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Increased colonic expression 
of ACE2 associates with poor 
prognosis in Crohn’s disease
Takahiko Toyonaga1,6, Kenza C. Araba2,5, Meaghan M. Kennedy1,2, Benjamin P. Keith1,2, 
Elisabeth A. Wolber1, Caroline Beasley1, Erin C. Steinbach1,9, Matthew R. Schaner1, 
Animesh Jain1, Millie D. Long1, Edward L. Barnes1, Hans H. Herfarth1, Kim L. Isaacs1, 
Jonathan J. Hansen1, Muneera R. Kapadia4, José Gaston Guillem4, Ajay S. Gulati1,7, 
Praveen Sethupathy3, Terrence S. Furey1,2,8, Camille Ehre5 & Shehzad Z. Sheikh1,2*

The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed 
in small intestine. Our aim was to study colonic ACE2 expression in Crohn’s disease (CD) and non-
inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression 
levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 
14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein 
expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues 
using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery 
was evaluated by a multivariate regression analysis and a Kaplan–Meier estimator. To provide critical 
support for the generality of our findings, we analyzed previously published RNA-seq data from two 
large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset 
of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD 
patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and 
NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo 
surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is 
an independent risk factor for surgery (OR 2.17; 95% CI, 1.10–4.26; p = 0.025). Increased intestinal 
expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point 
to the need for molecular stratification that can impact CD disease-related outcomes.

Crohn’s disease (CD) is a chronic inflammatory condition of the intestinal tract affecting millions of people 
worldwide1–3. CD patients frequently require immunosuppressant medications, which can increase the risk of 
infection, particularly for respiratory diseases such as influenza and pneumonia4. SARS-CoV-2 infections are 
increasing world-wide (https://​coron​avirus.​jhu.​edu). A significant number of patients present with gastroin-
testinal symptoms, and high levels of viral RNA in the stool have been detected5. This has led the IBD research 
community to investigate molecules associated with SARS-CoV-2 infectivity with an emphasis on its cognate 
receptor ACE26. ACE2 is essential for viral entry into epithelial cells and is abundantly expressed in the lung and 
intestinal epithelium, with markedly higher expression in the small intestine under normal conditions7. Expres-
sion of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, also promote SARS-CoV-2 virus entry 
into host cells8. In the small and large intestine, levels of expression of ACE2 in patients with CD are dependent 
on inflammation status and the specific anatomical location9.
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Disease presentation and progression in CD is highly heterogeneous with regards to location, severity of 
inflammation, and other phenotypes. Current CD clinical classifications fail to accurately predict disease-related 
poor outcomes, such as the need for surgery within 5 years of diagnosis10. Defining on a molecular basis subset 
of IBD patients with similar outcomes is essential for developing guidelines for the use of standard IBD thera-
pies. Recently, Suárez-Fariñas, et al., showed high small bowel enterocyte brush border expression of ACE2 and 
TMPRSS26. In comparison with non-IBD controls, ACE2 expression was decreased and TMPRSS2 expression 
was increased in the inflamed ileum of CD patients11,12. IBD medications, both biologic and non-biologic, did not 
significantly impact the expression of these genes in the either inflamed or uninflamed small intestine13. How-
ever, Potdar, et al., revealed that within CD, small bowel ACE2 was reduced in patients subsequently developing 
complicated disease, and that its expression was restored in responders to biologic therapy14. In contrast to the 
small intestine, increased expression of ACE2 was reported in the inflamed large intestine of CD patients11,12. 
Increased ACE2 expression was restored by non-biologic medications in CD patients and in responders to 
infliximab12. Despite these findings, there remain three major gaps in our knowledge not addressed by recent 
studies reporting on ACE2 expression and its association with clinical IBD. First, the role of colonic ACE2 in 
predicting disease course in CD remains unstudied. Second, how the expression of ACE2 relates to that of other 
genes, as determined by unbiased transcriptomics, needs to be elucidated in association with the heterogenous 
disease phenotypes of CD. Verstockt, et al.11 utilized bulk and single-cell transcriptomics and performed a global 
pathway analysis to identify ACE2-related gene regulatory networks. However, their analysis was not driven by 
clinical phenotypes, and their single cell RNA-sequencing data was derived only from ileum and not from the 
colon of CD patients. Finally, the relationship of colonic and ileal ACE2 expression in the same patient and its 
association to disease outcome is unknown.

