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OpenHSV: an open platform 
for laryngeal high‑speed 
videoendoscopy
Andreas M. Kist1,2*, Stephan Dürr1, Anne Schützenberger1 & Michael Döllinger1

High-speed videoendoscopy is an important tool to study laryngeal dynamics, to quantify vocal fold 
oscillations, to diagnose voice impairments at laryngeal level and to monitor treatment progress. 
However, there is a significant lack of an open source, expandable research tool that features latest 
hardware and data analysis. In this work, we propose an open research platform termed OpenHSV 
that is based on state-of-the-art, commercially available equipment and features a fully automatic 
data analysis pipeline. A publicly available, user-friendly graphical user interface implemented in 
Python is used to interface the hardware. Video and audio data are recorded in synchrony and are 
subsequently fully automatically analyzed. Video segmentation of the glottal area is performed 
using efficient deep neural networks to derive glottal area waveform and glottal midline. Established 
quantitative, clinically relevant video and audio parameters were implemented and computed. In 
a preliminary clinical study, we recorded video and audio data from 28 healthy subjects. Analyzing 
these data in terms of image quality and derived quantitative parameters, we show the applicability, 
performance and usefulness of OpenHSV. Therefore, OpenHSV provides a valid, standardized access 
to high-speed videoendoscopy data acquisition and analysis for voice scientists, highlighting its use as 
a valuable research tool in understanding voice physiology. We envision that OpenHSV serves as basis 
for the next generation of clinical HSV systems.

Laryngeal high-speed videoendoscopy (HSV) has been an emerging tool since decades in investigating voice 
physiology and pathophysiology1. The vocal folds, the main source of our voice and being located in the larynx 
(Fig. 1), are oscillating at very high frequencies. Typical fundamental frequencies for males and females are 
around 120 and 250 Hz, respectively2. According to the Nyquist–Shannon sampling theorem, the sampling rate 
has to be at least twice as high as the fundamental frequency to estimate the frequency. However, to observe 
the opening-closing transition within each cycle in an accurate and detailed way, a recent study suggests that 
sampling roughly 20-times higher, i.e. around 4000 Hz, is sufficient, given the average fundamental frequencies 
for humans3. Standard cameras are not able to acquire images at these high rates at full resolution. The current 
clinical gold standard uses a technique called stroboscopy. In stroboscopy, the fundamental frequency is com-
puted from a high-resolution audio signal and the camera only acquires a single frame every n-th oscillation 
cycle (similar to shown glottal areas above the glottal area waveform (GAW), Fig. 1). This works well for healthy 
subjects with regular phonation, however, fails on irregular oscillations as often observed in patients4–7. In con-
trast, HSV acquires typically at 4000 fps or more3,8 and is therefore capable to resolve every oscillation cycle for 
low to very high phonation frequencies. 

Despite the proven usefulness of HSV9–11, there have been only two commercially available HSV systems 
from KayPentax and Richard Wolf, that were launched years ago. Hence, in most cases HSV examinations are 
performed with either of the two, or very likely with unique research setups with custom hardware and custom 
software that is not standardized and often hinders comparability of results4,12,13. The main drawbacks of HSV, and 
we believe the reasons why HSV is still rarely applied in the clinic, are the high purchasing costs and the technical 
limitations, such as temporal and spatial resolution and sensitivity of the camera1, and, first and foremost, the 
needed complex analysis of the HSV footage14–16. In the analysis workflow, image processing, i.e. segmenting 
the glottis (Fig. 1), is a major bottleneck. Although fully automatic solutions for glottis segmentation have been 
proposed17–20, these methods have not seen further adaptation. With the advent of deep learning, however, this 
bottleneck has been successfully addressed21–23 and fast yet reliable solutions have been suggested24. Since several 
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years, we have been developing a standalone analysis platform, Glottis Analysis Tools (GAT), that allows video 
and audio data analysis15,16,25. However, GAT is by design not interconnected with hardware and data acquisition. 
In summary, there is a lack of a unifying research platform that allows both, data acquisition and analysis, using 
state-of-the-art hardware and analysis tools.

