitment of  neurons18. Specifically, neurons 
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from the RE layer inhibit TC neurons which cause a rebound  spike18 after a delay. The TC neurons then excite 
RE neurons via axon collaterals, generating further post-inhibitory rebound spikes, thus repeating the process. 
We assume that 10% of excitatory (TC) and inhibitory (RE) neurons affect the cortex directly, and 1% of the 
cortical neuron (excitatory) feedback to both thalamic layers—thus closing the thalamocortical loop (Fig. 1e).

In vitro experiments have shown that cortical waves are smooth, while thalamic waves are staggered in  time4. 
To validate the model, we first examined traveling wave patterns in a simplified open-loop setting (i.e., without 
CX → RE and CX → TC connections, assuming nearly fully connected or ∼99% intracortical connections, 99% 
excitatory neurons). Our 2D thalamocortical model produced traveling waves in both the cortex and thalamus 
(Fig. 2a). In a 2D graphical illustration, the dynamic evolution of traveling waves was visible in time (from left 
to right panels, with arrows indicating the wave direction). Furthermore, the mutual recruitment of excitatory 
spikes and delayed rebound spikes created the lurching wave phenotype in the  thalamus19, resulting in periodic 
gaps of temporal activity (Fig. 2b), in direct contrast to the smooth cortical wave. The traveling wave initiated 
at a specific location in the 2D topological space, then the wave pattern spread in space (see 1D projection in 
Fig. 2a). Next, we examined traveling waves in a closed-loop setting (i.e., with CX → RE and CX → TC con-
nections restored), based on a similar connectivity setup. Our model produced sustained oscillations in both 
the thalamus and cortex (Supplementary Video S1). Notably, this was a deterministic simulation (changing the 
initial condition of a neuron in the cortical sheet) without any stochastic input to cortical neurons. Interest-
ingly, periodic oscillations were sustained because of the closed-loop feedback and feedforward connections, 
although the system operating condition was away from the bifurcation point (Supplementary Fig. 1e). That is, 
the emergent oscillations were not the result of a limit cycle due to the instability of the  equilibrium40, but rather 

Table 1.  A tabular summary of computer simulation setup and parameters for the three-layer thalamocortical 
system.

Parameter Description Setup

N Number of neurons 60× 60

ip Inhibitory synapse parameter 5

kn Intra-cortical connectivity weight 16.2

(s1, t1) Synapse equation parameters (10, 0.01)

(a1, a2, a3, a4, a5) Voltage equation parameters (0.167, 16.67, 167, 1.2, 1.47)

(c1, c2) Gating equation (Type-3) parameters (0.05, 1.5)

(d1, d2, d3, d4) Gating equation (Type-1) parameters (0.09, 0.6, 0.3, 0.18)

wRE- TC Weight from RE to TC 3

wTC- RE Weight from TC to RE 12

wRE- CX Weight from RE to CX 0.02

wTC- CX Weight from TC to CX 25

wCX- TC Weight from CX to TC 0.75

wCX- RE Weight from CX to RE 7.5

wE Weights for excitatory neurons in CX 3

wI Weights for inhibitory neurons in CX 6

Msparse Bnary sparsity matrix for CX-RE/CX-TC connections 1% connected (random)

Wsparse Binary sparsity matrix for RE-CX/TC-CX connections 10% connected (random);

Xsparse Binary sparsity matrix for intra-cortical connections symmetric

CTH Binary sparsity matrix for 4-type connectivity

µ , σ Gaussian noise parameters 0, 0.1

Table 2.  Changes of parameters for a reduced CX-TH thalamocortical system. All other parameters remain 
the same as in Table 1. All parameters for the TC layer are ignored.

Parameter Description Setup

kn Intra-cortical connectivity weight 9.72

(c1, c2) Gating equation (Type-3) parameters (0.2, 0.6)

(d1, d2, d3, d4) Gating equation (Type-1) parameters (0.3, 2, 0.3, 0.6)

