
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14061  | https://doi.org/10.1038/s41598-021-93387-2

www.nature.com/scientificreports

A random walk model 
that accounts for space occupation 
and movements of a large 
herbivore
Geoffroy Berthelot1,2,3*, Sonia Saïd4 & Vincent Bansaye1

Animal movement has been identified as a key feature in understanding animal behavior, distribution 
and habitat use and foraging strategies among others. Large datasets of invididual locations often 
remain unused or used only in part due to the lack of practical models that can directly infer the 
desired features from raw GPS locations and the complexity of existing approaches. Some of them 
being disputed for their lack of biological justifications in their design. We propose a simple model of 
individual movement with explicit parameters, based on a two-dimensional biased and correlated 
random walk with three forces related to advection (correlation), attraction (bias) and immobility 
of the animal. These forces can be directly estimated using individual data. We demonstrate the 
approach by using GPS data of 5 red deer with a high frequency sampling. The results show that a 
simple random walk template can account for the spatial complexity of wild animals. The practical 
design of the model is also verified for detecting spatial feature abnormalities and for providing 
estimates of density and abundance of wild animals. Integrating even more additional features of 
animal movement, such as individuals’ interactions or environmental repellents, could help to better 
understand the spatial behavior of wild animals.

Animals live in an environment that is patchy and hierarchical, and the manner in which individuals search for 
spatially dispersed resources is crucial to their success in exploiting them1. At the same time, the tracking of 
animals using the modern global positioning system (GPS) now allows for the collection of important datasets on 
animal locations2. They are often used for the analysis of the home range behavior, i.e. restrict their movements 
to self-limited portions of space far smaller than expected from their sole locomotion capacities3 and, more 
generally, to better understand the spatial and temporal behavior of animals4,5. New, smaller and reliable devices 
allow for gathering large datasets (e.g. locations or activity data for instance) at a finer temporal and spatial scale 
and offer a greater opportunity to investigate animal movement at the individual scale. However, datasets often 
remain only partially used due to both the lack of practical models that can directly infer the desired features 
from raw GPS locations and the complexity of existing approaches. Meanwhile, ecologists in particular are called 
to develop new capabilities to deal with these large datasets6,7.

The modeling of animal movement includes a wide range of methodologies: biased and/or correlated ran-
dom walks (BCR)8–11, the disputed Lévy Flight/walk12–16, Stochastic Differential Equation (SDE)17–20 includ-
ing diffusion models based on the two-dimensional Ornstein-Uhlenbeck process21–25, Hidden Markov Models 
(HMMs)26–28, state space models29, step-selection functions30 and other more exotic algorithms using ad-hoc 
rules to mimic movement features such as memory31,32. Lévy Flight has convenient patterns but ecological 
motivations are scarce15. SDE -the continuous analog of BCR—or the Brownian bridge and Movement Model33 
may be used to interpolate the trajectory between two observations. SDE includes a drift (directional) and one 
or several random diffusion processes20,34. A comprehensive review on the modeling of individual animal move-
ment underlines the complexity and lack of biological meaning in some of these methods35.

BCRs are simple and convenient tools to model animal movement as the discrete time is well adapted to 
regular GPS data34. The parameters of the BCR can be directly interpreted in terms of the behavior of the animal 
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and the resulting movement pattern is directly related to the set of chosen parameters. In other state-switching 
models, the resulting pattern may instead be a composite of states that may not be biologically meaningful with 
regard to behavioural states35. BCR are tractable and flexible in their design and ecologists can use them to model 
a particular behavior, including parameters that correspond to the attraction of some locations, the inertia and 
memory feature of the movement, time dependence of the movement, local interactions with other individuals, 
etc. Some key features of animal movement have already been identified by previous studies, including diffusion 
(or randomness) which corresponds to an isotropic random motion, where the individual has the same prob-
ability to go in all directions; Attraction (directional bias) where the movement of the animal is anisotropic and is 
confined in an area or domain, according to36 and other studies3, while the attraction may depend on the distance 
from the isobarycenter of locations37; Inertia (correlated component) where the movement of the animal is also 
shaped by foraging tasks where the animal alternates exploration periods—the path has high tortuosity—with 
straightforward movements38. These three features can be implemented as parameters of a BCR.

More precisely, the advantages of using a BCR approach are:

•	 parsimony: the BCR dynamics are only depending on the set of parameters. They do not depend on additional 
or ad-hoc parameters. All the parameters can directly be inferred from the dataset,

•	 interpretation: each parameter can be directly interpreted in terms of animal behavior and ecology,
•	 flexible design: the number of parameters can be easily modified and the BCR can also be simulated in con-

tinuous or discrete time and space, depending on the process we wish to model,
•	 well adapted to positioning data: the approach is adapted to discrete time series such as positioning data and 

can be used independently of the time and spatial scales of the dataset. Thus, it can directly exploit the data 
without the requirement of any additional procedure for data preparation.

This study aims at modeling animal movement of sedentary individuals over short periods of approximatively 
1 year39, without reproduction and in a homogeneous landscape using GPS data sets and a BCR. The model 
is implemented with the three aforementioned parameters and we use the GPS dataset of 5 red deer (Cervus 
elaphus) to demonstrate the approach (pictured in Fig. 1). We also study how the temporal resolution (i.e. the 
sampling rate) affects the estimations of the three parameters. We finally challenge this approach as a practical 
tool for inferring environmental and behavior information from the dataset.