In this study, we suggest a novel and open research tool that we term OpenHSV, that offers an examination-
ready HSV hardware setup that acquires video and audio in synchrony and tested in a clinical environment. 
Additionally, we provide a user-friendly graphical user interface that implements a basic patient management 
system, an audio and video preview and acquisition feature, and a fully automatic data analysis platform based 
on state-of-the-art deep neural networks, providing a solid foundation for next generation clinical accredited, 
commercial systems26.

Methods
Hardware.  The OpenHSV system is designed in a modular way to adapt to new hardware developments in 
terms of optics and technical equipment. In our study, a rigid, oral endoscope with 70° optics (Olympus), attached 
to a zoom lens (neomed) and connected to a color high-speed camera running at 4000 fps with a maximum ISO 
of 10,000 (IDT CCM-1540) is used. To determine a useful range of focal lengths, we tested different lenses from 
various suppliers (12 mm and 23 mm Karl Storz, 35 mm Richard Wolf, 80 mm Lighthouse, 15–25 mm neomed, 
see “Results”). Illumination is provided through a high power LED light source (Storz LED 300) connected via 
a light-fiber guide. Audio is recorded via a high-performance lavalier microphone (DPA 4060) connected to an 
audio interface (Focusrite Scarlet 2i2) using the XLR interface and is placed on a custom 3D printed microphone 
mount attached to the endoscope. The camera “Synch Out” signal is connected via a BNC to ¼ in TRS cable 
directly to one channel of the audio interface. The foot switch is connected to the “External Trigger In” port of 
the camera. An overview of the connection scheme of the individual parts is shown in Fig. 2. All components 
are connected to a standard commercial computer (Intel i5 processor, 16 GB RAM) equipped with an additional, 
current Gigabit ethernet card to connect the high-speed camera to the computer. We use deep neural networks 
that are optimized for CPU architectures and hence, no dedicated high-end graphics card is needed. However, 
when available, the graphics card is automatically utilized (see section “Data analysis”).

We further provide STL files online to 3D print custom holders for cables, the endoscope and the micro-
phone. A droplet exposure protection shield, owing to the current COVID19 pandemic, to protect the camera 
is also available. These parts can be easily printed on a conventional stereolithography (SLA) or fused deposition 
modeling (FMD) 3D printers, where we found the latter faster and cheaper. We provide a tabular parts list in the 
supplement (Supplementary Table 1) and on the online documentation.

Data acquisition.  The examination, data acquisition and data analysis is performed using a dedicated 
graphical user interface (GUI) as described in a separate section. The high-speed camera is equipped with an 
on-board memory of 8 GB, allowing to record about 1.6 s at full spatial resolution and full speed (1440 × 1024 px 
and 4000 fps, respectively). During an examination, the video data is constantly written to a circular buffer on 
the on-board memory until an external trigger (e.g. a foot switch) is provided. By default, the trigger signal stops 
the recording, saving the last 1.6 s of footage. The camera provides a “Synch Out” signal that is an edge signal 
indicating the respective frame start. We refer to this signal as reference signal. We record the reference signal 
simultaneously with the audio signal to synchronize the video footage with the audio signal. Audio and reference 
signal are digitized at 80 kHz with 24 bit resolution.

Figure 1.   Laryngeal high-speed videoendoscopy is performed with a rigid endoscope yielding a top view of the 
larynx showing the vocal folds and the glottis. Glottis is segmented for each recorded video frame resulting in 
the glottal area waveform (GAW, blue). Stroboscopy is limited to single time points of individual cycles (dashed 
line). Using the GAW and the audio signal, quantitative parameters and the phonovibrogram are computed.
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After the external trigger, the acquisition of the video data stops immediately, the audio signal acquires 
another 1 s to ensure the correct alignment of video and audio. An acquired video can be previewed, the com-
plete video or a fraction thereof selected, and downloaded from the camera to the computer. Video footage is 
saved in two ways, lossless and lossy for data analysis and portability, respectively. The data is stored as “.mp4” 
files using the h264 codec. Audio is saved as uncompressed “.wav” files. Patient, video, and audio metadata are 
saved as “.json” file. If data analysis was performed, the glottal area segmentations are saved as “.hdf5” files and 
quantitative parameters as “.csv” files.