wTH- CX Weight from TH to CX 7

wCX- TH Weight from CX to TH 1

wE Weights for excitatory neurons in CX 6

wI Weights for inhibitory neurons in CX 6

wTH Lateral excitatory weight in TH layer 15

Wsparse−TH Binary sparsity matrix for RE-CX/TC-CX connections 10% connected (random);
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Figure 1.  Neuron model and thalamocortical network structure. (a) Diagram of the thalamocortical circuit 
(adapted by permission from: Destexhe A., Contreras D. The fine structure of slow-wave sleep oscillations: from 
single neurons to large networks. In: Hutt A. (eds) Sleep and Anesthesia. Springer Series in Computational 
Neuroscience, vol 15. Springer, New York, NY, copyright (2011)39). (b) Two-dimensional (2D) schematic 
representation of the computational model with a three-layer architecture: CX (cortex, containing both 
excitatory and inhibitory cells, size: 60 × 60), RE (inhibitory thalamic reticular nuclei cells, size:60 × 60) and 
TC (excitatory thalamocortical relay cells, size: 60 × 60). RE-TC are reciprocally connected. The network is 
connected in a closed loop. (c) The excitable neuron module, showing the self-enhancing voltage term (v) with 
negative feedback from the gating variable ( η ), and the input-output scheme (d) Schematic showing how each 
module can be excitatory (green) or inhibitory (red) depending on the type of synaptic output. (e) Graphical 
illustration of thalamocortical network connections, with green indicating excitatory (exc), red indicating 
inhibitory (inh), and blue indicating mixed excitatory and inhibitory connections, respectively. Ts , Rs , and Cs 
represent the synapses for the TC, RE, and CX layers, respectively. The number inside the circle represents the 
connectivity percentage used in the normal operating mode.
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Figure 2.  Thalamocortical model and simulated traveling waves.  (a) Traveling waves produced by the model 
operated in an open loop (i.e., without CX→ RE connection, 99% excitatory cortical neurons). Each square 
shows the 60× 60 array layout of neurons, and colors indicate the level of activity observed. Dynamic traveling 
wave patterns are shown (assuming a dense intracortical connectivity); arrows indicate wave directions. Color 
bar show the scale of neuronal activity (a.u.). (b) One-dimensional (1D) projection of the traveling waves to 
indicate the different wave dynamics between the thalamus and the cortex. The gap between the white dashed 
lines in the thalamus shows the lurching pattern as the wave is staggered in time; in contrast, the cortical wave 
is smooth. (c) Same layout as a. Computational model operated in a closed loop (with 1% CX→ TH connections 
and 80% excitatory neurons) results in oscillations with random wave directions. The black dashed line denotes 
the region from which the 1D project in b was taken. (d) The average cortical wave speed was significantly faster 
than the thalamic wave speed ( p < 0.0001 from five simulations, Student’s t test). Error bar represents standard 
error of mean (SEM). (e) Bar graphs showing how traveling wave speed and frequency is altered with system 
threshold (parameter  d_4 cortical gating equation in “Methods”). p values were computed from 5 simulations 
(Student’s t test). (f) Time oscillations produced by the cortex of around 15 Hz frequency.
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the consequence of the closed-loop structure, without which the thalamic oscillations failed to persist (Supple-
mentary Fig. S1f). Supplementary Video S2 provides a “zoomed-in” view of the spontaneous wave propagation 
simulated in the cortex, showing a 10× 10 array instead of a 60× 60 array to match experimentally observed 
structures. Next, we modified the model to contain 80% excitatory and 20% inhibitory cortical neurons to match 
ratios seen  experimentally33,41; we also assumed 99% intracortical connectivity, with stochastic inputs. In this 
case, our model produced oscillations with spontaneous random wave directions (Fig. 2c and Supplementary 
Video S3. Supplementary Video S4 shows a zoomed-in 10× 10 array). The 1D projections illustrate the effect of 
inhibitory neurons that disrupted the cortical waves by creating inaccessible regions (Supplementary Fig. S1g). 
On average, the cortical wave speed was faster than the thalamic wave speed (Fig. 2d). This, of course, was due to 
the monosynaptic nature of the cortical waves as opposed to the polysynaptic thalamic waves that were staggered 
in time (owing to the delayed post-inhibitory rebound spike), allowing two different wave patterns to sustain 
in a closed-loop manner. Lowering the activation threshold of the cortical neurons (“Methods”, Supplementary 
Fig. S1c, bottom) increased the wave speed, as expected from singular perturbation studies of excitable  systems42. 
Additionally, it increased the driving input to the closed-loop system changing the oscillation frequency (Fig. 2e). 
Therefore, the system threshold could be used to couple wave speed and frequency resulting in a mutually posi-
tive correlation. The operational threshold was chosen such that the oscillations occurred in the 10-20 Hz range, 
typical of alpha (lower beta) rhythms in the  cortex2–4 (Fig. 2f). Furthermore, we set the feedback connectivity 
between the cortex and thalamus around 1%. A higher degree of CX → RE or CX → TC connectivity caused 
the cortical wave to dominate the thalamic wave, causing the thalamic lurching (staggered activity in time) to 
vanish quickly (Supplementary Video S5 and Supplementary Fig. S2a). Together, these results suggest that in 
contrast to open-loop—the closed-loop thalamocortical model produces rich oscillatory activity with random 
traveling wave patterns and sustains distinct traveling wave speed/patterns between the cortex and thalamus.

Low intracortical connectivity necessitates clustered cortical neurons to yield traveling 
waves. To sustain wave propagation, or equivalently, to maintain sufficient wave propagation area in time, 
we found that a high percentage of intracortical connectivity was required. In the simulations, we varied overall 
intracortical connectivity between 25–36%41, with 4:1 ratio of excitatory to inhibitory cortical neurons. The area 
of the traveling wave was calculated as the number of neurons engaged in the wavefront. In the cortex alone, 
with 25% intracortical connectivity, the traveling wave area was low. That is, we found that it was difficult to 
sustain spontaneous cortical wave propagation with 25% connections. The cortical wave area increased propor-
tionally with the intracortical connectivity (Fig. 3a), reaching a noticeable wave structure when the intracortical 
connections reached ∼50%; this was consistent with a previous report using another model  setup33. When the 
intracortical connectivity was below 25%, the cortical wave structure lost continuity and reduced to isolated 
dot patterns. Next, we added the thalamus in the closed loop, and observed a punctate wave band in the cortex, 
completely in synchronization with the thalamus (Supplementary Fig. S2b), thereby not enabling spontaneous 
cortical wave propagation. This motivated us to incorporate clustered intracortical connections to the model, 
with a goal of sustaining traveling waves.

In cortical circuits, excitatory connections are not uniformly distributed, and often form clustered groups of 
highly connected  neurons41. A low overall percentage of intracortical connectivity may arise from high connec-
tivity within clustered groups, with much lower connections outside. To investigate the impact of connectivity 
topography, we modified the 2D arrangement of neurons from uniform connectivity (Fig. 3b, left and middle 
panels) to a more clustered structure (Fig. 3b, right panel, with the same overall connectivity as the middle panel) 
(“Methods”). Within the clustered group, the intracortical connectivity was ∼90%, while maintaining the overall 
25% connectivity. Simulations with this setting were able to sustain propagating waves within the cluster, as 
opposed to punctate patterns outside the cluster (Fig. 3c,d).

Furthermore, we compared the impact of open vs. closed-loop on cortical traveling waves in a clustered 
setup. In the open-loop setting, we assumed that there was 99% intracortical connectivity within two clustered 
cortical neuronal groups (with overall 31% connectivity). The cortical wave was initially triggered within cluster 
1 but failed to propagate to cluster 2 (Fig. 3e). In contrast, in the closed-loop setting, under the same 31% con-
nectivity condition, propagating waves were present in both the thalamus and two cortical clusters (Fig. 3f and 

Figure 3.  Network connectivity controls patterns of spontaneous traveling waves.  (a) Traveling wave area was 
reduced with decreasing overall intracortical connectivity. Error bar represents SEM from 5 simulations. (b) 
Schematic showing different CX arrangement (neuron array): fully connected (left), uniformly connected with 
lower connectivity (middle), and clustered and with the same overall connectivity (right). We assumed that the 
RE and TC layers have uniform arrangement. (c) Traveling waves produced by the model operated in a closed 
loop (with overall 25% intracortical connectivity and a 90% intra-connected cluster). The unshaded portion in 
the CX illustrates the clustered region. Each panel is the 60× 60 neuron array layout, and colors indicate activity 
levels. (d) Comparison of traveling wave area between the inside and outside the clustered region. The wave 
activity was prominent only within the cluster (zoomed in a snapshot via a blue box), whereas only puncta-type 
activity was seen outside the cluster (zoomed in a snapshot via a red box). (e) Disconnected thalamocortical 
network with only CX setting: two clusters, both 99% connected, with overall 31% intracortical connectivity. 
The cluster positions are shown on the leftmost panel. The activity was triggered stochastically within the red 
cluster. Because of the weak connectivity between the two clusters, the activity in the red cluster did not reach 
the blue cluster. (f) Same as panel e, except with the thalamus connected in a closed loop. The thalamic wave 
enabled communications between the two clusters.

