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Stability analysis of the coexistence 
equilibrium of a balanced 
metapopulation model
Shodhan Rao1,2, Nathan Muyinda1,2* & Bernard De Baets1

We analyze the stability of a unique coexistence equilibrium point of a system of ordinary differential 
equations (ODE system) modelling the dynamics of a metapopulation, more specifically, a set of local 
populations inhabiting discrete habitat patches that are connected to one another through dispersal 
or migration. We assume that the inter-patch migrations are detailed balanced and that the patches 
are identical with intra-patch dynamics governed by a mean-field ODE system with a coexistence 
equilibrium. By making use of an appropriate Lyapunov function coupled with LaSalle’s invariance 
principle, we are able to show that the coexistence equilibrium point within each patch is locally 
asymptotically stable if the inter-patch dispersal network is heterogeneous, whereas it is neutrally 
stable in the case of a homogeneous network. These results provide a mathematical proof confirming 
the existing numerical simulations and broaden the range of networks for which they are valid.

One of the central questions in community ecology is why there are so many different species of plants and 
animals coexisting in nature1,2. This coexistence of large numbers of species has long been considered a paradox, 
a classical example being ‘the paradox of the plankton’3 in which many species of plankton coexist in the same 
ecological niche. This has motivated many community ecologists to try to solve the problem of species coexist-
ence, often beginning with the premise that all individuals of all species live in a well-mixed, homogeneous, 
non-spatial habitat4,5. However, spatial heterogeneity (i.e., differences between populations and individuals at 
different geographical locations) is one of the most obvious features of the natural world. In addition, heteroge-
neities in the spatial landscape have been shown to have profound effects on the dynamics of populations and 
the structure of communities6,7. Thus, the study of spatial effects on community structure has more recently 
become a central theme in ecology8.

Spatial structure and dynamics determine the way the interactions among species living within a given 
habitat are interconnected9 to form the complex networks that characterize ecological communities. These 
complex networks can take many structural forms ranging from linear hierarchies to intransitive tournaments, 
which describe interactions where there is no single best competitor, but rather the network involves at least 
one 3-cycle (or intransitive triad)10. This structural form determines whether an ecological community is able 
to thrive and persist or will go extinct as it evolves over time11. For example, a linear hierarchy associated with 
resources critical for a species’ survival undermine coexistence because at equilibrium the dominant competi-
tor will exclude all others12. On the other hand, theoretical and experimental studies have shown that cyclic 
competition combined with dispersal of species through space may facilitate the maintenance of diversity in a 
community due to the inability of one species to exclude all the others13. Such cyclic competition, analogous to 
the classical rock–paper–scissors (RPS) game, have been found to exist in a variety of real ecosystems including 
plant systems14,15, marine benthic systems16 and microbial populations17,18. Cyclic competition also plays a role in 
the mating strategy of side-blotched lizards19, the overgrowth of marine sessile organisms20, competition between 
mutant strains of yeast21 and in explaining the oscillating frequency of lemming populations22.

Non-transitive competition introduces interesting and complicated dynamics in time and space23. Early 
theoretical studies on cyclic competition among three species are based on the Lotka–Volterra model of ordi-
nary differential equations (ODEs), which ignores the effects of the spatial domain and predicts a solution of 
unstable periodic dynamics that leads to the extinction of two of the species after a short transient24,25. However, 
numerous theoretical models have shown that the three competing species can coexist indefinitely if ecological 
processes such as dispersal, migration and cyclic competitive interactions occur over small spatial scales17,26. 
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Space therefore plays a central role in mediating ecological dynamics and the use of spatial models in ecology 
has grown enormously over the last two decades.

Various models have been used to explore the effects of spatial structure on population dynamics. However, 
the most fundamental distinction between the different models is the way in which the spatial dimension is 
represented. Some models treat space explicitly, giving some sort of description at each spatial location at any 
given time, or implicitly, incorporating parameters that vary with spatial scale or following only the percent cover 
of different species across the landscape7,27,28. Models that treat space explicitly can be classified according to 
whether population sizes, space, and time are treated as discrete or continuous entities. Among these, continuous 
space reaction–diffusion partial differential equations7, metapopulation patch models29 and individual-based 
cellular automata30,31 are the principal approaches that have been used in studies of spatially structured popula-
tions. Our focus in this paper is on the metapopulation framework.

Metapopulation theory constitutes a useful framework for explicitly incorporating spatial effects in models 
for population dynamics in ecology. Whereas classical population models treat local populations as closed 
systems (no immigration or emigration), this assumption is probably not valid for many species. Movement of 
individuals among populations is common and can have profound effects on the dynamics of local populations. 
Metapopulation models describe an open system in which extinction and persistence of local populations depend 
on the movement of individuals among a set of habitat patches. This concept, introduced by Levins32 in 1969 
to describe the population dynamics of insect pests in farmlands, has been broadly used in conjunction with 
networks to assess the viability of populations that persist in fragmented landscapes linked by dispersal and in 
modelling large-scale spatial transmission of emerging diseases.

Thus, a metapopulation consists of local populations, living in spatially discrete habitats (patches)—where 
population dynamics takes place and homogeneous mixing of individuals is assumed—connected to each other 
through dispersal or migration33. Many species often inhabit discrete areas of the landscape (ponds, woodlands 
in agricultural landscapes, and so on) where demographic processes occur within patches, and dispersal occurs 
between them. The movement of organisms between patches leads to local differences in colonization and extinc-
tion rates, which can influence the spatial distribution of a species over time9,34.

In typical metapopulation modelling, the combination of habitat patches and their connectivity (number of 
dispersal links from one patch to other patches) can be seen as a network (or directed graph), where patches 
represent the nodes of the network and dispersal routes represent the edges. Each edge of the graph is assigned a 
nonnegative constant known as the rate constant of migration. In35, the authors assume that migrations between 
patches are random with the migration rate constant being equal to the reciprocal of the number of dispersal 
links from a given patch to the other patches. They therefore define a dispersal graph to be homogeneous if all 
nodes (patches) have the same number of links, otherwise the graph is considered heterogeneous.