Audio and video signal alignment.  The audio file contains the camera reference signal together with 
the subject audio signal. We use a multi-step analysis pipeline to align the audio signal to the camera frames 
(Fig. 3a). First, we compute a rolling standard deviation (std) using a 2.5 ms window of the raw reference signal. 
Next, we z-score the std signal and find the most prominent peak defining the end trigger event (Fig. 3b). Each 
frame is indicated by a peak in the reference signal (Fig. 3c). We detect the total recorded frames on the camera 
as peaks relative to the end trigger (Fig. 3c). The audio signal corresponding to the selected and transferred data 
is extracted and used for further analysis. We do not correct for the potential time delay between source genera-
tion and acoustic signal detection.

Data analysis.  Data analysis is performed individually for video and audio data (Supplementary Fig. 1).

Video.  After acquisition and region of interest (ROI) selection, we implemented a fully automatic glottis seg-
mentation based on established, efficient and CPU optimized deep neural networks24 trained on the openly 
available BAGLS dataset22. The BAGLS dataset contains 59,250 high-speed video frames with the corresponding 
glottis segmentation mask. The exact training process is described elsewhere22,24. Briefly, an optimized encoder-
decoder network based on the U-Net architecture27 is trained to predict glottal area segmentations based on 
endoscopic images. After manually selecting an ROI around the glottis, the full data is downloaded from the 
camera and the ROI data is subsequently analyzed on a frame by frame basis by the deep neural network. The 
use of an ROI is recommended, as this accelerates significantly the network inference and removes variances of 
the distant image. We provide with OpenHSV a pre-trained network that is also individually accessible at our 
Github repository (https://​github.​com/​anki-​xyz/​openh​sv/​cnn). The resulting glottal area waveform (GAW) is 
used as basis for further computations of quantitative parameters28 and is a one-dimensional function of all 
identified, i.e. segmented, pixels within one frame over time. We subsequently detect individual cycles in the 
GAW using standard peak finding algorithms as implemented in scipy29. For symmetry measures, we estimate 
the glottal midline at each maximum cycle using either image moments or principal component analysis in 
the segmentation mask similar to previous works30, also incorporating temporal context by summing adjacent 
frames to improve midline detection. We next identify the intersection of each glottal midline estimate with the 

Figure 2.   Connection scheme of the OpenHSV system. IN (blue) depicts entry of data, light or signal to a 
device and OUT (green) the exit of a data, light or signal from a device. The camera sends data to the computer 
and a reference signal to the audio interface to synchronize audio and video data. The audio signal is recorded 
via a high-quality microphone. A foot switch acts as an external trigger signal that stops the recording. The light 
source provides high power light via a light fiber to the endoscope. The endoscope is connected to a lens that 
relays the image to the high-speed camera.

https://github.com/anki-xyz/openhsv/cnn
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segmented glottal area to find the anterior and posterior glottis points. Finally, we compute the phonovibrogram 
(PVG) as previously reported31 and the GAW for the left and right vocal fold as the area of left and right vocal 
fold to the estimated midline, respectively.