In this current study, we show that expression of ACE2, as well as TMPRSS2 and TMPRSS4, are highly variable 
in the intestines of adult and pediatric patients with CD, and that their expression levels associate longitudinally 
with IBD outcome. Our work reveals a novel connection between colonic ACE2 expression and CD-associated 
clinical outcomes. These findings motivate future studies that focus on differences in ACE2 regulation between 
ileum and colon in Crohn’s disease and on whether colonic epithelial SARS-CoV-2 infectivity is greater in the 
ACE2-high subtype of IBD patients.

Results
ACE2 stratifies two distinct molecular subtypes of Crohn’s disease.  The clinical presentation and 
course of CD is highly variable. Previously, we found that gene expression data from non-inflamed colon tissue 
from adult CD (N = 28) and non-IBD (NIBD) patients (N = 14) clearly segregate CD patients into two disease 
subtypes (Adult cohort 1)15. CD patients in one class largely maintained gene expression profiles of the normal 
colon (colon-like; CL), whereas in colons of patients in the other class, several normally ileum-specific genes 
showed robust expression (ileum-like; IL). Altered chromatin accessibility15 and microRNA expression16 across 
these classes indicated substantive gene regulatory changes, reflecting a fundamental shift in underlying molecu-
lar phenotypes. Interestingly, when considering all CD patients, ACE2 but not TMPRSS2 or TMPRSS4 expres-
sion were significantly different between adult CD and non-IBD (NIBD) patients (Fig.  1A). However, when 
comparing the aforementioned CD subtypes, ACE2 was elevated and TMPRSS2 and TMPRSS4 were decreased 
significantly in IL CD patients relative to CL CD patients (Fig. 1B). In fact, ACE2 mRNA levels were 22-fold 
higher in IL vs CL CD patients. For the purpose of this paper, we will refer to the two CD molecular subtypes 
here as ACE2-high (IL) and ACE2-low (CL).

To validate these distinct molecular subtypes in CD, we measured colonic ACE2 expression by qPCR in a 
second independent cohort of 39 adult CD patients (Adult cohort 2). We stratified them into ACE2-high and 
ACE2-low groups by comparing against qPCR results from patients from our Adult cohort 1 (n = 6 ACE2-high, 
9 ACE2-low). In the new Adult cohort 2, we again identified 4 additional ACE2-high and 35 ACE2-low CD 
patients (Fig. 1C).

Steady state mRNA expression does not necessarily correspond to protein levels, and transcriptomic assays 
in bulk tissue lack information on tissue localization. To define the expression and localization of ACE2 in CD at 
high resolution in intact tissue samples, we performed immunohistochemistry (IHC) on matched formalin-fixed, 
paraffin-embedded (FFPE) uninflamed colon and ileum tissue from 8 CD and 4 NIBD patients. When divided 
into CD subclasses based on colonic ACE2 mRNA expression, ACE2-high CD patients exhibited significantly 
more ACE2 protein signal compared to NIBD and ACE2-low CD patients (Fig. 2). Furthermore, abundant 
immunoreactivity was displayed in villus enterocytes of ileal tissue with a noted significant difference in ACE2 
protein between NIBD and ACE2-high CD patients (Fig. 2). Therefore, we can establish that ACE2 protein levels 
are consistent with ACE2 mRNA expression in matched non-inflamed colon and ileal tissue in our patient cohort.