Methods
A simple methodological framework was established for testing the BCR model using empirical datasets, consist-
ing of the GPS data of 5 animals. For each of these 5 animals, the three parameters were accordingly tuned using 
a straightforward estimation procedure. This procedure uses the empirical datasets to infer the parameters’values 
(Fig. 1). We also used the datasets to assess the model’s reliability—or performance-. We also detail other analyzes 
that were carried out to ensure the robustness and consistency of the approach, including the deterministic nature 
of the 5 statistics and a sensitivity analysis. This analysis consists in evaluating the performance of the BCR using 
a sweep method that produce arbitrary values of the parameters instead of using data-driven estimations. All 
BCR simulations and the five statistics were performed using MATLAB Version 7.13.0.564 (R2011b).

Data.  The locations of 5 GPS-collared red deer (Cervus elaphus) were gathered at La Petite Pierre National 
Hunting and Wildlife Reserve (NHWR), in north-eastern of France (48.8321 (Lat.) / 7.3514 (Lon.)). The reserve 
is an unfenced 2670 ha forest area characteristics by deciduous trees (mostly Fagus sylvatica) in the western 
part and by coniferous species (mostly Pinus sylvestris and Abies alba) in the eastern part in nature reserve sur-
rounded by crops and pastures. It is located at a low elevation area of the Vosges mountain range, which rises 
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Figure 1.   Framework used for testing the BCR model performance, for one animal. Black lines detail the two 
operations processed from the GPS dataset. The 3 parameters are estimated from the GPS data and—using these 
parameters—1000 simulations of the BCR model are computed. No particular operations are associated with 
the dotted black lines, but they show how the BCR and the GPS dataset are evaluated and compared using the 
statistics.
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up to 400 m a. s. l. The climate is continental with cool summers and mild winters (mean January and July 
temperatures of 1.4 and 19.6 ◦ C, respectively, data from Phalsbourg weather station, Meteo France, from 2004 
to 2017). Three ungulate species are present and mainly managed through hunting in the NHWR: wild boar, 
red deer and roe deer. The present study focuses on female red deer for test model. A detailed overview of the 
landscape and surroundings is given in40. The GPS data had regular observation frequencies with high frequency 
sampling (Table 1). In the following text, we note Xi = [X

(1)
i ,X

(2)
i ] the locations of the individual with Xi ∈ R2 , 

i = 1, 2, . . . , n and where X(1)
i  , X(2)

i  represent the longitude and latitude respectively. We use ti ( t1 = 0 ) as the 
time elapsed between two successive locations Xi−1 , Xi and

as the average sampling time. The trajectory of the animal, or ‘path’, was interpolated using linear interpola-
tion between each pair of recorded observations (Fig. 2 and detailed in Supplementary Methods (Eq. 21) and 
associated Graphic 2). It approximates the animal travels in straight lines at constant velocity between each pair 
of locations41. The attractor XF of one individual was estimated as the isobarycenter of all recorded locations:

BCR model.  The model aims at estimating the location at the next time step, given the actual location X at 
step i:

such that the function f (·) is assumed to be representative of the behavior of the animal on sufficiently large time 
scales. We considered one individual of a given species with no interaction and simulated its movement in con-
tinuous space and discrete time in 2 dimensions. The BCR includes 3 parameters coupled with isotropic diffusion:

•	 Diffusion: A random direction with uniform spatial distribution in a 2D plane,
•	 Bias ( pF ): An increased probability to go to a fixed point named attractor42. This attractor was estimated as 

the isobarycenter of all recorded locations, defined as XF (Eq. 2). This yields a bias or advection parameter 
in the direction of XF . We use the term ’attraction’ for the bias component of the BCR and the term ’den’ for 
the attractor. In the data set we study, the den is equivalent to the deer’s bunk.

•	 Correlated component ( pI ): This parameter increases the probability to move forward, i.e. to perform one step 
in the direction of the previous step. This is equivalent to a short term bias in movement, when the animal 
has inertia. We refers to ’inertia’ for the correlated component,

•	 Immobility ( ps ): We included this as a specific parameter and the movement is stopped for one step. This 
takes into account the absence of movement between a pair of locations. It can be accredited to technological 
limitations with the satellite telemetry due to a weak GPS signal strength, possibly due to natural elements: 
such as when the animal was standing underneath a rock or due to dense clouds, dust particles, mountains or 
flying objects, such as airplanes). However, this can also be part of the behavior of the animals, during specific 
times: sleep cycles or foraging for instance. We use dmin to denote this distance cutoff and set dmin = 10 m 
which corresponds to the magnitude of the error typically found in GPS locations43. We also use dmin to 
encapsulate GPS error and peculiar ecological behavior, not associated with pI or pF , that are beyond the 
scope of this study.

The effect of each parameter is detailed in Fig. 3. The typical model contains all three parameters: pI , ps and pF 
for describing animal motion while offering a trade-off between the number of parameters and the description 
of animal motion.
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]

(3)Xi+1 = f (Xi)

Table 1.   Data summary. For each animal, the total number of observations n is given along with the period 
of collection (date and time), the sampling rate T  (i.e. the average time between 2 observations) (in min.) and 
corresponding standard deviation, total distance (in kilometers), total recording time (in days) and average 
speed s (in 10−2 m.s-1).