Video or image quality was assessed using the Natural Image Quality Evaluator (NIQE). The NIQE score is 
a blind, no-reference score that reports image quality based on the statistics of natural scenes32 and was already 
successfully applied to investigate laryngeal endoscopy image quality33. In general, the lower the NIQE score, the 
better the image quality. Briefly, the NIQE score is based on natural scene statistics extracted from undistorted 
images. These statistics were used to construct quality aware features that were themselves fitted to a multivari-
ate Gaussian model serving as reference. The NIQE score then represents the distance between a multivariate 
Gaussian fit extracted from the test image and the aforementioned natural scene-derived multivariate Gaussian 
reference model. We computed the NIQE score using its implementation in scikit-video for the monochrome 
and the color images in the BAGLS dataset and for the OpenHSV-derived example images.

Audio.  We similarly process audio signals to the GAW (see Supplementary Fig. 1a). First, we select the corre-
sponding subset of the audio data in relation to the video data using the video reference signal acquired simulta-
neously with the audio signal (see audio and video signal alignment, Fig. 3). Next, we compute the fundamental 
frequency similar to the GAW (Table 1) to ensure validity of both signals (see also Supplementary Fig. 2).

Quantitative parameter computation.  Given the total GAW, the GAW for the left and the right vocal 
fold, and the audio signal, we compute quantitative parameters. In the initial release, we provide in total 18 clini-
cally relevant parameters for the GAW and nine clinical parameters for the audio signal (Table 1). All param-
eters have been previously reported (see references in Table 1) and have been reported in detail for healthy 
subjects48–50. Individual detected cycles in video and audio data were used to compute jitter and shimmer meas-
ures, as well as all other GAW measures. The complete audio signal was used for harmonics-to-noise-ratio 
(HNR) and cepstral peak prominence (CPP). We used the partial GAW for left and right vocal fold to compute 
the amplitude symmetry index and the phase asymmetry index. A comprehensive overview of these parameters 
is given in Refs.44,50,51.

Graphical user interface (GUI).  The OpenHSV GUI (Supplementary Movie 2) is written in Python 3.6 
and mainly based on the libraries PyQt5 and pyqtgraph. The high-speed camera is interfaced using the camera 
manufacturer’s software developmental kit (IDT SDK). Video data are processed as multi-dimensional numpy 
arrays52. We interact with the audio interface via the sounddevice library. Patient data is recorded and saved to 
a local file system; the patient, video and audio recording metadata is further saved to a human-readable JSON 
file. The GUI provides a tabular overview of all recorded patients that further contains a search option to allow 
retrieving dynamically metadata from a given subset of patients. It gives also fast and easy access to previously 
recorded data, being for example important to visually compare multiple acquisitions at different time points of 
the same patient.

Figure 3.   Audio–Video alignment. (a) Analysis pipeline. (b) Detection of end trigger using a normalized, 
rolling standard deviation (std) on example data. (c) Detection of recorded frames and extraction of selected 
area on the same example data as shown in panel (b).
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Clinical study.  We recruited 28 healthy individuals to perform a preliminary clinical study. All individuals 
were identified as normophonic, had no laryngoscopic organic or functional disorders and did not report any 
issues with their voice. All participants gave their written and informed consent. This study was approved by the 
local ethics committee at the University Hospital Erlangen (#290_15) and was conducted in accordance with 
respective guidelines and relevant regulations. All acquisitions were made with the same settings and equipment. 
We analyzed an at least 1000 frame long segment in each recording with at least 20 glottal cycles, as recom-
mended previously53.

Results
Setup.  The OpenHSV setup consists of a mobile, equipment storage tower and a mobile imaging unit (Fig. 4). 
In particular, we use a mobile platform containing a typical consumer-grade computer to interact with equip-
ment and to conduct examinations, an illumination unit for providing light and an audio interface to record 
audio and the camera synchronization signal (Fig. 4a). A consumer-grade, 23″ monitor together with keyboard 
and computer mouse that can be disinfected is used to interact with the software. The imaging unit as shown in 
Fig. 4b uses a rigid endoscope. The endoscope is connected to a lens and to the high-speed camera. The light-
guide transmits light from the illumination unit to the endoscope to illuminate the larynx.