For many ecologists, the central question is how the structure or connectivity pattern of the underlying graph 
influences the dynamics of the metapopulation. Many model-based and empirical studies have shown that the 
persistence of metapopulations is influenced by connections between habitat patches36. For example, numerical 
simulations by Nagatani et al.35 have shown that in a metapopulation model for the rock–paper–scissors (RPS) 
game, the dynamics are significantly different when the dispersal graph is homogeneous compared to when the 
graph is heterogeneous. Specifically, their simulations show that the coexistence equilibrium within each patch is 
asymptotically stable in the case of a heterogeneous graph, while the same equilibrium remains neutrally stable 
in the case of a homogeneous graph (as in the single patch case). That is, heterogeneity leads to the indefinite 
coexistence of all three species with abundances equal to the coexistence equilibrium values, whereas homoge-
neity leads to the perpetual coexistence of all three species with periodically oscillating abundances (i.e., there 
exists a limit cycle around the coexistence equilibrium to which the trajectories converge). However, as far as 
we know, these numerical results have been provided without mathematical proof.

Here, we show, mathematically, that the numerical observations of35 are not only valid for RPS competition 
systems, but also extend to a broader class of competition networks. We first broaden the class of competition 
networks under consideration by giving a more general definition of homogeneity/heterogeneity that is based 
on the adjacency matrix of the dispersal graph without imposing any restrictions on the values of the migration 
rate constants. Then by combining concepts and results from game theory, chemical reaction network theory 
(CRNT) and dynamical systems, we provide a mathematical proof for the numerical observations in35, general-
izing the scope of application to cover this broader class of competition networks within the patches. Specifically, 
we first consider a mean-field ODE model that describes the intra-patch dynamics in the absence of migration. 
The equilibrium point of this mean-field model is closely related to the Nash equilibrium (NE) of a symmetric 
zero-sum game and thus by analyzing the NE of the game, the behaviour of the coexistence equilibrium within 
each patch can be deduced. Then we borrow from CRNT the concept of detailed-balancedness37,38, a key feature 
for the kind of metapopulation models used in35, but not made explicit in it. We define a metapopulation model 
to be detailed-balanced if there exist positive equilibrium species proportions (or relative abundances) for which 
the overall migration rate of each species between any two patches is zero. Then, by assuming that our meta-
population model is detailed-balanced, we provide a mathematical proof for the numerical observations of35, 
which shows that these numerical observations are not only valid for a three-species cyclic competition system, 
but also apply to any n-species tournament for which a coexistence equilibrium exists.

Notation: Below is a list of symbols and notations used in this paper. 

Symbol Description

R
n
+ The set of n-dimensional real vectors with strictly positive entries only

xi The ith element of a column vector x = (x1, . . . , xm)
⊤ ∈ R

m
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Symbol Description

1
m The vector of dimension m with all entries equal to 1

0
m The vector of dimension m with all entries equal to 0

Sn
The unit simplex {x ∈ R

n |
∑n

i=1 xi = 1, 0 ≤ xi ≤ 1} spanned by the 
standard unit vectors ei

Sn+ The interior of Sn

x

z
The element-wise quotient vector with 

(

x

z

)

i
:= xi

zi

Ln x The element-wise logarithm with (Ln x)i := ln(xi)

Exp(x) The element-wise exponential, with 
(

Exp(x)
)

i
:= exi

Aij The entry in the ith row and jth column of the matrix A

A
⊤ The transpose of matrix A

Im (A) The image (or range) of matrix A

diag (x)
The diagonal matrix with as entries the elements of x (in the same 
order)

Preliminaries
In this section, we highlight some terminologies, methods, and results from literature that will be used in this 
paper.

Species interactions and tournament matrices.  We shall assume, like in many theoretical approaches, 
that, within each patch, each species can compete against every other species and that this competition is asym-
metric such that for any pair of species, one is dominant over the other. These interactions can be represented 
by the paradigmatic reactions:

where species i dominates species j at a rate kij . In this way, the interactions among species within a patch can 
be represented by a complete directed graph (or tournament) G1 = (V1,E1) where V1 = {1, . . . , n} is the set of 
species (vertices) and E1 is the set of the edges (arrows) that point from the competitive subordinate to the com-
petitive dominant. An edge from node j to node i in the graph G1 is assigned a weight equal to kij . Equivalently, 
this tournament can be coded in an n× n tournament matrix T in which Tij = kij if species i outcompetes spe-
cies j at a rate kij and Tij = −kji if species j outcompetes species i. If i = j , then Tij is set to 0. We refer to Fig. 1 
for an example.

Mean‑field model and coexistence equilibrium.  In a single patch system, we assume that the population dynam-
ics are governed by a mean-field model that tracks the deterministic time evolution of the proportions of com-
peting species assuming that: (1) there are a large number of competing individuals within the patch and (2) 
the contact rates between members of the competing species follow a mass-action rule. Thus, the intra-patch 
dynamics are described by a system of ordinary differential equations (ODE system):

where xi ∈ [0, 1] denotes the proportion of species i and x = (x1, . . . , xn)
⊺ . An equilibrium point (equilibrium 

from here on) x∗ ∈ Sn of this system satisfies

i + j
kij
−→ i + i,

(1)ẋi = xi(Tx)i ,

x∗i
(

Tx
∗
)

i
= 0, i = 1, . . . , n.

Figure 1.   A 5-species tournament with corresponding tournament matrix.
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An equilibrium x∗ ∈ Sn+ is called a coexistence equilibrium. To guarantee the existence of such an equilibrium, 
the linear system of equations

must have a solution in Rn
+ . Obviously, if u is a solution, then also qu is, for any q ∈ R+ . Hence, if there is a solu-

tion, then the mean-field model admits a coexistence equilibrium x∗ ∈ Sn+.