Animal n Period of collection T  ±s.d. (min.) Tot. distance (km.) Time (d.) s ( 10−2 m s-1)

Deer 1 29,520 09/01/2010 00:00–11/08/2010 23:50 10.49 ±3.18 945.67 214.99 5.09

Deer 2 27,324 10/12/2009 00:00–24/06/2010 23:50 10.38 ±3.69 1030.97 196.99 6.06

Deer 3 23,301 16/03/2010 00:00–07/09/2010 23:41 10.88 ±8.67 876.33 175.99 5.76

Deer 4 24,735 22/01/2010 00:00–21/07/2010 23:51 10.54 ±5.16 898.38 180.99 5.74

Deer 5 21,451 16/01/2010 00:01–24/06/2010 07:31 10.69 ±10.11 785.93 159.31 5.71
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Estimation of the parameters.  The estimation of the three parameters for each animal is based on the empirical 
datasets. We distinguished between the states, where one state is described by the pair {Xi−1,Xi} and the situa-
tions, where one situation is described by the past ( Xi−1 ), current ( Xi ) and future ( Xi+1 ) locations. Knowing both 
the state of the animal at a given time step i and its situation—the realization of movement at the next time step 
i + 1—allowed for collecting the occurrences of inertia, immobilism and attraction. This could be done provided 
we account for the variability of the movement: the animal may not be heading exactly toward the den, or per-
forming inertia with an exact angular value of π . Thus we discretized the space around the animal in 8 quadrants 
at each time step i. For example, if the animal was heading straight forward with a margin of ±π/8 then it was 
considered in the situation of inertia. In other words, the state could fall in a situation of inertia with a margin of 
±π/8 . Such a discretization can be represented as a matrix, depending on the state of the animal, its location and 
the location of the den at each time step (see Supplementary methods, Eq. 19). In order to gather enough data 
samples per situation, we arbitrary used angular thresholds of π/8 as a convenient trade-off between data scar-
city and precision loss. Using smaller threshold values (say π/10 ) may result in too few samples per situations. 
Using larger threshold values such as π/4 may result in a loss of precision while capturing additional movement 
samples that may not correspond to the situation.

We first needed to define in which state is the animal at each step i. A state is the 2-tuple containing the previ-
ous and actual observation {Xi−1,Xi} . We wanted to distinguish between non-conflicting and conflicting states, 
where a non-conflicting state is when the animal is in one state only, while a conflicting state is when the animal 
is in two states at once. We defined two conflicting states:

when the animal was already heading toward the den XF , and:

when the distance between two consecutive observations was too small ( ≤ dmin m.), describing an individual 
that was already immobile. Such that the subset of non-conflicting states is:

(4)HIF := {i : ̂|Xi−1XiXF | ≤ π/8}

(5)HIs := {i : d(Xi−1,Xi) ≤ dmin}
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Figure 2.   Individual paths of the five red deer. Individual paths of the five red deer. The individual paths are 
plotted for the five red deer (left panel, a) along with the distribution of the relative turning angles (degrees) in 
polar plots (right panel, b). An angular value of 0 consists in a straight motion from the previous location, while 
a relative turning angle of 180 ◦ c corresponds to a turn back.
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We then needed to assess in which situation the animal was for each corresponding state. A situation is the 
3-tuple {Xi−1,Xi ,Xi+1} . We defined three subsets of situations corresponding to a straight forward motion (I), 
no motion (s) and a motion toward the den (F):

With d(·, ·) the Euclidean distance between two locations. For the situations in s, we considered that the animal 
is not performing a motion if the Euclidean distance between two successive locations was ≤ dminm.

We counted the number of states falling in each situation, for states in H (Eq. 6). We defined x1 , x2 , x3 as the 
empirical proportion of cases corresponding to each situation:

with χ = 8+ pI + ps + pF . The values of x1 , x2 and x3 were then gathered for each animal. We did not use 
immobile locations (i.e. distances separating two successive observations must be > dmin m) for the estimations 
of x1 and x3 . Solving Eq. (10) for χ with respect to x1 , x2 , x3 yields:

(6)H := {1, · · · , n} −HIF −HIs

(7)I := {i : π − π/8 < ̂(Xi−1XiXi+1) ≤ π + π/8}

(8)s := {i : d(Xi ,Xi+1) ≤ dmin}

(9)F := {i :| ̂Xi−1XtXi+1 − ̂Xi−1XiXF |≤ π/8}

(10)
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Figure 3.   Simulated animal motions over arbitrary parameter values. Fifty motions of length ns = 100 steps 
are simulated and originate from a common centroid (downward-pointing triangle) with increased levels of 
correlation ( pI ), immobility ( ps ) and bias ( pF ). Both the location of the attractor XF (black dot) and the log-
normal parameters controlling the step size distribution are fixed ( µ = 3 , σ 2 = 1).
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Plugging in Eq. 10:

Note that we assumed that pIF = pI + pF in HIF and pIs = pI + ps in HIs as a convenient arrangement and 
ignoring higher order conflicting cases. Investigating the step-size distribution in the 5 deers, we found a log-
normal step size distribution (Supplementary Fig. S1). We then set a log-normal distribution lnN(µ, σ 2) for 
the step size distribution for the step size in the BCR.