We first evaluated the image formation process from endoscope exit pupil to camera chip via a lens (basically 
an optical telescope) as these optics are crucial for a good image quality (Fig. 5a). Further, the lens’ focal length 
determines the image size, i.e. the pixels covered on the camera chip, and the signal-to-noise ratio, as a fixed 
amount of light is distributed across a varying surface (Fig. 5b). We found that a high-quality endoscope with 
10 mm exit pupil diameter delivers large images together with a very high light intensity. We investigated differ-
ent lenses with different focal lengths (12–80 mm) to determine the best trade-off between image magnification 
and signal to noise ratio. In Fig. 5c, we show example images from the same scene and the same recording set-
tings with varying lenses and found, the larger the focal length of the lens, the larger the projected image size on 
the camera chip (Fig. 5c,d). In Fig. 5e, we show that the dynamic range of the images is higher the less the focal 
length is. In Supplementary Fig. 3 we show the dynamic range on example images and their respective intensity 
distribution histograms. Overall, low focal length lenses provide sharp images with satisfactory dynamic range. 
In case of the 80 mm focal length lens, there is no satisfactory image possible. However, we would like to point 
out that all measurements are due to the combination of endoscope, lens, camera and acquisition settings. In an 
examination scenario, we found that focal lengths up to 25 mm are a good trade-off between available dynamic 
range and image size.

Clinical examination.  We next tested the ability to record simultaneously video footage and audio data in 
a typical examination setting, and analyze the resulting data (Fig. 6). With the imaging unit shown in Fig. 4a, we 
performed examinations of healthy subjects. Using our custom GUI (Fig. 7), we are able to control the recording 
settings and receive a live feedback of the video and the audio data. As the footage can be pretty large (several 
gigabytes) and may contain not relevant information, such as sequences without phonation or swallowing arti-

Table 1.   Clinical parameters contained in OpenHSV.

Clinical parameter Source signal References

Mean-Jitter Audio, GAW​ 34

Jitter (%) Audio, GAW​ 35

Mean-Shimmer Audio, GAW​ 34

Shimmer (%) Audio, GAW​ 35

Harmonics to noise ratio (HNR) Audio 36

Cepstral peak prominence (CPP) Audio 37

Open quotient (OQ) GAW​ 38

Closing quotient (CQ) GAW​ 39

Speed quotient (SQ) GAW​ 38

Asymmetry quotient (AQ) GAW​ 40

Rate quotient (RQ) GAW​ 38

Speed index (SI) GAW​ 38

Fundamental frequency (F0) Audio, GAW​ 38

Amplitude perturbation factor (APF) Audio, GAW​ 41

Amplitude perturbation quotient (APQ) Audio, GAW​ 41

Glottis gap index (GGI) GAW​ 42,43

Amplitude quotient GAW​ 44

Stiffness GAW​ 45

Amplitude symmetry index (ASI) GAW​ 46

Phase asymmetry index (PAI) GAW​ 47
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facts, the examiner is able to select a subset from the whole recording. Selected video data will be transferred to 
the computer.

The video analysis is based on the segmentation of the glottal area. The segmentation is performed fully 
automatic using a deep neural network as described elsewhere22,24. The segmentation is further converted to the 
glottal area waveform (GAW). Next, we define the glottal symmetry axis fully automatically30 and convert the seg-
mentation map into a phonovibrogram that allows a two-dimensional representation of the laryngeal dynamics31.

Figure 4.   The mobile imaging unit. (a) The mobile equipment tower consisting of computer, illumination 
source, audio interface, monitor and human–device-interaction components, (b) the imaging unit consisting of 
rigid endoscope, microphone, lens, high-speed camera, and light-guide.