Relationship with game theory.  The properties (i.e., existence and stability) of the coexistence equilibrium of 
the mean-field ODE system (1) can be deduced from the behavior of the Nash equilibrium (NE) strategy of a 
corresponding zero-sum game. This is because the ODE system (1) is equivalent with the celebrated replicator 
equation of evolutionary game theory, which describes how a population of pure strategies evolves over time in 
a symmetric, two-player zero-sum game defined by the payoff matrix T10,39,40. Here, the n species represent a set 
of pure strategies available to each player and xi represents the probability of a player using the pure strategy i at 
time t. A strategy for a player is a vector x = (x1, . . . , xn)

⊤ ∈ Sn indicating the probabilities of using the n pure 
strategies at time t. A strategy is pure if it is a unit vector, otherwise it is mixed. A strategy x is called completely 
mixed if it belongs to Sn+ . Solving an evolutionary game amounts to finding an optimal strategy x∗ ∈ Sn , called a 
Nash equilibrium (NE), such that for all y ∈ Sn it holds that

The NE is said to be strict if equality holds only for y = x
∗.

The NE of a symmetric matrix game is closely related to the equilibrium of the replicator Eq. (1) via a theorem 
known as the folk theorem of evolutionary game theory41, which states that; 

(a)	 x
∗ is an equilibrium of (1) if x∗ ∈ Sn is a NE of the game defined by the payoff matrix T ; and

(b)	 x
∗ is a NE of the game defined by the payoff matrix T if x∗ is a stable equilibrium of (1) or x∗ is the ω-limit 

of an orbit x(t) in Sn+.

It has already been shown that every symmetric matrix game admits at least one NE41, so that System (1) is guar-
anteed to have at least one equilibrium. In particular, the vertices ei of the simplex Sn are always equilibria of (1). 
In addition, the simplex Sn contains one or no equilibrium in its interior39. Thus, if a coexistence equilibrium for 
System (1) exists, then it is unique.

Since 
∑n

i=1 ẋi = 0 , any solution of System (1) that starts on the plane 
∑n

i=1 xi = 1 remains there. Furthermore, 
if xi(0) = 0 , then xi(t) = 0 for all t, so that the faces of the simplex Sn , and therefore Sn itself, are invariant39. The 
same holds for all sub-simplices of Sn (which are given by xi = 0 for one or several i).

In this work, we are interested in System (1) for which a coexistence equilibrium exists and is stable. Thus, we 
consider competition networks for which the corresponding matrix game is completely mixed. In other words, 
games in which the optimal strategy NE is unique and completely mixed. It has already been shown that all two-
person zero-sum games with skew-symmetric payoff matrices of even order are never completely mixed and 
hence the coexistence of an even number of species is not possible42. Kaplansky provided necessary and sufficient 
conditions for the game to be completely mixed43. That is, a two-player, symmetric, zero-sum game is completely 
mixed if its payoff matrix T has rank n− 1 and all of its cofactors are different from zero and have the same sign. 
Furthermore, for games whose payoff matrices are of order 3 or 5, he went ahead to provide specific conditions 
for the game to be completely mixed. For instance, for n = 3 , the game with pay-off matrix

is completely mixed if and only if a, b, c are different from zero and have the same sign. The unique optimal strat-
egy is then given by (a/(a+ b+ c), b/(a+ b+ c), c/(a+ b+ c)) . For n = 5 , the symmetric game is completely 
mixed if and only if the following five expressions

have the same sign and the unique optimal strategy is then proportional to them. These conditions were later 
extended to odd-ordered skew-symmetric payoff matrices44.

Finding the stable coexistence equilibrium of (1) is thus equivalent to finding the optimal strategy NE of the 
corresponding completely mixed matrix game. Interestingly, the problem of finding the NE for a two-person, 
zero-sum symmetric matrix game can be reduced to solving an appropriately defined linear programming 
problem45.

Tu = 0
n

y · Tx∗ ≤ 0.

T =

[

0 c − b
−c 0 a
b − a 0

]

T25T34 − T35T24 + T45T23

−T15T34 + T35T14 − T45T13

T15T24 − T25T14 + T45T12

−T15T23 + T25T13 − T35T12

T14T23 − T24T13 + T34T12
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Neutral stability.  Following46, we show that if System (1) admits a coexistence equilibrium, then it is neutrally 
stable. In other words, we show that if all the species coexist, then their proportions cycle neutrally around the 
coexistence equilibrium. To do so, we consider the Lyapunov function

By Gibbs inequality47, V(x) is positive in Sn+ and V(x) = 0 only if x = x
∗ . Taking the time derivative of V, we 

have (using Tij = −Tji):

Hence, V is a constant of motion: all orbits t → x(t) of the mean-field model remain on constant level sets of V. 
This implies that all orbits in Sn+ are closed orbits surrounding x∗.

Detailed‑balanced single species mass action reaction networks.  We first recall the concept of 
detailed-balancing from CRNT as it will be instrumental when deriving the main results of this paper. With this 
formulation, the modelling of dispersion among patches is carried out analogously as in the case of detailed-
balanced mass action chemical reaction networks37,38. We briefly explain the relevant aspects.