The same estimation procedure was used for configurations using a different number of parameters and 
quantity χ is accordingly calculated depending on the number of parameters used. It is possible to obtain negative 
values using this inference method. A parameter with a negative values reflects a direction that is not favored 
by the animal. In such a case, one should rethink the design of the BCR by changing the parameters (see Sup-
plementary methods, section “negative parameters”). In the subsequent sections, we only consider parameters 
with positives values.

BCR dynamics.  The BCR dynamics for each animal are completely determined by the three parameters pF , 
pI , ps , taking values in R+ , and the step-size distribution. If pF = pI = ps = 0 , the BCR resumes to a typical 
two-dimensional random walk with a log-normal step size distribution lnN(µ, σ 2) . The dynamics can be visu-
alized in Fig. 3 for different values of each parameter. When simulating a step in the model, the motion in H is 
described by:

with x, d, α1 random variables defined as x ∼ U ∈ [0,χ ] , d ∼ lnN(µ, σ) , α1 ∼ U ∈ [0, 2π] . Variables α2 , α3 
are related to the angular values α2 = atan2 (X2

i − X2
i−1,X

1
i − X1

i−1) , α3 = atan2 (X
(2)
F − X

(2)
i ,X

(1)
F − X

(1)
i ) with 

atan2 (y, x) the four quadrant inverse tangent function (14):

The motion in HIs is:

 The motion in HIF is:

Statistics for describing animal movement.  We simulated N = 1000 BCR and used 5 statistics to 
assess the model reliability on spatial features including: (i) the distribution of relative turning angles which pro-
vides information about the movement of the animal, (ii) the home range which provides information about the 
spatial density of observations and (iii) observation counts using still and mobile transects, providing informa-
tion on absolute observation abundance44. A detailed description of each statistic is provided in Supplementary 
Methods and Fig. S2. The reliability—or performance—was assessed in each animal and studied statistic using 
two error terms e1 and e2 . Error e1 is the L1 norm to compare the differences between the statistic S̃ computed 
over a simulated path, and the statistic S computed over the data-set:
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With k = 1, . . . ,N  the number of simulations of the BCR. Error e1 is the sum of absolute differences in the 
given statistic, and is a natural way of measuring the distance between the statistics computed on the data set 
and the trajectories generated using the BCR. We also focused on the average relative error e2 as an indicator of 
the sensitivity:

Distribution of turning angles.  For each individual, the distribution of counter-clockwise relative turning angles 
̂(Xi−1XiXi+1) was gathered, provided d(Xi−1,Xi) > dmin and d(Xi ,Xi+1) > dmin . This means that we only kept 

the angles from observations that were separated by an Euclidean distance greater than dmin.

Home range.  We used an adaptive kernel density estimator (matlab package kde2d—kernel density estima-
tion version 1.3.0.0) as an estimator of the utilization distribution45 to represent the home range of the animal. 
The approach of Z.I. Botev provided an estimate of observation density using a bivariate (Gaussian) kernel with 
diagonal bandwidth matrix46. The density was estimated over a grid of 210× 210 nodes and we computed the 
home range area (in m2) for various values: 100, 99, 95, 90, 80, ..., 20, 10% of the estimated density. Similarly to 
the distribution of turning angles, we compared each value of the data’s home range against the simulated one.

Dilation.  Dilation is generally used to account for the spatial attributes of an object such as to measure an area 
around the path or the volume of a brownian motion (see Wiener sausage47 and Gromov–Hausdorff distance). 
In our approach, we use dilation of both simulated and GPS paths for two reasons: to have a real—and compara-
ble—number that accounts for how a trajectory has explored space and because it is natural tool from a census 
point of view (the dilated path corresponds to the area where the animal can be detected). Each simulated or real 
path was plotted in binary format in a window and dilated with a disk shape. The window size was set to a huge 
value in order to encapsulate the dilated path while preventing boundary effects, i.e. the convex envelope of the 
dilated area did not collide with any window border. We then estimated the surface covered by the dilated path 
for 100 different sizes of the disk, from disk size 1 to disk size 100. We compared each value of the data’s estimated 
surface against the simulated one.

Immobile transects.  We used still transects that counted the number of times the animal was seen in their line 
of sight. We arbitrary set the line-of-sight value at 200 m. The number of sightings of each transect was gathered 
and ordered in decreasing order, thus breaking the spatial dependence. We then compared the bins of the result-
ing histogram in the data and in the simulated path.

Mobile transects.  First, the movement of the animal was linearly interpolated from the GPS data, meaning that 
between two recorded locations the individual followed a linear path. The speed of the animal between two loca-
tions was accordingly reconstructed using the recorded times ti between each location. Second, we used mobile 
transects as the ecological sampling method, where each transect ‘count’ the intersection between its path and 
the animal’s one. The mobile transects followed a predefined path at a given constant speed as time increased. 
The area of vision of each transect was defined as a circle of a given radius. Each time the path of an individual 
collided with an area of vision, the count of the corresponding transect increased by 1. Two types of movements 
were used: linear and clockwise rotational transects. The initial locations of both types of transects are X1 and 
XF . Both the animal and mobile transects started to move at the same time. At each of the two locations X1 , XF , 8 
linear transects moved in the 8 cardinal directions, totalizing 16 transects. For the linear transects, every 10,000 
time steps, we set 2× 8 new transects starting at the same locations and following the same directions. Clockwise 
rotational transects were rotated around X1 and XF using a 500 m radius. When we reached tn , we gathered the 
total count (i.e. the count of all transects). For the two types of transects, we gathered the total count for 6 dif-
ferent lines of sight: 50, 100, 200, 400, 500, 1000 m. and 4 speeds: s/4, s/2, s, 2 s with s the average speed of the 
animal. We then aggregated the overall count in each of the two types of transects, and compared the results 
from the data and the simulated path (Supplementary Methods and Fig. S2).