Figure 5.   Image formation process. (a) Optical setup including the endoscope exit pupil, the lens simplified 
as telescope, and the camera chip. The real image is formed on the camera chip. (b) Image size on camera chip 
depending on the focal length. Focal length and image size vary proportionally; focal length and light intensity 
are inversely correlated. (c) Example images from the same scenery with lenses with varying focal lengths. (d) 
Chip coverage in percent vs. focal length. Black line indicates one-exponential fit. (e) Available dynamic range 
vs. focal length. Black line indicates one-exponential fit.
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Clinical validation.  Our aim is to compare the OpenHSV recordings to data generated by established hard-
ware and to validate our novel equipment and analysis platform. Therefore, we conducted a small-scale clinical 
study and analyzed 28 examinations from healthy individuals recorded with the OpenHSV system.

The subject age range was from 17 to 46 with a median age of 20. In Supplementary Fig. 4, we show representa-
tive images from the recordings. In Supplementary Movie 1, we show an example recording of 1000 consecutive 
frames as used in our analysis procedure. Using the analysis procedure depicted in Fig. 6 and described in the 
methods, we compute for each recording the raw endoscopy video, the corresponding segmentation maps, the 
glottal area waveform (GAW), and the corresponding audio and reference signal (Fig. 8a).

Figure 6.   Examination and data analysis workflow. Audio and video data is acquired. Next, a subsection is 
selected and transferred to the computer. Using the video data, the glottal area is segmented and converted 
to signals that are used for parameter computation. The audio signal is aligned to the video footage using the 
reference signal and is subsequently analyzed.

Figure 7.   The OpenHSV graphical user interface. Camera image (left) and audio trace (right) are previewed 
online. The reference signal (pink) and the audio trace (yellow) are shown, together with the estimated 
fundamental frequency of the audio data. After an end-trigger (e.g. using a foot-switch), the user selects a 
footage range and is able to analyze and/or save the audio and video material and optionally analyzes the data 
directly.
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Image quality.  We first determined the image quality of the OpenHSV system using the Natural Image Qual-
ity Evaluation (NIQE) score, a blind image quality metric that needs no reference images. We found that the 
OpenHSV system outperforms other imaging modalities that are contained in the BAGLS benchmark data-
set that consists of a blend of data from seven different institutions having different equipment and recording 
conditions22. As shown in Fig. 8b, the mean NIQE for the OpenHSV System is 13.19 compared to the mean 
NIQE score of 28.79 and 22.42 for RGB and monochrome images in the BAGLS dataset, respectively. Even 
though that monochrome images pool color on each pixel and do not show interpolation artifacts due to the 
Bayer matrix, the image quality is still worse than the OpenHSV data (Fig. 8b).

Video‑audio signal alignment.  As the oscillating vocal folds are the main source of the phonation, the vocal 
fold fundamental oscillation frequency should be identical to the fundamental frequency determined from the 
corresponding audio signal. As shown in Fig. 8c, the fundamental frequencies are almost identical given the 
accuracy of our measurement systems showing typically deviations of less than 2 Hz (median 1.76 Hz) and are 
therefore negligible. Example audio and GAW power spectra of the analyzed recordings are shown in Supple-
mentary Fig. 2.

Clinical quantitative parameters.  We next computed clinically relevant parameters for healthy subjects that 
we implemented in OpenHSV. In general, the computed parameters (Tables 2, 3) have a similar magnitude as 
reported previously for healthy subjects48–50. We provide the distributions for a subset of GAW-derived and 
audio-derived parameters in Fig. 8d,e. In comparison to a recent study that focused on the analysis of HSV data 
of healthy individuals50, we found similar value distributions for parameters derived from the GAW, such as a 
similar open quotient (ours 0.998 vs. 0.927–0.999 reported) and asymmetry quotient (ours 0.501 vs. 0.511–0.554 
reported). Similarly, the mean Jitter and mean Shimmer for the GAW signals observed (0.176 ms and 0.140 dB) 
are comparable with the aforementioned study (0.126–0.166 ms for mean Jitter and 0.102–0.130 dB for mean 
Shimmer50). We additionally observe on the audio data high values for HNR and CPP (on average 15.21 dB and 
18.60 dB, respectively) which is an indication for healthy phonation (HNR on average 11.9 dB for normals36, 
CPP > 10 dB54). A good indication that both, video and audio, signals are in high synchrony are the similarities in 
fundamental frequencies between video and audio data (compare Tables 2 and 3, Fig. 8c). We therefore conclude 
that the whole system, consisting of experimental setup and analysis software, produces reliable and plausible 
results for the investigated healthy subjects. 