Consider a network of r reversible chemical reactions occurring among the chemical species C1,C2, . . . ,Cm . 
Each of these r reversible reactions has a species Cj as substrate and another species Ck as product (with j  = k ). 
Let Ajk (resp. Akj ) denote the mass action rate constant of the forward (resp. reverse) reaction in (3):

Since all reactions are reversible, it holds that Ajk > 0 ⇔ Akj > 0 and Ajk = 0 ⇔ Akj = 0 , for any j  = k.
We associate a finite asymmetric directed graph G2 = (V2,E2) with the reaction network, where 

V2 = {1, . . . ,m} is the set of species and an edge (j, k) in E2 is associated with each reversible reaction (3). The 
incidence matrix B ∈ R

m×r associated with the graph G2 (see, e.g.,48) is defined as follows:

Let xj denote the concentration of species Cj , for j = 1, . . . ,m . Let vp denote the overall rate of the pth reaction 
in the direction of the pth edge in G2 . Then the dynamics of the chemical reaction network can be described by 
the equation

where x = (x1, x2, . . . , xm)
⊤ and v = (v1, v2, . . . , vr)

⊤ . Since each reaction of the network is governed by mass 
action kinetics, if the pth reaction of the network is described by (3), then

Define kforwp := Ajk and krevp := Akj . A thermodynamic equilibrium for the network is a vector of equilibrium 
concentrations x∗ ∈ R

m
+ for which v = 0

r . A reversible chemical reaction network is said to be detailed balanced 
if it admits a thermodynamic equilibrium. In other words, a detailed-balanced single species reversible reaction 
network is one for which there exists an equilibrium x∗ at which the overall reaction rate of every reversible 
reaction of the network is zero. Thus, if x∗j  and x∗k denote the concentrations of Cj and Ck at a thermodynamic 
equilibrium x∗ , then it holds that Ajkx

∗
j = Akjx

∗
k . It is clear from Eq. (5) that if u is a thermodynamic equilib-

rium, then also qu is, for any q ∈ R+ . Hence, we can choose a thermodynamic equilibrium z∗ ∈ Sm+ . Now define

Define Keq := (K
eq
1 ,K

eq
2 , . . . ,K

eq
r )⊤ and note that Keq = Exp(B⊤Ln(z∗)) . From this, the condition for detailed 

balancing of a reversible single species chemical reaction network can be derived.

Proposition 1  A reversible single species mass action chemical reaction network is detailed balanced if and only if

As mentioned in (37, Remark 3.1), from condition (6), it follows that any w ∈ R
r satisfying Bw = 0

m will 
also satisfy 

∑r
p=1 wp ln

(

K
eq
p

)

= 0 . This leads to the well-known Wegscheider conditions49 for detailed balanc-
ing given by

(2)V(x) = −

n
∑

i=1

x∗i ln
xi

x∗i
.

V̇(x) = −

n
�

i=1

x∗i
ẋi

xi
= −

n
�

i=1

x∗i (Tx)i = −

n
�

i=1

x∗i





n
�

j=1

Tijxj



 =

n
�

j=1

xj

�

n
�

i=1

Tjix
∗
i

�

=

n
�

j=1

xj
�

Tx
∗
�

j
= 0.

(3)Cj ⇋ Ck .

Bjp =







−1, if Cj is the substrate of the pth reversible reaction
1, if Cj is the product of the pth reversible reaction
0, otherwise

.

(4)ẋ = Bv,

(5)vp = Ajkxj − Akjxk .

K
eq
p :=

z∗k
z∗j

=
Ajk

Akj
=

kforwp

krevp

.

(6)Ln
(

K
eq
)

∈ Im
(

B
⊤
)

.
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Hence, the reversible reaction network

with strictly positive rate constants is always detailed balanced, whereas the cyclic reversible reaction network

with strictly positive rate constants is detailed balanced if and only if A12A23A31 = A21A32A13.
We now describe the compact mathematical formulation for a detailed-balanced network derived in37. This 

formulation will be crucially used for deriving the main results of this paper. Let (3) denote the pth reaction of 
a detailed-balanced single species network with a thermodynamic equilibrium z∗ ∈ Sm+ . Define

For any other vector of concentrations x ∈ R
m
+ , it follows from Eq. (5) that the overall rate of the pth reaction in 

the forward direction is given by

Define K := diag(κ1, κ2, . . . , κr) . Then it can be verified that the vector v of reaction rates is given by

Define Z∗ := diag(z∗) . From Eq. (4), it now follows that the dynamics of the detailed-balanced single species 
reaction network is described by the equation

Equation (8) will be used to provide an analogous formulation for the modelling of migrations of species among 
the different habitat patches of the metapopulation.

Metapopulation models
We now derive the metapopulation model used in this paper. We start by deriving a general metapopulation 
model that is based on the seminal work of Levin50. Assuming that the inter-patch migrations are detailed-
balanced, we make use of the formulation in Eq. (8) to derive a balanced metapopulation model. We then show 
that the balanced model admits a unique coexistence equilibrium that is asymptotically stable if the dispersal net-
work is heterogeneous, whereas the same equilibrium is neutrally stable in the case of a homogeneous network.

General metapopulation model.  Mathematical models based on traditional metapopulation theory 
usually assume that the metapopulation is made up of many neighboring spatially homogeneous habitat patches 
connected via dispersal. Consider an interconnected network of m discrete patches each being inhabited by the 
same n species. In addition, assume that species can migrate from one patch to some or all of the other patches. 
The rate of migration of each species between two patches is directly proportional to the proportion of the par-
ticular species in the originating patch, with a (nonnegative) constant of proportionality being the same across 
species. This constant of proportionality will be referred to as the rate constant associated with the migration. 
It is assumed that if there is migration between two given patches, then it is bidirectional, i.e., the rate constant 
of migration from j to k is strictly positive if and only the same holds for the migration from k to j. Just like in 
the case of a reversible single-species chemical reaction network, inter-patch migrations may be described by a 
weighted symmetric directed graph G2 = (V2,E2) where V2 = {1, . . . ,m} is the set of patches (vertices) and an 
edge (j, k) ∈ E2 means that every species can migrate from patch j to patch k. Finally, it is also assumed that the 
graph G2 corresponding to the inter-patch migration is connected, i.e., there is a path between every two distinct 
vertices of the graph.