Scale invariance.  Several authors pointed out that the temporal resolution of the discretization is of impor-
tance: it should be relevant to the considered behavioral mechanisms5,48–50. Schlägel and Lewis focused on the 
quantification of movement models’ robustness under subsampled movement paths49. They found that increased 
subsampling leads to a strong deviation of the central parameter in resource selection models49,51. They under-
lined that important quantities derived from empirical data (e.g. parameters estimates, travel distance or sinuos-
ity) can differ based on the temporal resolution of the data49,51. Moreover, Postlethwaite and Dennis highlighted 
the difficulty of comparing model results amongst tracking-datasets that vary substantially in temporal grain50). 
Each of the studied dataset has a relatively high sampling rate (roughly 10 m) and a period of study that is appro-
priate to the analysis of animal movement at the year scale (Table 1). In order to investigate such a possible effect 
on the BCR dynamic, we changed the sampling rate of the movement path to ensure that the three parameters 

(17)e1 :=
∑

errors =

N
∑

k=1

|S − S̃k|

(18)e2 :=
1

N

N
∑

k=1

S̃k

S
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pI , ps and pF are scale invariant. The movement path formed by the GPS observations Xi was subsampled (deci-
mated) for each individual. We only kept every kth observation starting with the first one and k ∈ [1, 10] . For 
k = 1 the path corresponded to the original one. The time spent between each successive observation was also 
accordingly reconstructed in order to keep track of T  in subsampled movement paths. The time between two 
locations Xi and Xi+k was reconstructed as:

with j ∈ [1, 1+ k, 1+ 2k, . . . , n− (k − 1)] . We did not change the value of dmin as we subsampled the movement 
path because we designed ps for capturing GPS noise and movements that are associated with peculiar ecological 
behaviors that are beyond the scope of this study in terms of time and spatial scales (foraging for instance). We 
then compared the resulting parameters pI , pF and ps as the resampling rate k increased.

Fluctuations.  Whereas the BCR is a stochastic process, the deterministic aspects of the 5 statistics were 
tested with an increasing number of steps ns . The statistic associated with each realization of the model (a simu-
lated path) is a random variable. If the distribution of these random variables has low concentration (high vari-
ance) then it is not a convenient statistic as it cannot be used as a reference for assessing the model’s performance, 
even when averaging over multiples realizations. On the opposite, if the statistic is deterministic (no fluctua-
tions) it can provide a reliable tool to assess the model’s performance. This was numerically tested over a range 
of increasing ns values with ns = 104, 2× 104, . . . , 4× 105 . For each of those step values, a set of 100 BCR was 
simulated with parameters pI , pF and ps estimated from the first deer (see Table 2) and we studied the variance 
of the statistics.

Sensitivity analysis.  In order to assess whether the estimated parameters are optimal (i.e. providing the 
best possible performance) and to study parameter scarcity, we also evaluated the performance of the model 
using arbitrary weight values. We first started by evaluating how using one parameter instead of the three could 
alter the performance of the model. We then extended this sensitivity analyse by drawing arbitrary values for 
each parameter from a multi-dimensional square mesh, whose center corresponds to the estimated values of 
pI , ps , pF , estimated using GPS data (Fig. 1). We additionally used values that are distant from the estimated 
ones, up to pI = 3 , pF = 3 and ps = 5 . We tested a total of 151 new configurations with these arbitrary values. 
For each configuration, we ran 150 simulations and evaluated them using the 5 statistics. The mean error of 
|S − S̃k| and its standard deviation are gathered and plotted for each arbitrary configuration. As a resume, 
we replicate the framework described in Fig. 1 but we inject arbitrary parameters instead of using data-driven 
parameterisations.

Application.  The proposed model could be used to infer environmental and behavior information from the 
dataset. We chose to illustrate such an application by trying to detect anomalous voids (or holes) in the spatial 
territory of the individual using the GPS dataset and Monte-Carlo simulations of the model. Anomalous means 
that the observed void is not related to the randomness of the movement, but rather related to a geographical 
artifact. The parameters pI , pF , ps , µ and σ 2 of the BCR were accordingly estimated from the data of each indi-
vidual, similarly to previous experiments (Fig. 1). A simple heuristic was used to find voids in empirical and 
simulated paths for each individual: we computed the alpha shape of all locations using a fixed alpha radius of 
60 m. This allowed for determining the surface covered by all locations while preserving the voids. We then col-
lected the area of each void provided they had an area of at least 100 m2. We focused on voids near the center of 
the alpha shape in order to avoid artificial voids, generated by the weak density of locations at the boundaries. 
We ran 10,000 iterations of the model for each animal and estimated the probability p∅ of finding voids of dif-
ferent sizes in the simulated paths. This probability was then compared to voids found in the GPS datasets and 
available environmental information was used to determine whether any geographical element(s) could explain 
the unexpected voids.