Colonic ACE2 levels correlate with poor clinical outcomes in Crohn’s disease patients.  To deter-
mine the clinical impact of colonic ACE2 expression in CD patients, we compared clinical outcomes between 
in all CD subtypes (ACE2-low, n = 49; and ACE2-high, n = 18). At the time of CD diagnosis, there was no sig-
nificant difference in clinical characteristics between the subgroups (Table 1). Notably, though, ACE2-high CD 
patients showed a significantly higher rate of surgery within 5 years after CD diagnosis than ACE2-low patients 
(77.8 vs. 44.9%, p = 0.034; Table 2). To better understand this potential relationship to surgery, we generated a 
Kaplan–Meier plot and performed a subsequent log-rank test that showed a significant difference in the time to 
first surgery between the two CD subgroups (p = 0.04; Fig. 3). To further elucidate the impact of colonic ACE2 
expression on time to first surgery after CD diagnosis, we next performed Cox regression analysis to account for 
other variables. Covariates shown in Table 1 and treatment history within 5 years after CD diagnosis (Table 2) 
were balanced by propensity score for this analysis11. We found that being in the ACE2-high CD subclass was a 
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Figure 1.   Molecular subtypes of colonic CD. CD patients express ACE2 at a significantly higher level than non-
IBD (NIBD) patients (A). Ileum-like CD (IL) patients express ACE2 and other key marker genes at significantly 
higher levels than in colon-like CD (CL) patients (B). *Adj. P < 0.05; **Adj. P < 0.005; ***Adj. P < 1 × 10–6. N = 14 
for NIBD and 28 for CD (14 CL and 14 IL). The plots were generated in R v3.6.0 using ggplot2 and prcomp 
functions. ACE2 expression was quantified in colonic specimens obtained from 39 additional CD patients 
(‘Unknown’ ACE2 expression levels) by qPCR and compared with those from 8 NIBD controls, 8 ACE-low 
CD, and 6 ACE-high CD patients (C). *P < 0.05, ***P < 0.001. P-values were determined by Kruskal–Wallis test 
followed by Dunn’s multiple comparison test. The scatter diagram was created by GraphPad Prism version 9.1.1 
(www.​graph​pad.​com).

http://www.graphpad.com
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significant independent risk factor for surgery (OR 2.12; 95%CI, 1.10–4.26; p = 0.025; Table 3). Taken together, 
in this study we discovered that ACE2 expression (mRNA and protein) stratifies two distinct molecular subtypes 
of CD and that the patients in the ACE2-high subtype have a significantly greater risk of surgery.

RNA‑seq analysis reveals ACE2‑high and ACE2‑low subclasses in ileal tissue from treat-
ment‑naïve pediatric Crohn’s disease patients.  ACE2 expression profiles in adult CD patients may 
vary due to patient treatment histories. Therefore, we sought to determine whether intestinal tissue from treat-
ment-naïve pediatric CD patients also segregated into similar molecular classes. We used a previously pub-
lished pediatric RNA-seq dataset from ileal biopsies in age-matched pediatric CD (n = 201) and NIBD (n = 40) 
patients generated within the Pediatric Risk Stratification Study (RISK)17 to compare with the adult colon sam-
ples described above. We performed a principal component analysis (PCA) from the expression data (Fig. 4A) 
and analyzed the RISK samples for ACE2 expression levels. Unsurprisingly, samples predominantly separated by 

Figure 2.   ACE2 IHC reveals increased expression in IL vs CL CD patients. Matched human ileum and colon 
tissue biopsies from non-IBD (NIBD), ACE-low, and ACE-high patients were stained with anti-ACE2 antibody 
(pink). Slides were then incubated with DAPI (blue), and ACE2 fluorescent signal intensity was measured using 
the ImageJ software and normalized to background. N = 4 patients per group. Intensity measurements were 
averaged per patient and normalized to NIBD group. Significance was determined via one-way ANOVA with 
multiple comparisons using GraphPad Prism version 9.1.1 (www.​graph​pad.​com). *Adj. P < 0.05, **Adj. P < 0.005, 
***Adj. P < 0.001.