▸
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Supplementary Video S6). This result suggests a potential role of the thalamus and thalamocortical connections 
in communicating cortical traveling waves across multiple isolated cortical areas.

Thalamic connections and thalamocortical delay reshape spatiotemporal cortical dynam‑
ics. Inhibition plays a key role in shaping spatiotemporal  patterns35. To explore the diversity of cortical waves 
that we could generate, we focused on the impact of thalamic inhibition on the  cortex43. To simplify the model, 
we collapsed the thalamus into one layer (TH) that contained strong intra-thalamic excitation, which in turn 
inhibited the cortex (CX) (Table 2, Fig. 4a). This effect is thought to occur through the intermediate inhibitory 
 interneurons43, which have not been explicitly considered in our model. To remove potentially confounding 
effects of inhibitory cortical neurons, we made a simplifying assumption that CX was fully connected with excit-
atory neurons only, analogous to the zoom-in view of a clustered group. We assumed full TH-CX connectivity 
and introduced a delay parameter between TH and CX (i.e., no instant feedback), as the time delay during syn-
aptic transmission within a closed-loop system is known to play an important role in its intrinsic  dynamics25,44.

The axonal conduction delay is known to be in the order of  milliseconds43. Therefore, we systematically varied 
the thalamocortical delay parameter (0, 2, 4 ms) and observed the change of spatiotemporal wave patterns in TH 
and CX (Fig. 4b). When there was no delay and TH-CX were fully connected, the cortical wave was instantly 
disrupted by thalamic inhibition. In contrast, introducing a 2 ms delay allowed the cortical wave to propagate to 
a certain distance before a complete disruption by thalamic inhibition. The distance that the cortical wave could 
travel before being subdued defined the “cortical firing field”. An increase of the delay from 2 ms to 4 ms further 
expanded this firing field, i.e. enabled the cortical wave to propagate further.

Next, in the reduced model, we decreased the TH-CX connectivity percentage from 100% to 90%, where the 
unconnected neurons were chosen randomly (Fig. 4c, leftmost panel). In the case of an intermediate delay, a rich 
repertoire of cortical traveling wave patterns, including radial, planar, and rotating waves was obtained (Fig. 4c,d 
and Supplementary Video S7 and Supplementary Video S8). We observed that the traveling wave direction or 
pattern could spontaneously change in time (c.f. t = 14 vs. 18 ms in Fig. 4c; t = 52 vs. 84 vs. 124 ms in Fig. 4d). 
Additionally, the duration of the cortical wave pattern depended on the delay parameter (Fig. 4e). A small delay 
led to a quick disruption of cortical waves because of thalamic inhibition, whereas a large thalamocortical delay 
caused the cortical wave to escape the field of view before thalamic inhibition became effective. Together, these 
results suggest that an optimal delay regime may exist to maintain the cortical traveling wave structure for a 
thalamocortical network with specific connectivity.

Thalamocortical connectivity controls cortical and thalamic wave patterns and characteris‑
tics. Having shown that the randomly selected unconnected TH-CX nodes produced spontaneous traveling 
wave patterns, we further investigated whether and how the change of TH-CX connectivity could predict the 
specific propagating wave type, allowing potential control over the ensuing wave pattern. Specifically, we used 
the same setup as in Fig. 4a (i.e., nonzero delay and fully connected TH-CX), where the cortical wave had a par-
ticular firing range (the cortical firing field, dashed box in Fig. 5a), i.e. a particular spatial range it could traverse 
before being extinguished by the thalamic inhibition.

We considered four distinct scenarios depending on the location and number of the triggered nodes. In the 
first scenario, in which an unconnected node was chosen within the range of cortical firing field—this node fired 
for a longer duration in time because it was not affected by TH inhibition (shown by a black dashed circle in 
Fig. 5a). However, because of the surrounding cortical firing refractoriness, the firing did not generate a cortical 
wave that propagated spatially. In the second scenario, in which the unconnected node was at the corner (edge) 
of the cortical firing field (Fig. 5b), a cortical wave emerged in space since the cortical refractoriness was absent 
outside the field. The cortical wave initiated outside the dashed box, and then became unconstrained once the 
refractoriness terminated (Supplementary Video S9). In the third scenario, two unconnected points were selected 
to create two planar waves in opposing directions (Fig. 5c). Therefore, for a fixed set of connectivity and delay 
parameter, the traveling wave patterns (e.g. direction, area, and speed) could be predicted by our simulation 
model (Fig. 5d). On the other hand, when the unconnected node was outside the cortical firing field, no wave 
pattern could be produced.

In the fourth scenario, when the unconnected nodes were chosen in the form of a straight line (Fig. 5e, sub-
panel i), the resulting cortical wave oscillated in reverse modes along that line (delay of 4 ms for t = 1–10 ms, 
a temporary threshold block was used to initiate a unidirectional wave). Under the 4 ms delay condition, two 
oscillations could be sustained until the thalamic inhibition disrupted the cortical wave ( t = 22–60 ms) (Sup-
plementary Video S10). On the other hand, if the thalamocortical delay was increased from 4 ms to 6 ms (from 
t = 22 ms onwards) during the simulation (Fig. 5e, subpanel iii), then cortical wave oscillations were sustained 
indefinitely in opposite directions (Supplementary Video S11). A time-course of these neuronal oscillations is 
illustrated in Fig. 5f, along with a 1D space-time representation. Note, that observing these oscillations in time, 
without a spatial readout, was insufficient to assess the reverse directions.