(19)t ′j =

i+(k−1)
∑

i=j

ti

Table 2.   Estimated parameters. For each deer, the estimated parameters pI , pF , ps and the two parameters µ , σ 
that control the step size distribution are given.

Animal pI pF ps µ σ

Deer 1 0.01 0.01 2.01 2.94 1.01

Deer 2 0.06 0.13 1.44 3.15 0.97

Deer 3 0.12 0.05 1.70 3.07 1.04

Deer 4 0.10 0.06 1.52 3.10 0.98

Deer 5 0.22 0.24 1.66 3.03 1.06
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Results
We found that the parameters µ and σ 2 were close for all individuals (Table 2), and estimates of the three param-
eters for individuals 3 and 4 were similar. The values of pI and pF showed that inertia and attractor play a greater 
role in the movement of deer 5 ( pI = 0.22 , pF = 0.24 ), compared to the 4 other individuals. On the opposite, 
the movement of Deer 1 is characterized by immobilism ( pI = 0.01 , ps = 2.01 pF = 0.01 ). The immobility ps 
was stable across the individuals while pI and pF varied together (Table 2). The latter is a mechanistic effect, as 
they act as opposite forces.

Evaluation of the BCR model.  The distribution of errors e1 and e2 in the 5 statistics is provided in Fig. 4 
for deer 5 and in Supplementary Figure S3 for all 5 deers. The table containing the mean error and standard 
deviation, median error and interquartile range for all deer and for error e1 is also provided in Supplementary file 
S2. For all deers, we showed that combining the parameters plays an important role in modeling deer behavior. 
Configurations with only one parameter did not perform well on average while further investigations showed 
that combining pI , pF and ps allows for a better description of movement, especially regarding the census statis-
tics for both linear and rotational transects and home range estimates (Supplementary Figure S3 and Table S2).

Scale invariance.  The parameters pI and pF remain almost constant with increased subsampling (Fig. 5). 
On the other hand, distance-related parameters such as ps , µ , σ 2 are highly sensitive to the resampling rate k. 
This is a mechanistic effect of the subsampling procedure: as we increase k, the distance between each pair of GPS 
locations increases, resulting in less observations falling in the state s (Eq. 8) which in turn results in smaller ps.

Fluctuations.  We found that the variance decreases or does not change as the number of simulated steps 
increases in most of the statistics (Fig. S4). Thus, 4 of the 5 statistics are robust and add limited randomness to 
the results when the number of steps increases. The long-term trend is not clear in the mobile transects case as 
we investigated the variance over 4× 105 steps and we may only observe a transient increase or stagnation. This 
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Figure 4.   Density of error e1 and e2 of all 5 configurations tested in each statistic for deer 5. Left panels ((a), 
(b), (c), (d), (e), (f)) correspond to error e1 and right panels ((g), (h), (i), (j), (k), (l)) to error e2 . The statistics 
are given for the distribution of turning angles ((a), (g)), home range ((b), (h)), dilation ((c), (i)), immobile 
transects ((d), (j)), and mobile transects ((e), (k)) and ((f), (l)). Smallest absolute errors e1 should be close to 
0 to indicate a good performance of the model, while relative errors e2 should be close to 1 to indicate a good 
performance. Densities are fitted by the Epanechnikov kernel function. All the errors for all red deers are 
presented in Supplementary Fig. S3.
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statistic is expected to be similar to the one of immobile transects but the speed of convergence to the null vari-
ance may be very slow and it may take a much larger number of steps. The variance of the estimated areas in the 
dilation statistic increases with ns because we dilated the simulated paths in a huge window, encapsulating the 
whole path including a very large portion of empty space around it. This was done to prevent boundary effects 
when assessing the area of dilated paths: to make sure that dilated paths do not hit any of the window bounds. 
Otherwise this would produce biased, underestimated areas. However, using a smaller window or, again, a much 
larger number of steps would result in a null-variance.

Sensitivity analysis.  We showed that using the 3 parameters instead of one provides better results (Fig. 4 
and S3). The inferred values for the single parameter configuration of the BCR are given in table S1and cor-
responding mean, standard deviation, median and interquartile range are presented in table S2. When investi-
gating arbitrary values for the three parameters, we show that the empirically inferred estimates provide better 
performance in all deers. It means that the BCR simulations that use the three parameters with values directly 
inferred from the dataset show better performance in average (Fig. S5). This is clear in the distribution of turn-
ing angles, where using arbitrary values leads to an increase of the mean error. While some arbitrary values may 
produce better performance, they only work for selected individuals and specific statistics. For instance, configu-
ration 140 with arbitrary parameters values 

{

pI = 3, ps = 4, pF = 1
}

 provide better results in all statistics except 
the distribution of turning angles for deer 1. The inferred parameters values for deer 1 are {0.01, 2.01, 0.01} , such 
that one could conclude that an arbitrary increase of pI and pF will produce better performance (to the excep-
tion of reproducing the correct turning angles distribution pattern) for all deers and statistics. However, using 
the parameters values of configuration 140 produce highest mean error in the distribution of turning angles, 
home range (Kernel) estimate and dilation for deer 4. Moreover, even a small change in the values of a successful 
configuration with arbitrary parameters can lead to complete different results in a given animal and statistics.