The flow of species between the patches can be summarized in a weighted m×m adjacency matrix A with 
entry Ajk being equal to the rate constant of migration of species from the jth to the kth patch. The diagonal ele-
ments of A are hence equal to 0. Due to the bidirectional nature of migration, it holds that Ajk > 0 ⇔ Akj > 0 
and Ajk = 0 ⇔ Akj = 0 , for any j  = k . Let � = diag(δ1, . . . , δm) denote the m-dimensional diagonal matrix 
whose jth entry is given by

r
∏

p=1

(

kforwp

)wp

=

r
∏

p=1

(

krevp

)wp

.

(7)C2⇋C1⇋C3

C1

A
21

−−
−⇀

↽
−−
−
A
12

A
13

−−−⇀
↽−−−A
31

C2
A23−−−⇀↽−−−
A32

C3

κp := Ajkz
∗
j = Akjz

∗
k .

vp = κp

(

xj

z∗j
−

xk

z∗k

)

.

v = −KB
⊤
(

x

z∗

)

.

(8)ẋ = −BKB
⊤
(

x

z∗

)

= −

(

BKB
⊤(Z∗)−1

)

x.
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Define L := �− A
⊤ . Note that

Let x ∈ Smn , with xi,j the proportion of species i in patch j across the entire metapopulation, then the net migra-
tion rate ψi,j of species i from other patches to patch j is given by

Let us denote �i :=
(

ψi,1,ψi,2, . . . ,ψi,m

)⊤ and ri :=
(

xi,1, xi,2, . . . , xi,m
)⊤ , then

Within each patch, the proportions of species are affected by other patches only via migration. Let φi,j denote 
the rate of change of the proportion of species i in patch j in the absence of migration. Since the dominance 
relationships among the species (described by a tournament matrix T ) are assumed to be the same for all patches 
and since the habitat patches are spatially homogeneous, the expression for φi,j is given by the right-hand side 
of System (1):

where pj :=
(

x1,j , x2,j , . . . , xn,j
)⊤ , i = 1, . . . , n and j = 1, . . . ,m . Assuming migration among the patches, the 

proportion of a species within a patch is influenced by two factors: the first is the interaction with other species 
within the patch and the second is the migration of that particular species to or from other patches. Thus, the 
metapopulation model describing the dynamics of the n species in the m-patch network is described by the 
system of mn differential equations;

This system evolves on the unit simplex Smn.

Proposition 2  The unit simplex Smn is positively invariant for System (11).

Proof  To show the invariance of the unit simplex Smn under the flow of System (11), it suffices to show that each 
of the faces of the simplex cannot be crossed, i.e., the vector field points inward from the faces of Smn.

On the one hand, if xi,j = 0 for some i, j, then

which implies that xi,j = 0 cannot be crossed from positive to negative. In an ecological context, this condition 
simply states the obvious fact that an extinct species is in no danger of declining. On the other hand, if xi,j = 1 
for some i, j, then obviously xl,k = 0 for any l  = i or k  = j and

Hence, the vector field associated with System (11) points inward from the faces of Smn . So, Smn is positively 
invariant under the flow of System (11). 	�  �

Note that Proposition 2 does not exclude the solution trajectories of System (11) from approaching the bound-
ary equilibria of the system as t → ∞ . We call metapopulation model (11) persistent if for every x0 ∈ Smn

+  , the 
ω-limit set ω(x0) does not intersect the boundary of Smn . In other words, a metapopulation model is persistent 
if the initial existence of all the species implies that none of the species goes extinct with the passage of time.

Balanced homogeneous and heterogeneous metapopulation models.  We say that the inter-
patch migration of a metapopulation model is detailed balanced if the overall migration rate of any species 
between any two patches is zero for a certain positive set of proportions of that species in the different patches. 
From the theory of detailed-balanced reaction networks described in “Detailed-balanced single species mass 
action reaction networks” section, it follows that a detailed-balanced inter-patch migration network corresponds 
to a detailed-balanced single species mass action reaction network. Let B denote the incidence matrix corre-
sponding to the directed graph G2 describing the inter-patch migrations and let r denote the number of edges 
in G2 . Comparing Eqs. (8) and (9), it follows that if the inter-patch migration is detailed balanced, then there 
exist diagonal matrices K ∈ R

r×r and Z∗ ∈ R
m×m with positive diagonal entries such that (1m)⊤Z∗

1
m = 1 and

δj =

m
∑

k=1

Ajk .

(1m)⊤L = (1m)⊤�−
(

A1
m
)⊤

= (0m)⊤.

ψi,j =

m
∑

k=1

Akjxi,k −

m
∑

k=1

Ajkxi,j =

m
∑

k=1

Akjxi,k − δjxi,j = −

m
∑

k=1

Ljkxi,k .

(9)�i = −Lri .

(10)φi,j = xi,j
(

Tpj

)

i
,

(11)ẋi,j = φi,j + ψi,j = xi,j
(

Tpj

)

i
− (Lri)j , i = 1, . . . , n, j = 1, . . . ,m.

ẋi,j =

m
∑

k=1

Akjxi,k ≥ 0,

ẋi,j = −δj < 0.

L = BKB
⊤(Z∗)−1.
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Let Z∗ = diag(z∗) . Equation (9) can now be rewritten as

Henceforth in this manuscript, we restrict our analysis to metapopulation models of type (11) for which the 
interactions within each patch correspond to a tournament with a completely mixed optimal strategy and whose 
inter-patch migration is detailed balanced. Such metapopulation models will be referred to as balanced metap‑
opulation models.