An interesting observation of spontaneous traveling wave patterns in our 2D thalamocortical model was the 
rotating wave. Figure 5g illustrates the schematic of one of many possible ways of producing a rotating wave, in 
which the thalamic inhibition was used to break a planar wave, followed by a reduced inhibition level. A broken 
planar wave tends to curl around its tip to create a rotating  wave35,45,46. If the thalamic inhibition was not reduced, 
the spiral would not have sufficient time to evolve (Supplementary Video S12). Figure 5h shows the implementa-
tion of this method where the level of thalamic inhibition was reduced by ten-fold at the moment of t = 28 ms. 
As a consequence of reduced thalamic inhibition, a rotating cortical wave emerged and sustained indefinitely 
(Supplementary Video S13). The 1D space-time projection of spiral cortical waves is illustrated in Fig. 5i. As 
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Figure 4.  Transmission delay between the cortex and thalamus changes the stimulus-evoked traveling wave 
patterns.  (a) A reduced thalamocortical model showing interactions between CX and inhibitory TH cells with 
lateral connections. The grid denotes the 2D neuron array layout. A nonzero delay parameter was introduced 
between TH and CX connection to account for axonal conduction delays. We assumed that CX was fully 
connected with purely excitatory neurons. (b) Impact of different thalamocortical delay parameters on the CX 
wave dynamics (assuming fully connected TH-CX). With an increased delay, the CX wave could propagate 
further and longer. In contrast, lateral excitation allowed the TH wave to propagate unrestricted regardless of 
the delay. Colors denote activity levels. (c) A 90% connected TH-CX condition, where the red dots denote the 
cortical neurons that receive no TH inhibition. For a specific thalamocortical delay of 2 ms, the uninhibited 
points produced a new CX wave that propagated in various directions (indicated by black arrows), and TH 
wave activity ultimately disappeared. (d) With an increased delay of 4 ms, dynamic wave activity emerged. In 
this illustration, radial ( t = 8 ms), planar ( t = 52 ms), and rotating ( t = 124 ms) waves were produced. (e) 
Comparison of the wave activity duration with respect to different delay parameters. Their non-monotonic 
relationship suggests an optimal delay regime in the thalamocortical network. Error bar represents SEM.
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seen in our simulations, in this case, even a 1D space-time representation was insufficient to comprehend the 
underlying spiral wave fully, and only the 2D traveling wave representation could reveal the complete picture.

To study the evoked traveling wave, we further incorporated an external input to the 2D network that gener-
ated the spiral wave, which caused the spiral to enhance (or reduce) depending on the excitatory (or inhibitory) 
nature of the input Supplementary Video S14 and Supplementary Video S15). Together, the results suggest that 
based on the thalamocortical connectivity and transmission delays, one can qualitatively predict the characteris-
tics of the spatiotemporal patterns that may ensue as a result of perturbations. Finally, to verify that these results 
were not solely due to the size of the simulation domain but rather to the extent of cortical-fire field relative to 
the size of the neural array, we increased the array size from 60× 60 to 80× 80 and re-ran the computer simula-
tions. Different wave patterns were still obtained through the unconnected points at the edge of the firing field 
(Supplemental Videos S16).

Thalamic and cortical excitation/inhibition imbalance alters traveling wave frequencies and 
speeds. Excitation/inhibition balance in neural circuits is critical for brain functions, and E/I imbalance 
may induce dysfunctional physiology such as epilepsy and  seizures47. To investigate the effect of E/I balance on 
traveling wave characteristics, we focused our attention on a clustered cortical group, in which cortical neurons 
were nearly fully connected (with 80-90% intracortical connectivity), in our three-layer network model.

First, we examined the impact of E/I imbalance by changing the RE inhibition on the cortex. To help illustrate 
this point, we assumed that the cortex contained 90% excitatory neurons. In a closed-loop setting, we compared 
the 2D thalamic and cortical traveling wave dynamics, between regular (Fig. 6a) and increased (Fig. 6b) RE 
inhibition. In these cases, the RE and TC neurons competed to trigger the cortical wave activity. In the presence 
of lower RE inhibition, TC excitation dominated, triggering cortical neuronal firing (Fig. 6c, left, red dots in a 
black circle indicate nascent triggers). These dots ultimately propagated to form cortical waves. However, with 
increased RE inhibition, the effect of TC excitation decreased (Fig. 6c, right—the dots are absent), resulting in 
fewer cortical traveling waves, or lower frequency (Supplementary Video S17). This can be further appreciated 
by noticing the large gap in time between successive space oscillations in Fig. 6b, contrasting that with the oscil-
lations in Fig. 6a. Also, comparing the number of striped firing patterns in 1D projections (Fig. 6d), we observed 
a decrease in traveling wave frequency in the cortex induced by increased RE inhibition. Therefore, increased RE 
inhibition lowered the cortical wave frequency, while reduced CX → TC weights increased the thalamic wave 
frequency (Fig. 6e). In contrast, the change in cortical wave speed was insignificant, suggesting that the cortical 
wave was relatively stable regardless of the level of thalamic inhibition.

Finally, we examined the effect of imbalance in cortical excitation on traveling waves, by increasing the excita-
tory intracortical weights by two-fold. As a result, we observed a dramatic change in traveling wave patterns 
(Fig. 6f, Supplementary Video S18), as well as a significant increase in both cortical wave frequency and wave 
speed (Fig. 6g). With a 4:1 excitatory to inhibitory neuron ratio, the excitable parameters were assumed such 
that the thalamus and cortex were synchronized in frequency. However, as we increased the cortical excitation 
two-fold, a difference between the RE and CX frequencies emerged (Fig. 6g). Together, the results suggest that 
cortical E/I balance affects the traveling wave frequency and speed—a result in line with a previous 1D model 
that showed that the traveling wave speed increases (logarithmically) with the synaptic coupling  strength25.

Discussion
We developed a 2D topographic network of the closed-loop thalamocortical system that produces a broad 
class of spontaneous or evoked spatiotemporal wave patterns and oscillations in the cortex and thalamus. This 
architecture was able to sustain smooth waves in the cortex and lurching waves in the thalamus simultaneously. 
Our computer simulations showed that the propagating wave patterns are influenced by many factors such as 
intracortical and thalamocortical connectivity, cortical E/I imbalance, thalamic inhibition, and thalamocorti-
cal or corticothalamic delay. Specifically, altering these parameters allowed us to change traveling wave speeds, 
directions, patterns, and oscillation frequencies, suggesting a simple computational mechanism for the genesis 
of the diverse wave patterns observed in the brain. Thus, it is possible to replicate the experimentally observed 
wave characteristics through simple modifications of connectivity or synaptic weights, without going into neural-
field continuum  approximations27. Furthermore, we showed that the 2D traveling waves may display unique 
characteristics that are indiscernible in 1D projections or in vitro (isolated) conditions.

Figure 5.  TH-CX connectivity and thalamocortical delays determine cortical and thalamic wave patterns.  
(a) Left: A zoomed-in CX circuit showing neurons (red points) that are disconnected to TH. Right: Traveling 
wave dynamics in the CX and TH with assumed lateral intra-TH connections. The black circle indicates the 
uninhibited point. When this uninhibited point fired, it could not produce a wave because of the surrounding 
CX refractory zone that received TH inhibition. (b) Similar to panel a, except the unconnected point was 
located at the edge of the CX firing zone (smaller dashed box). The black arrow shows the wave direction. (c) 
Changing unconnected point locations altered wave directions. (d) Schematic summarizing how the location 
of the uninhibited nodes produces traveling waves with various directions. (e) i: The unconnected points were 
in a straight line so that the resulting wave oscillated in reverse directions along that line. ii: For a delay of 4 ms, 
two oscillations were allowed until TH disrupted the waves. iii: By increasing delay (6 ms), infinite oscillations 
are sustained in opposite directions after the initial trigger. (f) Space-time projections of traveling waves for two 
delay parameters used in ii and iii. (g) Schematic showing how the TH inhibition can be used to break the CX 
wave. A broken wave tends to curl around a tip. (h) An illustration of generating a rotating cortical wave, which 
emerged when the TH inhibition was reduced at time t0. (i) Space-time projection of the wave shown in panel h.