One leading observation is that a small increase in immobilism ps -0.2 or 0.4 for instance—yields better 
results in most statistics for all deers (supporting Fig. S5). This is true provided the two other parameters pI and 
pF are not far from the inferred values. However, artificially increasing ps always lead to failure in reproducing 
the correct angular distribution. An arbitrary increase of pF also reduces the mean error in the 3 statistics which 
summarize the aggregated spatial localizations (i.e. kernel estimates, dilation and fixed transects) but ultimately 
fails in providing accurate results in mobile transects.
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Figure 5.   Scale invariance. The values of pI , pF and ps are estimated with increasing resampling (or decimation) 
rate k for each deer: panels (a)–(e). The first X-axis corresponds to the resampling rate k while the second X-axis 
is T  , the average sampling time. An example of resampling is presented in panel (f), with k increasing from 
k = 1 (upper left sub panel) to k = 10 (lower right sub panel).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14061  | https://doi.org/10.1038/s41598-021-93387-2

www.nature.com/scientificreports/

Application: detecting spatial voids.  The resulting alpha shapes and detected voids (holes) are pre-
sented for each deer in Supplementary Fig. S6. The probability p∅ of observing such voids is computed and 
showed in Fig. 6. Many voids whose area fell in the interval 

[

0, 1.5× 104
]

 were related to boundary conditions, 
where the alpha shape produced artificial voids due to less dense areas. However, the Monte Carlo simulations 
show that 3 voids, located inside the alpha shape (void 1 (deer 1) and voids 1 and 2 (deer 4)), should not appear. 
In other words, these voids are possibly not related to movement randomness but to other spatial features, with 
good probability. The distributions of errors for each configuration varied in each deer.

Discussion
In this work we aim at providing valuable and reliable ecological information regarding the components of 
animal movement. We introduce a simple and tractable model to deal with animal movement, based on a two-
dimensional BCR in discrete time and continuous space that allows for combining the ecological forces in a 
simple way. The parameters of the BCR are directly inferred from the GPS data recorded in a large herbivore 
and its performance is assessed in 5 spatial and ecologically-related statistics. Four of them differ from the typi-
cal signals or parameters calculated based on empirical relocations52 and address the home range size, census 
issues and animal behavior. While there is no methodological consensus in the most appropriate way to check 
for similarity of individual movement paths, turning angles and home-range can provide concurrence in move-
ment parameters over time without including positional information53,54. In addition, census information give an 
aggregated information, based on the intersections of movement paths with either mobile or fixed transects. The 
framework is presented in Fig. 4 and explains how synthetic (or simulated) paths parameterized from empirical 
observations are ultimately compared to the empirical paths throughout the statistics. However, we emphasize 
that the attributes of the data (such as the sampling rate for instance) should be consistent amongst different 
individuals in order to allow for inter-individual comparison50. It is also important to have a sufficient number 
of locations as precision in parameter estimation scales with the sample size, meaning that the more locations, 
the higher the precision.

We focus on three essential forces that allow for an efficient description of animal motion over large periods 
of time. The results display that by combining those parameters, we get a much better description of animal 
movement compared to an unbiased random-walk with a log-normal step size distribution. Results also show 
that using three parameters produce accurate results in describing animal movement compared to using a single 
parameter. This confirms that animal movement is a complex process, driven by several forces instead of a single 
and dominant one. Both the absolute error e1 and mean relative errors e2 do provide the same results, showing 
that the BCR model is robust in terms of the norm ( e1 ) and in sensitivity of the norm ( e2 ). An additional analyze 
was conducted to further test if the parameters inferred from the data set provide the best performance. Results 
show that configurations with an increase in immobilism ps and—to lesser extent—den attraction pF values can 
improve the performance of the model. However, such an arbitrary increase comes at the cost of a lesser perfor-
mance in describing the distribution of turning angles or estimating mobile transects. Thus, the configuration 
using the parameters estimated from the data set does provide the more balanced performance in all statistics 
for all deers amongst the 152 configurations tested.

The inertia pI , describing the short-term memory effect, is the first force introduced in this approach. Whether 
the use of land space by the animal is dependent on short-term or long-term memory is a debated topic. It gave 
rise to a series of studies that emphasized the importance of memory in animal movement from a biological or 
modeling perspective55–61. These studies also underlined that inferring memory effects directly from relocations 
is not a trivial task. Those relocations instead depend on a mixture of effects, including landscape and territorial 
constraints, resource patches and possibly long-term memory. Using a single memory feature pI might be a too 
simple approximation for efficiently capturing the memory effect. In our approach it is possible to alter pI in 
order to include several previous steps instead of just one.