Figure 8.   OpenHSV provides clinical relevant information. (a) Exemplary video, segmentation and audio 
data. (b) Image quality of OpenHSV compared to BAGLS dataset using NIQE. (c) Correlation of fundamental 
frequency determined in audio and video signal. Line indicates straight line of origin and perfect agreement 
between audio and GAW. (d) Exemplary GAW-derived quantitative parameters, namely Open Quotient (OQ), 
Closing Quotient (CQ), Speed Index (SI) and Glottal Gap Index (GGI). (e) Exemplary audio signal-derived 
quantitative parameters, namely mean Jitter, mean Shimmer, Harmonics-to-Noise-Ratio (HNR), and Cepstral 
Peak Prominence (CPP). Better values are indicated with gray arrow heads. For CQ and SI, 0.5 and 0 are desired 
values.
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Discussion
In this study, we suggest a new and open research hardware and software platform that we termed OpenHSV. 
OpenHSV’s software and analysis package is distributed open source and the hardware can be purchased com-
mercially off-the-shelf. Using state-of-the-art components, we are able to acquire both, high quality audio signals 
and video footage. OpenHSV allows further the direct signal analysis and provides on time clinically relevant 
information. OpenHSV can be easily expanded by adding custom written Python code.

Medical equipment requires to be setup with low levels of expertise. Being a research tool, the setup of 
OpenHSV is non-trivial and needs attention. While we provide detailed instructions in our online documenta-
tion, personnel without basic knowledge in computer science (hardware and software installation) may have 
difficulties to setup OpenHSV. As we are happy to provide help, we highlight that OpenHSV is not a simple 
Plug&Play system. However, parts of OpenHSV, especially parts of the data analysis functionalities, have been 
integrated in commercial and clinical accredited systems, combining both, openness and easiness for future 
researchers and clinical examiners26.

High-speed videoendoscopy strongly relies on high-speed cameras. These cameras are highly specialized and 
various setup configurations are used1,22. Especially, cameras from the two existing commercial systems are very 
handy and have small camera chips. The size of the camera chip is indeed a limiting factor for image quality. The 
larger the individual pixel size, and the higher the desired resolution, the larger the camera chip (see also Fig. 5). 
As our endoscope exit pupil size and the amount of transmitted light is fixed, an image magnification worsens the 
signal-to-noise-ratio. Thus, cameras with a smaller sensor size are likely better suited. However, we were not able 
to find another camera that fulfills the inclusion criteria of acquiring at 4000 fps, state-of-the-art spatial resolution 
and low-weight body and small form factor, which are important features to be considered in camera selection.

A typical bottleneck of high-speed cameras is the data transfer from the camera to the computer. To allow 
high-resolution acquisitions, typically, high-speed cameras write the high-speed footage to an internal memory 

Table 2.   Glottal area waveform (GAW) parameters.

Parameter Mean std Min Max Unit

Mean Jitter 0.176 0.070 0.072 0.375 ms

Jitter% 5.286 2.067 2.041 10.962 au

Mean Shimmer 0.140 0.127 0.035 0.440 dB

Shimmer% 0.257 0.249 0.059 0.889 au

Fundamental frequency (F0) 302 49 235 410 Hz

Open quotient 0.998 0.003 0.989 1.000 au

Closing quotient 0.504 0.044 0.402 0.567 au

Speed quotient 1.020 0.030 0.971 1.093 au

Asymmetry quotient 0.501 0.007 0.482 0.518 au

Rate quotient 1.027 0.033 0.973 1.129 au

Amplitude quotient 3.735 0.741 2.137 5.160 au

Speed index 0.003 0.014 − 0.035 0.035 au

Glottal gap index 0.150 0.126 0.000 0.367 au

Stiffness 0.278 0.065 0.186 0.431 au

Amplitude symmetry index 0.974 0.014 0.932 0.993 au

Phase asymmetry index 0.070 0.063 0.006 0.258 au

Table 3.   Audio parameters. aAmplitude perturbation quotient with varying windows sizes.