◂
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Wave oscillations, speed, and frequency. Different oscillation frequencies are known to reflect various 
brain states. Slow alpha oscillations are observed during sleep and  anesthesia8, whereas beta/gamma oscillations 
are typical of attention and memory  tasks48. These oscillations are mostly thought to occur from bifurcations 
in the governing voltage equation, which render the equilibrium unstable creating oscillatory  dynamics40 or 
from stochastic inputs to neurons. Our computer simulations suggest an alternative where, using the closed-
loop architecture, traveling wave oscillations in space-time can be generated and sustained deterministically 
without having an explicit bifurcation through parameter variations or relying on additional stochastic inputs to 
neurons. This occurred owing to the feedback and feedforward connections, where a cortical wave triggered a 
slower thalamic wave, which, in turn, triggered another wave in the cortex and so on. This time-scale separation 
between the thalamic and cortical wave speeds was important, as this allowed the refractory period of the corti-
cal neurons to end before the thalamic wave had been extinguished—enabling the next cortical wave trigger. 
Our result closely ties in with one published study, which showed cortical alpha oscillations during predictive 
 coding12. They also suggest that natural oscillations can be generated and sustained owing to the inherent hier-
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Figure 6.  Cortical and thalamic E/I balance alters traveling wave speed and frequency.  (a) The spatiotemporal 
activity produced by a closed-loop 2D thalamocortical network (10% TH→ CX connectivity, fully connected CX 
with 90% excitatory neurons). Each panel shows the 60× 60 neuron array layout and colors denote activity levels. 
(b) Spatiotemporal activity obtained with the same setting as a, but with RE inhibition increased. (c) Repeated 
cortical cell firings occurred due to TC excitatory inputs (dots in the dashed black circle). These dots propagated 
as a traveling wave. Triggering dots reduced/absent when RE inhibition increased. (d) 1D projections of waves 
from the two scenarios. (e) (left) Comparison of the cortical oscillation frequency between two levels of RE 
inhibition ( 1× vs. 300× ). (right) Comparison of the thalamic oscillation frequency between two levels of 
CX→ TC excitation ( 1× vs. 10× ). All error bars represent SEM. (f) Traveling waves induced by increased CX 
excitatory weights (10% TH→ CX connectivity and 99% intracortical connectivity with 80% excitatory neurons). 
As seen in space-time projections, wave activity was significantly increased (in comparison with Fig. 1d). (g) 
Cortical wave frequency and speed increased as the CX excitatory weights were multiplied by two folds (p values 
obtained from five simulations, Student’s t test).
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archical structure of the cortical layers. Our study further supports the possibility of simultaneously sustaining 
different types of oscillations (lurching waves and smooth waves) in different layers. Cortical oscillations are 
known to host strong feedback and feedforward connections, both between the laminar layers of the cortex and 
with the deep thalamic  layers49. These connections may create ample opportunities for generating closed-loop 
oscillations—allowing smooth and staggered waves to sustain in different layers simultaneously. The speed of 
cortical traveling waves may have a wide range, ranging from 0.1–0.8 m/s for mesoscopic waves, to 1–10 m/s 
for macroscopic  waves11,50. Multiple factors, including neural recording techniques and spatial coverage, may 
contribute to the diverse values of traveling wave speed reported in the literature. Our computer simulations 
predict that the cortical wave speed can be influenced by excitatory cortical synaptic connections. We further 
demonstrate that increased neural oscillation frequencies can be associated with faster propagating waves. This 
is because, in the closed-loop architecture, a lower system threshold not only increases activty in one layer, but 
also translates to increased inputs to all connected layers. Consequently, not only is the wave speed increased, 
but the overall system frequency also rises.

Information propagation. Traveling waves in the brain are believed to play important functional roles 
including memory consolidation, processing of dynamic visual stimuli, sensorimotor integration, and multisen-
sory discrimination and  gating4,11,37. One of the speculative roles of macroscopic traveling waves is to propagate 
and coordinate information across multiple brain regions in space and  time2,51. Recent experimental findings 
have shown that thalamic traveling waves may be critical for the development of cortical representations from 
different sensory  modalities52. Our results support the hypothesis that a potential role of traveling waves is to 
enable information being transferred between different cortical areas or to generate spatial  coherence53. In this 
case, we show that spatial coherence may also be obtained in disconnected cortical areas through thalamic trave-
ling waves. It has been shown that divergent thalamic inputs to the cortex result in a synchronization of the corti-
cal  activity32,36. Our simulation ties in with these studies while additionally suggesting that information transfer 
across unconnected regions of the cortex can also occur using global-scale thalamic connections.

Pattern formation using conduction delay and connectivity differences. Transmission delay 
between adjacent neuronal connections is known to cause bifurcations resulting in altered  dynamics25,44. The 
long-ranging thalamic inhibition relies upon divergent thalamic connections to the  cortex32, but there are signifi-
cant axonal conduction delays. Our computer simulations confirmed that the thalamocortical delay can produce 
a wide range of emergent spontaneous traveling wave patterns, through similar mechanisms of pattern formation 
using long-range inhibition as discussed in the introduction while avoiding neural-field  approximations27,29. Spe-
cifically, the “race” between the cortical wave speed and the delayed, long-ranging thalamic inhibition (creating 
a finite cortical firing field)—corresponds to the time and space-scale separation needed for pattern  formation35. 
The exact wave type generated depended on the connectivity with respect to the firing field, the spatial extent of 
the connections and the delay. The delay parameter elicited a biphasic response, suggeasting that an optimum 
delay exists for a particular neural field size to generate the maximum number and duration of specific wave pat-
terns. These patterns can be controlled by perturbing network connectivity, to alter wave speed, direction, and 
frequencies. Thus, it is possible to acutely modulate the wave pattern observed. In experiments, to fully compre-
hend the differences in wave patterns, however, a readout from 2D spatial recordings is necessary. Throughout 
our computer simulations, we used a thalamocortical delay to generate traveling waves. As evidenced from the 
 literature54,55, the corticothalamic delay is more prominent compared to the thalamocortical delay. As we dem-
onstrated in Supplementary Fig. S3, an asymmetric corticothalamic delay also produced qualitatively similar 
cortical traveling wave alterations as the TH-CX connections were changed. In a closed-loop setting, the exact 
location of the delay along the neural pathway (feedforward vs. feedback) does not change the logic behind wave 
pattern alterations, since the pattern formation theory necessitates only a long-range antagonist that is delayed 
in time when compared to the local  activity56 .