We have seen earlier in “Species interactions and tournament matrices” section that if the interactions within 
every patch correspond to a tournament with a completely mixed optimal strategy, then the corresponding mean-
field model admits a unique coexistence equilibrium y∗ ∈ Sn+ with Ty∗ = 0

n . Thus, for a balanced metapopulation 
model, System (10) can be rewritten as

where Y∗ := diag(y∗) . Consequently, from Eqs. (11)–(13), it follows that the dynamics of a balanced metapopula-
tion model containing n species and m patches can be described by mn differential equations

If all the elements of z∗ in the above equation are equal, i.e., if z∗j = 1
m for j = 1, . . . ,m , then we say that the 

balanced metapopulation model is homogeneous, otherwise we call it heterogeneous. Whether a balanced meta-
population model is homogeneous or not can be checked from the adjacency matrix A corresponding to its 
inter-patch migration graph G2 . If A is symmetric, then the model is homogeneous, otherwise it is heterogeneous.

Remark 3  In35, the authors assume that migrations from one patch to other patches are random with a probability 
of migration (or migration constant) equal to the reciprocal of the number of dispersal links from a patch to 
other patches. They thus define a dispersal graph to be homogeneous if all nodes have the same degree (number 
of links), otherwise the graph is heterogeneous. With this definition, homogeneity, in general, is equivalent to 
the existence of cycles in the dispersal graph, whereas heterogeneity is equivalent to their absence. However, with 
our new definition, it is clear that this is not necessary. An example of such a case is shown in Fig. 2.

Coexistence equilibrium and its uniqueness.  In this section, we present a theorem that gives an expres-
sion for a coexistence equilibrium of a balanced metapopulation model. Before we state our main theorem in this 
section, we need the following lemma.

Lemma 4  Let B ∈ R
m×r denote the incidence matrix of a finite connected directed graph G2 and let K ∈ R

r×r 
denote a diagonal matrix with positive diagonal entries. For any w ∈ R

m
+ , it holds that −w

⊤
BKB

⊤
(

1
m

w

)

≥ 0 . 
Moreover −w

⊤
BKB

⊤
(

1
m

w

)

= 0 if and only if w = q1m , where q ∈ R+.

Proof  Assume that the pth edge of the graph G2 is directed from vertex ip to vertex jp . Hence, Bipp = −1 , Bjpp = 1 
and Bkp = 0 for ip  = k  = jp . Thus,

(12)�i = −BKB
⊤
(

ri

z∗

)

.

(13)φi,j = xi,j

(

TY
∗

(

pj

y∗

))

i

,

(14)ẋi,j = xi,j

(

TY
∗

(

pj

y∗

))

i

−

(

BKB
⊤
(

ri

z∗

))

j
, i = 1, . . . , n, j = 1, . . . ,m.

Figure 2.   Left: A heterogeneous dispersal graph according to35. Right: A homogeneous dispersal graph 
according to our definition.
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Moreover, −w
⊤
BKB

⊤
(

1
m

w

)

= 0 if and only if wjp = wip for p = 1, . . . ,m , which is equivalent with B⊤
w = 0

r.
Since the graph G2 is connected, we recall from48 that rank(B) = m− 1 and furthermore ker(B⊤) = 1

m . 
Therefore B⊤

w = 0
r if and only if w = q1m , where q ∈ R+ . This completes the proof. 	�  �

We now state the main theorem of this section.

Theorem 5  A balanced metapopulation model described by System (14) admits a unique coexistence equilibrium 
x
∗ ∈ Smn

+  . The proportion x∗i,j of species i in patch j at the unique coexistence equilibrium is given by

for i = 1, . . . , n and j = 1, . . . ,m.

Proof  We divide the proof into two parts. In the first part we prove that System (15) indeed yields an equilibrium 
for the model. In the second part, we prove that this coexistence equilibrium is unique.

Let us define

For x∗ to be an equilibrium of System (14), it should render the right-hand side equal to zero. Note that

and

In addition,

Thus, x∗ is a coexistence equilibrium of System (14).
Assume that there exists another coexistence equilibrium x∗∗ ∈ Smn

+  . Let x∗∗i,j  denote the corresponding pro-
portion of species i in patch j and define

It follows that for any i, j it holds that

Multiplying both sides of this equality with 
x∗i,j
x∗∗i,j

 , we get

Summing the left-hand side of the above expression over the different species and patches, we get

Now consider the two terms in the left-hand side of the above equality separately. For the first term, note that 
for any j it holds that

−w
⊤
BKB

⊤

(

1
m

w

)

=

m
∑

p=1

(wjp − wip )κp

(

1

wip

−
1

wjp

)

=

m
∑

p=1

κp

wipwjp

(

wjp − wip

)2
≥ 0.

(15)x∗i,j = y∗i z
∗
j .

p
∗
j :=

(

x∗1,j , x
∗
2,j , . . . , x

∗
n,j

)⊤

= z∗j y
∗; r

∗
i :=

(

x∗i,1, x
∗
i,2, . . . , x

∗
i,m

)⊤
= y∗i z

∗.

TY
∗

(

p
∗
j

y∗

)

= z∗j TY
∗
1
n = z∗j Ty

∗ = 0
n

BKB
⊤

(

r
∗
i

z∗

)

= y∗i BKB
⊤
1
m = 0

m.

(1mn)⊤x∗ =

n
∑

i=1

m
∑

j=1

x∗i,j =

n
∑

i=1

y∗i

m
∑

j=1

z∗j = 1.

p
∗∗
j :=

(

x∗∗1,j , x
∗∗
2,j , . . . , x

∗∗
n,j

)⊤

; r
∗∗
i :=

(

x∗∗i,1 , x
∗∗
i,2 , . . . , x

∗∗
i,m

)⊤
.

(16)x∗∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

−

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= 0.

x∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

−
x∗i,j

x∗∗i,j

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= 0.