Table 1.   Clinical characteristics at the time of CD diagnosis. P values were determined by Mann–Whitney 
testa, Chi-squared testb, or Fisher’s exact testc.

ACE2-low ACE2-high P-value

Number of patients 49 18

Age (year, median [IQR]) 22.0 [16.0, 33.0] 25.5 [18.3, 34.0] 0.301a

Gender, Female (%) 35 (71.4) 11 (61.1) 0.610b

Disease location (%) 0.196c

L1 15 (30.6) 6 (33.3)

L2 12 (24.5) 1 (5.6)

L3 22 (44.9) 11 (61.1)

Disease behaviour (%) 0.931c

B1 8 (16.3) 3 (16.7)

B2 27 (55.1) 9 (50.0)

B3 14 (28.6) 6 (33.3)

L4 disease (%) 7 (14.3) 2 (11.1) 1.000c

Perianal disease (%) 15 (30.6) 3 (16.7) 0.356c

Current smoking (%) 14 (28.6) 8 (44.4) 0.351b

http://www.graphpad.com


5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13533  | https://doi.org/10.1038/s41598-021-92979-2

www.nature.com/scientificreports/

study (first principal component). However, two molecular subclasses were evident along the second principal 
component, similar to the first principal component in the single cohort PCAs. Further, ACE2 expression was 
highly correlated with the second principal component in the pediatric CD samples (Fig. 4B), aligning well with 
the ACE2-high and ACE2-low subclasses defined by our adult CD colon expression data.

Additionally, we performed a combined PCA using our adult samples with expression data from a second 
previously published study of adult and pediatric ileal biopsies from NIBD (n = 25, no intestinal inflammation and 
normal histology) and CD (n = 93) patients18 (Fig. 4C). Again, we observed evidence of ACE2-high and ACE2-
low subtypes of CD in this independent cohort of patients (Fig. 4D). These data lend strong support toward a 
generalized stratification of CD subtypes by ileal or colonic ACE2 expression in both adults and pediatric patients. 
It is not known whether this stratification is clinically relevant, however.

Discussion
Angiotensin-converting enzyme 2 (ACE2) has been thrust into the limelight given its role as a receptor for 
SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. ACE2 is the key effector peptide of 
the renin-angiotensin system, mediating vasoconstriction and sodium and water retention both directly and 

Table 2.   Treatment history and risk of surgery within 5 years after CD diagnosis. P values were determined by 
Chi-squared testa or Fisher’s exact testb. *Immunomodulators include thiopurines and methotrexate.

ACE2-low ACE2-high P-value

Number of patients 49 18

Treatment history (%)

Systemic steroids 42 (85.7) 13 (72.2) 0.359a

Immunomodulators* 36 (73.5) 13 (72.2) 1.000a

anti-TNF alpha agents 45 (91.8) 15 (83.3) 0.577a

anti-integrin agents 13 (26.5) 2 (11.1) 0.321b

anti-IL-12/23p40 agent 6 (12.2) 2 (11.1) 1.000b

Surgery (%) 22 (44.9) 14 (77.8) 0.034a

Type of surgery (%)

Partial colectomy/enterectomy 16 (32.7) 8 (44.4) 0.545a

Ileocecectomy 5 (10.2) 5 (27.8) 0.117b

Colostomy/Ileostomy 8 (16.3) 1 (5.6) 0.426b

Figure 3.   Increased colonic ACE2 expression is associated with a higher risk of surgery in CD patients. Kaplan–
Meier survival analysis for the risk of surgery within 5 years after CD diagnosis in 49 ACE-low and 18 ACE-high 
CD patients. P-values were determined by a log-rank test using GraphPad Prism software version 9.1.1 (www.​
graph​pad.​com).

Table 3.   Cox logistic regression analysis for surgery. SD standard deviation, OR odds ratio, CI confidence 
interval.