Excitation/inhibition imbalance: Through numerical simulations, large-scale computational models may pro-
vide insights into the spatiotemporal dynamics of the thalamocortical network at a pathological brain state. The 
cortical or thalamic E/I imbalance is an important factor that contributes to epilepsy and  seizures47. Our results 
suggest that in a clustered cortical network, increasing the E/I ratio drastically increases the traveling wave speed 
and overall neuronal excitability, a phenomenon commonly observed in the pathological brain. For instance, 
traveling waves have been observed during epileptic  seizures53,57,58, but a complete understanding of their origin 
remains unclear. One potential mechanism of absence seizure (one kind of primary generalized seizure) is tha-
lamic  dysfunction59–61. Another plausible mechanism of recurrent seizure is E/I imbalance induced by stronger 
cortical excitation, which further causes the neuronal network to reach  hyperexcitability62. Our computer simula-
tions suggest that the closed-loop thalamocortical system is important for cortical wave propagation, and that 
the input of excitatory TC cells is necessary to maintain high oscillation frequencies, and that subduing TC 
input through thalamic inhibition can significantly reduce thalamocortical oscillations. This is consistent with 
experimental results in a rat model that suggested the requirement of the thalamic input to maintain cortical 
seizure oscillations, and that optogenetic inhibition of TC cell activity disrupts seizure  oscillations63. Therefore, 
the dynamic properties of spatiotemporal traveling waves, such as the wave speed, direction, and duration, may 
provide a diagnostic window to examine pathological brain functions.

Difference from other models in literature. Our computational model differs from other models in 
the literature developed to account for traveling waves in the brain. The majority of these are based on the 
integro-differential  equations64. While these equations capture the basic wave dynamics, they approximate the 
nonlinear positive feedback with a sigmoidal threshold response, thereby neglecting important phenomenon 
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that our model can capture, such bifurcations and bistabliity. Another common method is to use the neural-field 
approximation to generate wave patterns, replacing synaptic operators with double-spatial derivatives, akin to 
 diffusion26,27. In contrast, our computational model is capable of generating different patterns using connectiv-
ity differences without an explicit diffusion approximation. Similar to the integro-differential equations, our 
model is also phenomenological as it neglects some biophysical details (such as the voltage-dependent synaptic 
conductance) and replaces adjacent connections through a direct input term. We derive the basic structure 
of our model from the Izhikevich type  neurons38 and validate our parameter setup by recreating the lurching 
wave of the thalamus, and the smooth waves of the cortex. We use a threshold approximation similar to Type-1 
 neurons38, where the network connectivity and synaptic inputs essentially alter the neuron’s proximity to the 
firing threshold. This is an oversimplifying assumption used to reduce the computation time because numeri-
cal simulations of spatiotemporal activity of a large-scale network based on biophysically-detailed equations 
can be computationally cumbersome. Although we have used a phenomenological computational model, our 
wave propagation findings should be generalizable to other more biophysically-based neuronal models. Many 
studies in the literature have used approximations of biophysical details to analyze spatiotemporal  patterns27 
since it is more difficult to gain insight from models with high-dimensional parameter space. Because of these 
simplifications, the exact values of the parameters and their corresponding output wave speed/area values are 
not as important as is the relative change when the system parameters are altered. Several 2D models have 
been developed for cortical  structures27,45,65–67, but very few have focused on the thalamocortical structure. To 
date, the available 1D models for thalamocortical systems have not explicitly modeled the network connectiv-
ity topography (i.e. the clustered intracortical connectivity) or did not jointly model transmission delay and 
thalamic  inhibition25. Furthermore, as shown in our simulations, the 1D projection has limited capability of 
characterizing traveling wave patterns or properties.

Model limitations and future directions. Our model does not account for the detailed laminar struc-
ture of the cortex, nor does it account for the intra-laminar  connections24,32,68. Incorporating more connectiv-
ity constraints within the cortical layers would further add anatomical details to the neural  circuitry69. Our 
numerical simulations of the 2D thalamocortical network were still on a relatively small scale, therefore, some 
neurobiological details could not be modeled fully. For instance, a separate treatment of thalamocortical and 
corticothalamic feedback may account for another level of  complexity70. Additionally, the bursting behavior of 
RE cells at rest has been omitted in our current model, and only tonic spiking has been studied. The introduc-
tion of bursting may have interesting effects on the ensuing wave—a topic that needs further exploration. Lateral 
thalamic inhibition was also taken from the RE layer for simplicity. This thalamic inhibition was also studied 
ignoring the effect of the thalamic lurching wave, which would add further diversity to the wave patterns. Finally, 
we have only considered local intra-cellular connections and ignored long-range axonal connections within a 
layer. These short-range connections, for example, resulted in thalamic waves being at a 45-degree shape in our 
numerical simulations. Future work will be required to investigate these issues in greater detail.

While state-of-the-art electrophysiological recordings allow recording of a large number of cortical neurons 
in 2D or  3D71–74, simultaneous recordings of a large number of cortical and thalamic neurons based on multi-site 
multielectrode arrays remains a technical challenge due to the size and anatomy of the thalamus. The depth of 
thalamic structure also brings challenges in optical imaging for large-scale thalamic cells. These factors create 
difficulty for in vivo experimental verification of cortical and thalamic traveling waves. However, as future neural 
recording technologies are  improved75, our model predictions motivate the need for recording cortical and tha-
lamic traveling waves simultaneously. Our model prediction overall provides a new testable hypothesis that the 
traveling wave patterns continually observed on the cortex can be the result of specific connectivity differences 
and can potentially be controlled to affect brain functions.