(17)
m
∑

j=1

n
∑

i=1

x∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

−

n
∑

i=1

m
∑

j=1

x∗i,j

x∗∗i,j

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= 0.
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Hence,

For the second term, we find

Thus, Eq. (17) can be simplified as

Since y∗i > 0 for i = 1, . . . , n , it holds for any i = 1, . . . , n that

From Eq. (18) and Lemma 4, it follows that r∗∗i = qiz
∗ with qi ∈ R+ for i = 1, . . . , n . Thus, x∗∗i,j = qiz

∗
j  and 

p
∗∗
j = z∗j q for i = 1, . . . , n and j = 1, . . . ,m . Substituting the latter in the left-hand side of Eq. (16), we get

Since qi > 0 for i = 1, . . . , n , for Eq. (16) to hold, we should have Tq = 0
n . Also note that

Since the metapopulation model is balanced, it follows that q = y
∗ . Thus, x∗∗i,j = y∗i z

∗
j = x∗i,j for i = 1, . . . , n and 

j = 1, . . . ,m . This proves the uniqueness of the coexistence equilibrium x∗ . 	�  �

We now give examples of two balanced metapopulation models.

Example 1  It is easy to verify that the network shown in Fig. 3 corresponds to a balanced metapopulation model 
governed by System (14) with

n
∑

i=1

x∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

=

n
∑

i=1

x∗i,j

(

Tp
∗∗
j

)

i
=

n
∑

i=1

x∗i,j

(

n
∑

l=1

Tilx
∗∗
l,j

)

= −

n
∑

l=1

x∗∗l,j

(

n
∑

i=1

Tlix
∗
i,j

)

=−

n
∑

l=1

x∗∗l,j

(

n
∑

i=1

Tliy
∗
i z

∗
j

)

= −z∗j

n
∑

l=1

x∗∗l,j (Ty
∗)l = 0.

m
∑

j=1

n
∑

i=1

x∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

= 0.

−

n
∑

i=1

m
∑

j=1

x∗i,j

x∗∗i,j

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= −

n
∑

i=1

y∗i

m
∑

j=1

z∗j

x∗∗i,j

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= −

n
∑

i=1

y∗i

(

z
∗

r
∗∗
i

)⊤

BKB
⊤

(

r
∗∗
i

z∗

)

.

−

n
∑

i=1

y∗i

(

z
∗

r
∗∗
i

)⊤

BKB
⊤

(

r
∗∗
i

z∗

)

= 0.

(18)−

(

z
∗

r
∗∗
i

)⊤

BKB
⊤

(

r
∗∗
i

z∗

)

= 0.

x∗∗i,j

(

TY
∗

(

p
∗∗
j

y∗

))

i

−

(

BKB
⊤

(

r
∗∗
i

z∗

))

j

= qiz
∗
j
2

(

TY
∗

(

q

y∗

))

i

− qi

(

BKB
⊤
1
m
)

j
= qiz

∗
j
2
(Tq)i .

(1mn)⊤x∗∗ =

n
∑

i=1

m
∑

j=1

x∗∗i,j =

n
∑

i=1

qi

m
∑

j=1

z∗j =

n
∑

i=1

qi = 1.

Figure 3.   A metapopulation network composed of three patches. Each patch contains a local population 
composed of three species (1, 2 and 3), in cyclic competition, as shown by the black arrows. The red arrows 
denote migrations among the patches in the directions shown.
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y
∗ =

(

1
3 ,

1
3 ,

1
3

)⊤ , z∗ =
(

1
5 ,

2
5 ,

2
5

)⊤ and K = diag
(

1
10 ,

3
10 ,

1
10

)

 . Note that this metapopulation model is heteroge-
neous. From Theorem 5, it follows that the species proportions at the unique coexistence equilibrium for this 
model are given by x∗i,1 =

1
15 and x∗i,2 = x∗i,3 =

2
15.

Example 2  It is easy to verify that the network shown in Fig. 4 corresponds to a balanced metapopulation model 
governed by System (14) with

y
∗ = z

∗ =
(

1
3 ,

1
3 ,

1
3

)⊤ and K = 1
3 diag(12) . Note that this metapopulation model is homogeneous. From Theo-

rem 5, it follows that the species proportions at the unique coexistence equilibrium in this case are all given by 
x∗i,j =

1
9 for i, j = 1, 2, 3.

Stability.  We now prove the local stability of the unique coexistence equilibrium corresponding to the bal-
anced metapopulation model (14). For the proof, we make use of the same Lyapunov function as in “Neutral 
stability” section, coupled with LaSalle’s invariance principle51, (52, Section 4.2), (53, pp. 188–189).

Theorem 6  Consider the balanced metapopulation model (14) with coexistence equilibrium x∗ ∈ Smn
+  . 

1.	 If the model is heterogeneous, then x∗ is locally asymptotically stable w.r.t. all initial conditions in Smn
+  in the 

neighbourhood of x∗ . Furthermore, if the model is persistent, then x∗ is globally asymptotically stable w.r.t. all 
initial conditions in Smn

+ .
2.	 If the model is homogeneous and persistent, then as t → ∞ , the solution trajectories converge to a limit cycle 

satisfying the equation ẋi,j = xi,j(Tpj)i with xi,j = xi,k , for i = 1, . . . , n and j, k = 1, . . . ,m.

Proof  Let xi,j denote the proportion of species i in patch j. Assuming that x ∈ Smn
+  , consider the Lyapunov 

function

By Gibbs inequality, V(x) is positive on Smn
+  and is equal to zero only if x = x

∗ . Taking the time derivative of V, 
we have

From Eq. (14), it follows that

T =

[

0 1 − 1
−1 0 1
1 − 1 0

]

; B =

[

−1 0 1
1 − 1 0
0 1 − 1

]

;

T =

[

0 1 − 1
−1 0 1
1 − 1 0

]

; B =

[

1 − 1
0 1

−1 0

]

;

(19)V(x) = −(x∗)⊤Ln
(

x

x∗

)

.

V̇(x) = −

m
∑

j=1

n
∑

i=1

(

x∗i,j

xi,j

)

ẋi,j .