Variables Regression coefficient SD P value OR 95% CI

ACE2-high subclass 0.77 0.35 0.025 2.17 1.10 to 4.26

Propensity Score 3.50 1.13 0.002 33.02 3.62 to 301.30

http://www.graphpad.com
http://www.graphpad.com
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indirectly by stimulating aldosterone secretion. While the impact of ACE2 activity on response to infection is 
still under debate without direct evidence, it is implicated in the response to inflammation and regulation of 
tissue repair in many organs19,20.

A recent single cell (sc) RNA-seq study demonstrated that the ACE2-positive to ACE2-negative cell ratio in 
the intestinal tract was significantly higher than in the lung14. In the lung, co-morbidities dramatically increase 
alveolar ACE2 expression and are associated with poor outcomes21. Furthermore, location is a critical determi-
nant of intestinal expression of ACE2 (proteinatlas.org). We reveal through generation and analysis of adult colon 
RNA-seq data and additional analysis with published adult and pediatric ileal RNA-seq datasets in CD patients 
that expression of ACE2 defines two molecular phenotypes of CD: the ACE2-low and ACE2-high subsets. Using 
IHC in matched colon and ileum samples, we validate ACE2 protein expression in apical colonocytes and villus 
enterocytes for these two patient subsets, as well as NIBD patients.

Figure 4.   Independent cohorts of adult CD and treatment-naïve pediatric CD ileum samples show similar 
molecular subtypes. (A) PCA of combined RNA-seq data from adult colon tissue and pediatric ileum tissue 
from CD and NIBD patients replicates ACE2-high and ACE2-low (PC2) subtypes. (B) Patients from the two 
extremes of PC2 (panel A; N = 50, each direction) show significantly different Ileal expression levels of ACE2 
(P < 1 × 10–6). (C) PCA of combined RNA-seq data from another independent cohort of adult colon tissue 
and adult ileum tissue from CD and NIBD patients also replicates ACE2-high and ACE2-low (PC2) subtypes. 
(D) Patients from the two extremes of PC2 (panel C; N = 30 each direction) show significantly different 
Ileal expression levels of ACE2 (P < 1 × 10–6). The plots were generated in R v3.6.0 using ggplot2 and prcomp 
functions.
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Our longitudinal analysis from time of CD diagnosis revealed that ACE2-high adult CD patients were associ-
ated with increased risk for surgery in the first 5 years after diagnosis. Interestingly, in contrast to worse outcomes 
in ACE2-high colon expressing adults, we15 and others22 previously reported worse clinical phenotypes, such 
as increased risk of macroscopic inflammation with deep ulcers15 and the development of disease complication 
(stricture and penetration)22, in a subset of pediatric CD patients with low ileal ACE2 expression compared to 
those with high ACE2 expression. Although it is not easy to interpret these data from distinct locations (colon 
and ileum) and populations (adult and pediatric), these regional differences in the clinical impact of ACE2 
expression suggest that active intestinal inflammation alters ACE2 expression, with opposing regulation in ileum 
and colon23,24. There are several points that must be noted with regard to future comparison of our findings with 
other studies. First, patient selection is critical as is tissue of origin for analysis, including the inflammatory state 
of the tissue, which can impact gene expression and interpretation of the results13. Second, ACE2 expression 
in the intestine increases with age, making it important to critically evaluate its role separately in different age 
groups13. Finally, while differences between IBD and NIBD are important, our molecular stratification of CD 
patients allows for the investigation of two distinct molecular subtypes linked to different clinical phenotypes.