Methods
Network architecture, neuron dynamics, and threshold analysis. We developed a three-layer 
thalamocortical system, each layer consisting of a 2D lattice of neurons, modeling two layers of the thalamus 
and one cortical layer interconnected through feedback and feedforward connections (Fig. 1a,b). Every neuron 
is described by three differential equations. Two describe the voltage (v), and gating ( η ) terms (Fig. 1c) which 
generate excitable  behavior38, along with a synapse output equation. The first two states approximate a spiking 
neuron by assuming instantaneous activation of the sodium current (fast increase of voltage term), with a slower 
potassium inactivation (slow gating variable). This gating variable had voltage-dependent steady-state and time-
constant terms which were approximated in our model equations to ensure that the dynamics matched that of 
the excitability  model35,38, i.e. recreated spiking and oscillations for one neuron. This can be better visualized 
in the phase plane (Supplementary Fig. S1a). Each point in the phase plane describes how the system states 
( v, η ) would evolve over time if the system were to start at that state. The two nullclines are points for which 
one of the two states does not change. In our model of the neurons, the curve with the inverted ‘N-shape’ is the 
voltage nullcline on which v does not change and the straight line is the nullcline for the gating variable does 
not change. The intersection of the two nullclines, denoted ‘m’, is the equilibrium. In the situation illustrated in 
Supplementary Fig. S1a, where the equilibrium is to the left of the minimum point of the v-nullcline (denoted 
‘p’), the equilibrium is stable. Changing either nullcline alters the equilibrium. For example, if the v-nullcline is 
raised (e.g. through the input r in Supplementary Fig. S1a), then the equilibrium point moves closer to point 
‘p’—which is a bifurcation point. Once the two points meet, the equilibrium loses its stability, at which point it 
begins self-sustaining oscillations. For this reason, we refer to the distance between the points ‘p’ and ‘m’ as the 
activation “threshold” of the system. The stability of the system can be determined from the eigenvalue plot in 
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Supplementary Fig. S1b76. Here, the threshold was altered by lowering the slope of the gating variable nullcline 
(Supplementary Fig. S1c, top, red arrow).

Each module, thus, had an activation threshold that could be controlled through the system parameters 
(Supplementary Fig. S1a). If this input was sufficient enough to displace the state beyond the activation thresh-
old—the state would undergo a large excursion in phase-space (shown through grey arrows in Supplementary 
Fig. S1a)—resulting in a spike of activity. Overall, the form of our differential equations representing a neuron 
matched the phase-plane architecture and dynamics of established neural two-state  models38.

Following established neuronal classification  criteria38,77 we assumed that thalamic neurons belong to Type-
3, which generate only a single spike following a step input. This was ensured by adjusting the model param-
eters such that the phase-plane structure (Supplementary Fig. S1c, top) was similar to that shown in earlier 
 studies38 (same phase plane as Supplementary Fig. S1a). This allowed neurons to exhibit oscillations whenever 
the input was sufficiently large, but the oscillation frequency remained relatively constant for a wide range of 
input strengths. This is illustrated in Supplementary Fig. S1d, where different input strengths were applied to 
the neuron after the bifurcation had occurred. This neuron also exhibited a rebound spike following an inhibi-
tory synaptic input. We also assumed that cortical neurons belong to Type-1, which exhibit a wide range of 
oscillation frequencies for different input strengths and could reach an arbitrary slow frequency (illustrated in 
Supplementary Fig. S1d). This was also ensured by adjusting the model parameters such that the phase-plane 
structure (Supplementary Fig. S1c, bottom) was similar to that of earlier  studies38, with its corresponding stability 
plot (Supplementary Fig. S1e). Here, the threshold of the cortical neuron was altered by lowering the position 
of the gating nullcline (Supplementary Fig. S1c, bottom, red arrow).

A neuron spike would generate a synaptic output (Supplementary Fig. S1d). Every neuron had a synapse equa-
tion that fed to other neurons. A neuron could be excitatory or inhibitory depending on the sign of its synapse—
i.e. based on if it excited/inhibited the post-synaptic neurons respectively (Fig. 1d). Lateral connections of these 
neuron modules created a neural sheet. Detailed parameters are presented in Tables 1 and 2. The cortical neural 
sheet was modelled through 4-way connectivity, i.e. each CX neuron could be connected to its adjacent 4 neurons. 
Cortical neurons were surmised at 80% excitatory and 20% inhibitory  neurons33. Intra-cortical connections, 
reported to be around 25%41, were varied from uniformly sparse to locally clustered network structures. This was 
done through randomly removing existing connections till the overall connectivity reached the desired value. 
In the uniformly sparse case, connections were removed randomly throughout the sheet. In a locally clustered 
setup, the 4-way connections were left intact for a particular group of neurons (the cluster), while connections 
outside the group were removed such that the total connectivity remained the same.

The cortex and thalamus were connected in closed loop where a sum of excitatory thalamocortical (TC) 
and inhibitory reticular (RE) activity influenced the cortical activity, while the cortex projected to both RE and 
TC through excitatory  connections39 (Fig. 1e). The corticothalamic feedback connectivity between the cortex 
and the thalamus was set at 1%, i.e. 1% of randomly chosen cortical neurons fed back to thalamic ones, while 
thalamocortical connections were set similarly at 10% connectivity. RE and TC layers were interconnected 
through alternate reciprocal  connections18. The lateral or intra-RE connections were not modeled here. The 
schematic connections within the thalamocortical network are illustrated in Fig. 1e.

Neuron equations and model setup. The model equations used for the different neurons are described 
below.

Thalamic relay cells (TC). These neurons are described by the voltage term, Tv , gating variable, Tη , and synapse, 
Ts , obeying the following equations: 

The coefficients a1, . . . , a5 determine the shape of the voltage nullcline giving it an inverted-N-shape typical 
of excitable systems. In contrast, the coefficients c1 and c2 regulate the slower gating dynamics and result in a 
linear nullcline. The thalamic cells were set up as Type-3  neurons38 (Supplementary Fig. S1c,d). The input to the 
neuron raises the voltage nullcline allowing the activation threshold to be crossed to generate firings (similar to 
r term in Supplementary Fig. S1a). This input to the TC layer is given by:

The first term consists of an inhibitory input from the reticular layer (RE) synapse, Rs . The term ip is a con-
stant used to modulate the inhibition level. The connectivity matrix, CTH , connects every TC element to the 
surrounding four nearest neighboring RE neurons. The second term represented an excitatory input from the 
cortical synapse ( Cs ), multiplied by a sparsity matrix, denoted Msparse . The terms wRE- TC and wCX- TC denote the 
respective weights of the RE and CX synapses on the TC neurons.

(1a)
dTv

dt
= −(a1 + a2Tη)Tv +

a3T
2
v

a4 + T2
v

+ a5 + Tinp

(1b)
dTη

dt
= −c1Tη + c2Tv

(1c)
dTs

dt
=

1
2

(

1+ tanh
(

120
(

Tv − 1
10

)))

− Ts

t1

(

s1 − 1
2

(

1+ tanh
(

120(Tv − 1
10 )

)

))

(2)Tinp = −wRE−TCCTHRs
(

Tv + ip
)

+ wCX−TCMsparseCsTv .