Immobility ps combines several features of animal movement including animal at rest, in vigilant state, and 
GPS noise. Multiple factors are known to affect GPS noise, including topographic exposure, canopy cover, veg-
etation height and the slow movement of the ionosphere. The latter changes by a few centimeters during 30sec 
intervals2, possibly introducing up to 20 fold this bias in each of the recorded GPS observations. However, this is 
small regarding the average step size of non-immobile movements, ranging from 41 m (red deer 1) to 46 m (red 
deer 3 and 5). Thus, we assume that the measured step lengths and turning angles reflect the reality. Immobile 
(i.e. ≤ dmin ) observations represent a large proportion in our total datasets: 25.0% (red deer 1), 17.2% (red deer 
2), 22.0% (red deer 3), 19.0% (red deer 4) and 23.6% (red deer 5), associated with specific behaviors such as 
on-site foraging, eating, resting, etc. The estimates of ps in all five animals are greater than inertia or attractor 
(Table 2), underlining the importance of considering immobility when analyzing the movement of red deer. 
This is in line with previous experimental studies that showed the high frequency of feeding, resting cycles in 
red deer and labile diet62.

Site fidelity is the recurrent visit of an animal to a previously occupied location. This is a well-known and 
wide-spread behavior in the animal kingdom63. The animal favors locations that are ecologically valuable and 
related to a foraging or explorative behavior. In our approach, we rather and simply depict site fidelity using one 
single attractor pF . The fact it improves the performance of the model when combined with inertia and immo-
bilism confirms that site fidelity (or a simplified estimation of it) should be taken into account when modeling 
deer movement.

The model can be sophisticated by including more complicated environmental aspects of individual move-
ment, such as spatial memory58,59, reinforcement and site fidelity64, environmental predictability65 including 
landscape effect66, interacting individuals and prey-predator dynamics. Bailey and Codling had shown that turn-
ing angle distributions are affected by the underlying movement behaviours67 and that using one amalgamated 
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Figure 6.   Using the framework and model to identify spatial voids in movement paths. In panel (a) the 
probability p∅ of finding voids of different sizes in the simulated paths is given for each deer (black lines). All 
voids > 100m2 detected in the empirical GPS location are given (black dots in x-axis). Selected voids (circled 
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shape figures in Supplementary S6). (b) Geographic location of the study area (black dot). The three voids 
detected in deer 1 and 4 are detailed in panel (c) and (d) along with the environmental features. Image in (b) 
was created by TomKr and is distributed under GNU Free Documentation License. It corresponds to the map 
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distribution to analyse all movement is not effective9,68. In this work, we used 3 parameters and a single uniform 
distribution in all directions (diffusion) to account for other underlying or more subtle behaviors—foraging, etc.-. 
Similarly, we used a single log-normal distribution to describe the step-size distribution. The BCR model can be 
adapted to include more parameters that would result in a less diffusive movement, and multiple distributions 
can be used to model the step-size at different and smallest time scales. Distributions and parameters values can 
also be nested such that the model can adapt to different time and spatial scales.

One leading rational of this work is to investigate the model’s ability to address ecological challenges such 
as estimating the abundance of a given species (census) or detecting anomalous spatial features. We use both 
mobile and immobile simulated transects to illustrate how the model could be used in the first problem. The 
probability of counting the same animal multiple times can then be estimated using Monte Carlo simulations. 
The second issue is, for instance, to detect spatial voids in empirical movement paths. The location of animals 
may present empty spatial voids (or holes) of various sizes. This may be related to environmental conditions such 
as urban areas, water, cliff, or other ecological reasons (such as interactions with other individuals e.g. repulsive 
marks) and other factors. Using numerical simulations of the model, we are able to detect anomalous voids in 
the dataset, that are not related to randomness but to human activity. The void 1 (deer 1) reveals that some envi-
ronmental changes took place between the recording time of the GPS location in 2010 and the satellite image in 
2018. After cross-checking with additional information from the OFB, we learned that the identified area was a 
forest enclosure. This explains why the deer was not able to reach this area. Both voids 1 and 2 of deer 4 also are 
related to human activities: forest roads, buildings and one artificial reservoir.

This work introduces a tractable model, based on a two-dimensional BCR for describing animal movement in 
discrete time and continuous space. The model allows for a direct and explicit estimation of the three parameters 
that provide the optimal design regarding the studied statistics. Moreover, it allows for deriving reliable (i.e. inde-
pendent from the GPS sampling rate) and quantitative information about the components of animal movement. 
Results show that combining the parameters is a key component in modeling movement, while allowing for an 
accurate description of the turning angles, home range size and census issues. The model also has practical appli-
cations for addressing ecological issues such as census or spatial anomalies. While we only focus on 5 animals to 
demonstrate the approach, the model is general and can be applied to any other species. We considered only one 
attractor per animal in the proposed approach and both the existence and influence of multiple attractors are yet 
to be investigated. Additional behavior features such as the spatial reinforcement, memory of n previous steps, 
activity rhythms (such as the circadian cycle), distance from the attractor, landscape/habitat effect66, interactions 
with other animals and topological issues are currently being investigated and will be included in a future work. 
Comparing the proposed method to other existing approaches, such as the HMMs, would allow for evaluating 
its benefits and disadvantages in terms of both precision (error) and computational resources. In particular, the 
scale invariance of the parameters may provide a benefit compared to other scale-dependent approaches. An 
additional improvement would be to consider dmin as an average speed cutoff instead of a distance cutoff. This 
would allow for capturing immobile or slower movements independently from the average sampling time T  . 
Another point of interest is the development of a continuous version of the proposed model, where the direc-
tion of the step is drawn from a specific distribution, whose parameters are yet to be empirically characterized.
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