Parameter Mean std Min Max Unit

Mean Jitter 0.079 0.072 0.009 0.286 ms

Jitter% 2.408 2.260 0.312 8.280 au

Mean Shimmer 0.590 0.603 0.167 3.095 dB

Shimmer% 2.093 1.964 0.623 10.283 au

Fundamental frequency (F0) 302 50 235 412 Hz

Harmonics-noise-ratio (HNR) 15.126 2.415 11.224 21.000 dB

Cepstral peak prominence (CPP) 18.596 1.629 16.160 22.771 dB

Amplitude perturbation factor (APF) 6.877 7.237 1.931 37.181 au

APQ3a 3.665 4.494 0.671 22.623 au

APQ5a 3.812 3.156 1.196 15.979 au

APQ11a 5.132 3.506 1.537 16.584 au
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and transfer the data to the main computer on request. This has the major drawback that a full-frame, 1.5 s long 
recording with about 8 GBs of data needs roughly 10 min for data transfer. Therefore, it is impractical to record 
larger fractions of data of a single subject multiple times, e.g. different phonations, when time is a relevant factor. 
OpenHSV is potentially able to be extended to support various equipment, for example live streaming of high-
speed footage as integrated into the next generation of clinical high-speed videoendoscopy systems26. However, 
as OpenHSV is designed as research tool, OpenHSV has its strength in flexibility and customization.

We found that our preliminary clinical study shows that both, audio and video data can be recorded and suc-
cessfully analyzed using OpenHSV, having a good agreement between audio and video data (Fig. 8c). As we ana-
lyzed 28 healthy individuals, we believe that our data represents general validity, as we show that computed quan-
titative parameters for audio and video data are of similar magnitude as expected for healthy individuals36,49,50,54. 
However, it remains to be investigated how OpenHSV performs on subjects showing pathologies. As we show 
that OpenHSV provides a better image quality compared to previous systems (Fig. 8b), we are certain that also 
organic pathologies and inflammations are at least on par.

As we and others have shown the promise of HSV in analyzing voice pathologies1,3,5,11,42,43, we are confident 
that OpenHSV is another major step forward to disseminate HSV further into research and eventually towards 
broad clinical application.

Conclusions
HSV is an important tool to study voice physiology. We contribute OpenHSV, an open system with video and 
audio acquisition accompanied with data analysis. These unique properties of OpenHSV will enable researchers 
to conduct HSV studies with latest equipment and image processing technique. Due to the modular nature of 
OpenHSV, we expect that researchers expand OpenHSV to their individual needs.

Data availability
The OpenHSV software is available at https://​github.​com/​anki-​xyz/​openh​sv. All further information, including 
documentation is available on the Github repository. The datasets used and analyzed during the current study 
are available from the corresponding author upon request.

Code availability
The OpenHSV code to conduct high-speed videoendoscopy examinations, to analyze the acquired data and to 
store subject data is available open source at https://​github.​com/​anki-​xyz/​openh​sv. We further provide an in-
depth documentation of the code at https://​openh​sv.​readt​hedocs.​io/​en/​latest/. In the documentation, we explain 
how to setup the OpenHSV system and perform first recordings. Different cameras can be used in general, when 
the camera interface is adapted accordingly. To operate OpenHSV for debugging purposes, we added a dummy 
camera interface that loops through an example video. All algorithms, such as parameter computation, midline 
prediction and audio analysis can be tested using the example files provided with OpenHSV.
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