16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14359  | https://doi.org/10.1038/s41598-021-93618-6

www.nature.com/scientificreports/

Thalamic reticular nuclei (RE) layer. These neurons are governed by equations similar to the TC neurons 
(Eq. 1) with a voltage term, Rv , gating variable, Rη , and synapse, Rs . The parameters specifying the dynamics of 
the RE neurons were chosen to be the same as the TC case for Type-3 neurons. The input to the RE layer equals:

Note that both terms are excitatory, the first from the TC synapse ( Ts ) and the second from the CX synapse 
( Cs ), multiplied by the thalamocortical CX → RE sparsity matrix Msparse . Furthermore, the net input to each RE 
neuron was saturated at a minimum to prevent numerical instabilities. No intra-RE connections were assumed.

In the simulations of Figs. 4 and 5, we introduced a corticothalamic delay in the model by using a delayed CX 
input ( Cdelay instead of Cs ) to the cortex. To avoid using delay-differential equations explicitly, we implemented 
this delay by taking the synapse from the CX neuron ( Cs ) and passing it to a series of “fictitious” neurons consist-
ing of three reactions, similar to those of Type-3 neurons and generating a post-inhibitory rebound spike (Sup-
plementary Fig. S4). Each of these delay circuits induced a 2 ms delay due to the wait time before the rebound 
spike. Thus, three such elements caused a total tramsmission delay of 6 ms.

Cortex (CX) layer. These neurons have a voltage term, Cv , gating variable, Cη , and synapse, Cs whose dynamics 
are governed by the following equations: 

The cortical inhibitory neurons were set up as Type-1 neurons (Supplementary Fig. S1c,d), which do not 
exhibit inhibitory postsynaptic rebound. Instead, they have saddle-node bifurcations that allow different spik-
ing frequencies for different input strengths. The input to the neuron raises the voltage nullcline allowing the 
activation threshold to be crossed to generate firings (similar to r term in Supplementary Fig. S1a). This input, 
Cinp , consists of the sum of six components: Cinp = Cinp1

+ · · · + Cinp6
 , where each is given by:

1. Excitatory input from TC synapses ( Ts ) weighted by wTC- CX and connectivity matrix Wsparse : 

2. Inhibitory inputs from RE synapses ( Rs ) weighted by wRE- CX and connectivity matrix Wsparse;

3. Excitatory inputs from neighboring CX synapses ( Cs ) weighted by wE , connectivity matrix Xsparse , and the 
total number of neurons (N);

4. Inhibitory inputs from neighboring CX neurons with synapse ( Cs ) weighted by wI , the connectivity matrix 
Xsparse and the total number of neurons (N);

5. Inhibitory inputs from the thalamic layer synapses ( Ls ) (in the reduced TH-CX model) multiplied by weights 
wTH- CX and connectivity matrix Wsparse−TH;

6. A stochastic, Gaussian noise input with mean µ and variance σ:

When considering the thalamocortical delay, the term Rs in Cinp2
 was replaced by Rdelay . This was achieved by 

passing the RE synapse, Rs , through multiple post-inhibitory rebound spikes before it reached the cortex, as in the 
cortical delay scheme mentioned above. We assumed that the intracortical connectivity was sparse (character-
ized by a binary and symmetric matrix Xsparse , which incorporated the effect of clustering or rearrangement of 
cortical cell connections. We also assumed that the excitatory-to-inhibitory neuron ratio in the cortex was 4:1.

(3)Rinp = +wTC- RETsRv + wCX- REMsparseCsRv .

(4a)
dCv

dt
= −(a1 + a2Cη)Cv +

a3C
2
v

a4 + C2
v

+ a5 + Cinp

(4b)
dCη

dt
= −d1Cη + d2

C3
v

d4 + C3
v

+ d4

(4c)
dCs

dt
=

1
2

(

1+ tanh
(

120
(

Cv − 1
10

)))

− Cs

t1

(

s1 − 1
2

(

1+ tanh
(

120(Cv − 1
10 )

)

)) .

(5a)Cinp1
= +wTC- CXWsparseTsCv .

(5b)Cinp2
= −wRE- CXWsparseRs(Cv + ip).

(5c)Cinp3
= +wE

kn√
N
XsparseCs .

(5d)Cinp4
= −wI

kn√
N
XsparseCs .

(5e)Cinp5
= −wTH- CXWsparse−THLs(Cv + ip).

(5f)Cinp6
= +N (µ, σ).
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Thalamic inhibitory layer for reduced model (TH). This layer was only used with the CX layer in the reduced 
model case of Figs. 4 and 5. It uses the same equations as the TC neurons (Eq. 1), with a voltage term, Lv , gating 
variable, Lη , synapse, Ls , and input term:

This layer received inputs from adjacent thalamic excitation (first term), and cortical inputs (second term), 
while it exerted inhibitory inputs on the cortex. The CX layer remained the same with 100% excitatory neurons 
( Cinp = Cinp3

+ Cinp5
+ Cinp6

 ), and was completely connected.

Numerical simulation details and traveling speed characterization. The neural equations were 
solved numerically using the SDE toolbox of MATLAB (MathWorks)78 , using a 2D array for a neural layer with 
absorbing (high-threshold) boundary conditions. Kymographs were calculated from the 2D activity obtained 
from the model species through line scans in time. In our model, each layer consisted of 3,600 neurons (array 
of 60×60), the computer simulation time for the proposed three-layer network was ∼600 s for 400 ms dura-
tion. Statistics were done by varying the (feedback, feedforward and intracortical) network connectivity and the 
arrangement of excitatory neurons in the cortex. Student’s t-test was used to calculate statistical significance.

To measure the traveling wave speed, a custom MATLAB script was used. Briefly, the wavefront was seg-
mented at subsequent frames of videos. Based on these segmentations, the number of patches and averaged 
area were computed. To measure the averaged wave speed, the distance from each pixel on the boundary of a 
wavefront in frame n+ 1 to the closest edge of a wave in frame n was computed. Our computed wave speed was 
in an arbitrary unit (a.u.). To put that in a perspective, if we record a 60× 60 array of neuronal activity from a 2D 
multielectrode array (MEA) of ∼24×24  mm2 , then each frame of the wave videos reflects the 2-ms temporal 
resolution such that the simulated wave speed is ∼100–300 cm/s. Usual LFP recording arrays are of the order of 
3-4 mm in dimension, but a broader neural sheet is studied for clarity of wave structure. A couple of zoomed-in 
views (10× 10 array) are also provided for comparisons with recorded data.
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