Figure 4.   A metapopulation network composed of three patches. Species can migrate from patch 1 to the other 
two patches and vice versa. However, there exists no migrations between patches 2 and 3.
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As in the proof of Theorem 5, it can be verified that

and

Thus,

Since y∗i > 0 for i = 1, . . . , n , it follows from Lemma 4 that V̇(x) ≤ 0 and V̇(x) = 0 if and only if ri = qiz
∗ with 

qi ∈ R+ , for i = 1, . . . , n . Thus,

for i = 1, . . . , n and j = 1, . . . ,m . Since (1mn)⊤x = 1 , we obtain

Let E ⊂ Smn
+  be the set of all vectors x for which condition (20) is satisfied with (1n)⊤q = 1 . We now determine 

the largest subset of E that is positively invariant w.r.t. System (14). Assume that x continuously takes values from 
E and satisfies System (14). Since x takes values from E , we have ẋi,j = z∗j q̇i . Since x also satisfies System (14), 
we have

Thus, z∗j q̇i = qiz
∗
j
2(Tq)i which implies that

for i = 1, . . . , n and j = 1, . . . ,m . We now consider two cases.

Case 1: The model is heterogeneous, i.e., the vector z∗ is not parallel to 1m.
In this case, Eq. (21) will be satisfied only if qi(Tq)i = 0 for i = 1, . . . , n . Since qi ∈ R+ for i = 1, . . . , n , it 

follows that Tq = 0
n . Since (1n)⊤q = 1 , we have q = y

∗ . This implies that xi,j = y∗i z
∗
j = x∗i,j for i = 1, . . . , n and 

j = 1, . . . ,m . Thus, the largest subset of E that is positively invariant w.r.t. System (14) consists of just the unique 
equilibrium x∗ ∈ Smn

+  . By LaSalle’s invariance principle, it follows that the equilibrium x∗ is locally asymptotically 
stable w.r.t. all initial conditions in Smn

+  in the neighbourhood of x∗ , and globally asymptotically stable w.r.t. all 
initial conditions in Smn

+  provided that System (14) is persistent.

Case 2: The model is homogeneous, i.e. z∗ = 1
m1

m

In this case, Eq. (21) takes the form q̇i =
qi
m (Tq)i . We have xi,j = qiz

∗
j =

qi
m and

Consequently, the largest subset of E that is positively invariant w.r.t. System (14) consists of all vectors x(t) ∈ Smn
+  

satisfying ẋi,j = xi,j(Tpj)i with xi,j = xi,k for i = 1, . . . , n and j, k = 1, . . . ,m . The proof for Case 2 again follows 
from LaSalle’s invariance principle. 	�  �

The above results can be illustrated by simulating System (14) for the metapopulation models shown in Fig. 3 
and 4 in Examples 1 and 2, respectively. The results of the simulations are shown in Figs. 5 and 6, respectively.
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Discussion and conclusion
In this paper, we have expanded the class of competition networks for which the numerical observations of Naga-
tani et al.35 are valid. This has been done, firstly, by giving a more general definition of homogeneity/heterogene-
ity of a metapopulation model that is based on the nature of the adjacency matrix of its inter-patch migrations 
rather than on the number of dispersal links as was previously done in35. Secondly, we have performed a stability 
analysis of the coexistence equilibrium of a metapopulation model whose inter-patch migration is assumed to 
be detailed balanced and whose intra-patch dynamics is governed by a mean-field ODE system with a coexist-
ence equilibrium. Detailed balancing, a well-known concept in chemical reaction network theory (CRNT), is 
a key feature of many metapopulation models and previous studies had not explicitly explored this concept. 
The motivation behind using concepts from CRNT is based on the fact that much of the interesting dynamical 
behavior observed in biological systems can be understood by analyzing the underlying chemical components 
and CRNT provides a unified mathematical approach to the study of chemical processes. The assumption of 

Figure 5.   Left: Dynamics of the metapopulation model in Fig. 3 for patches 1 and 3 showing asymptotic 
stability of the coexistence equilibrium. Right: The time evolution of the proportion of species 1 in the three 
patches.

Figure 6.   Left: Dynamics of the metapopulation model in Fig. 4 for patches 1 and 3 showing a limit cycle 
arising from the neutral stability of the coexistence equilibrium. Right: Time evolution of the proportion of 
species 1 in the three patches. Note that the dynamics in all patches are the same and thus the three graphs 
overlap.
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detailed balancing thus allows us to view the inter-patch migrations as a detailed balanced single species mass 
action reaction network and make use of the already available results on the latter.

The results show that the considered metapopulation model admits a unique coexistence equilibrium. By mak-
ing use of the Lyapunov function constructed in46, coupled with LaSalle’s invariance principle, it is shown that: 
(1) if the model is heterogeneous, then the coexistence equilibrium is locally asymptotically stable; it is globally 
stable if the considered metapopulation is persistent; (2) if the model is homogeneous and persistent, then the 
dynamics of the model is analogous to that of a single well-mixed patch; in this case, the coexistence equilibrium 
is neutrally stable. These results provide a mathematical support for the numerical results of35 and demonstrate 
that the numerical observations extend beyond the three-species cyclic systems to a larger class of networks.

It should, however, be noted that, as in35 and most metapopulation models, the above results have been 
achieved by examining the simplified case in which the patches are assumed to be homogeneous and contain a 
local population in which individuals are well mixed. In addition, it is assumed that all the patches contain the 
same species. Although this assumption is far from real metapopulations, it makes the mathematical analysis 
tractable and provides a starting point for future analysis of more realistic metapopulation models. However, the 
results reaffirm the intuition held by many community ecologists that spatial heterogeneities in the landscape 
can have profound effects on the dynamics of populations within an environment. In the metapopulation frame-
work, these heterogeneities come in many forms ranging from differences in dispersal rates among the patches 
to patch size distributions, among others. Also the fact that fragmented habitats are more likely to present some 
level of spatial heterogeneity underlies the importance of the metapopulation framework in studies for nature 
conservation.
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