In the small intestine, inflammation and the specific anatomical location were also shown to influence expres-
sion of ACE2 in patients with IBD9. We and others showed that in all intestinal segments, ACE2 expression is 
much higher in intestinal epithelial cells (IECs) compared to other cells types25 (proteinatlas.org). Therefore, 
understanding how variation in ACE2 expression and function in IECs impacts disease activity and COVID-
19 severity in IBD patients is critical for managing these individuals. Data from the ongoing SECURE-IBD 
registry (covidibd.org) indicates unsurprisingly that corticosteroid use increases the risk of severe COVID-19 
outcomes > fivefold in IBD patients. Recently, Lukin, et al., showed within an inpatient IBD cohort that severe 
sequelae of COVID-19 were lower than in matched non-IBD controls, suggesting a protective effect of IBD26. 
It remains to be seen if variable colonic or ileal ACE2 expression in response to IBD therapeutics is responsible 
for these observations.

There are several limitations in our study. First, the sample number was small. Our findings are the first to 
report colonic ACE2 expression with poor outcomes in clinical CD. Future studies incorporating a larger number 
of patients from a single cohort will help validate our findings. Second, like recently published studies looking at 
ileal ACE212,22,27, our clinical analysis is retrospective. The clinical impact of colonic and ileal ACE2 expression 
should be prospectively validated in future studies. Finally, we did not examine the biological role of ACE2 in 
IEC homeostasis of CD patients. The biological mechanisms impacted by ACE2 in the intestine remain largely 
unknown and warrant further study. ACE2 functions in the renin-angiotensin system (RAS), counterbalancing 
the deleterious effects of angiotensin II on the cardiovascular system28. Intestinal ACE2 is a chaperone for the 
amino acid transporter B0AT1, a complex in IECs which regulates the gut microbiota28. Gut microbiota composi-
tion and function, particularly the presence and activity of bacterial and viral pathogens, greatly influence local 
and systemic immune responses in IBD29. Mechanisms driving expression of ACE2 and its co-receptor TMPRSS2 
remain unclear. Using an elegant epigenetic approach coupled with genetically manipulated murine models, 
Chen, et al., found CDX2, HNF4, SMAD4 and GATA transcription factors bind near Ace2 and Tmprss2 result-
ing in altered chromatin looping and epigenetic modifications with significant impact on ACE2 and TMPRSS2 
gene expression25.

Regardless of these limitations, our present study is significant because we show colonic ACE2 expression is 
a potential prognostic biomarker in CD. Given its well-described link to COVID-19 outcomes in the lung, it is 
plausible that ACE2 may also serve as a possible injury outcome measure for COVID-19 in patients with IBD. 
The implications of molecular stratification of CD patients can lead to rapid modification of current therapy 
in IBD patients impacting the natural course of disease. While actual evidence is still scarce, it is hoped that 
further understanding of the role of ACE2 in IBD pathology and therapeutic responses will ground its use as a 
biomarker of disease activity and treatment responses contributing to the refinement and development of new 
therapeutic strategies.

Materials and methods
Subjects, samples, and clinical information.  Adult cohort 1.  Colonic mucosa was obtained from sur-
gically resected colon specimens from patients with an established diagnosis of CD and NIBD controls between 
February 2012 and Jan 201815. All samples were collected from disease-unaffected regions without macroscopic 
inflammation and were from ascending colon. Clinical information was retrospectively collected from medical 
records up to 5 years after CD diagnosis.

Adult cohort 2.  Colonic mucosa was obtained from endoscopically taken biopsy specimens from patients with 
an established diagnosis of CD between April 2012 and November 2019. All biopsy samples were collected from 
disease-unaffected regions without macroscopic inflammation and were from ascending colon. Clinical infor-
mation was retrospectively collected from medical records up to 5 years after CD diagnosis.

RISK cohort.  Gene expression profiles was studied in treatment-naïve pediatric CD patients using RNA-Seq 
data from GSE57945 which includes endoscopically-taken ileal biopsies17.

In the Adult cohorts, the inclusion and exclusion criteria are as following.
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Inclusionsec criteria. 

1.	 Adults who are scheduled to receive surgical intervention for treatment of their documented CD or non-IBD 
disease (any condition that is an indication for colonic resection as shown in Supplementary Table) (Adult 
cohort 1), or Adults who are scheduled to receive colonoscopies for their documented CD (Adult cohort 2).

2.	 Adult subjects of any sex or race, ages 18–99.
3.	 Able to understand and read English.

Exclusion criteria. 

1.	 Any patient with a bloodborne disease over University of North Carolina BSL2 capabilities, meaning any 
person who has or was potentially exposed to bloodborne infectious diseases (e.g., HIV or bloodborne 
hepatitis).

2.	 Patients who are incarcerated.
3.	 Patients who are pregnant or breastfeeding.
4.	 Patients who are taking anticoagulants and/or have bleeding disorders precluding safe collection of samples.

RNA isolation, sequencing, and processing.  Adult samples from UNC hospitals were isolated and 
sequenced as previously described15. Briefly, RNA was isolated using the Qiagen RNeasy Mini Kit following 
the manufacturer’s protocol, and RNA purity was assessed with Thermo Scientific NanoDrop 2000. RNA-seq 
libraries were prepared using the Illumina TruSeq polyA + Sample Prep Kit. Paired-end (50 bp) sequencing was 
performed on the Illumina HiSeq 2500 and 4000 platforms. The obtained data was downloaded from GEO 
(accession number GSE137344).

Cutadapt v2.9 (https://​doi.​org/​10. 14806/ej.17.1.200) was used to remove sequencing adapters and filter low 
quality reads (-q 10). Quantification of sequencing reads was performed using Salmon v1.2.30 to the hg38 genome 
with GC-bias and sequence-specific parameters enabled (–gcbias and –seqbias, respectively), and tximport 
v1.12.3 (10. 12688/f1000research.7563.1) was used to summarize transcript-level to gene-level abundance esti-
mates using R v3.6.0. Pediatric CD samples were processed as described previously12 and downloaded from GEO 
(accession number GSE57945).

Data availability statement.  The sequencing data underlying this article are available in public sequenc-
ing data from GEO, sratoolkit v2.10.1 (http://​ncbi.​github.​io/​sra-​tools/). The remaining data underlying this arti-
cle are available in the article and in its online supplementary material.

RNA analysis.  Raw sequencing counts from Salmon were DESeq2 normalized and VST transformed31. Box 
plots were generated using ggplot2, and PCA was performed using the prcomp function in R v3.6.0 (citation: R 
Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. https://​www.R-​proje​ct.​org/).

Immunohistochemistry (IHC).  Formalin-fixed, paraffin-embedded (FFPE) uninflamed colon and ileum 
tissue matching with the RNA-seq samples were available in 8 CD and 4 NIBD patients. The ileum and colon 
tissue biopsies from these patients were fixed in 10% (vol/vol) neutral buffered formalin, embedded in paraffin, 
and prepared as histological sections. After deparaffinization and epitope retrieval in 1X citrate buffer solution, 
sections were blocked for 1 h in 3% BSA before immunostaining was performed. Polyclonal goat anti-ACE2 
antibody (R&D Systems #AF933) was applied overnight at 4 °C, followed by a 1 h incubation with a secondary 
anti-goat (Alexa Fluor 594) antibody the next day. Slides were then incubated with DAPI (Invitrogen #D1306) 
for 5 min to stain nuclei and mounted using FluorSave Reagent (EMD Millipore #345789). Fluorescence was 
detected using an Olympus VS120 virtual slide microscope.

ACE2 signal intensity.  ACE2 fluorescent signal intensity was measured using ImageJ software and nor-
malized to background. To facilitate measurements, images of the stained tissue sections were converted to 
black and white images on the ACE2 channel, removing signal from DAPI. For each section, pixel intensity was 
measured in three different regions that were selected for optimal histological cut, showing intact villi (ileum) or 
crypts (colon). Five intensity measurements (e.g., yellow rectangles on supplemental data images) were analyzed 
per region (Supplemental Fig. 1). N = 4 patients per group. Intensity measurements were averaged per patient 
and normalized to disease-control group. Significance was determined via one-way ANOVA with multiple com-
parisons.

Reverse‑transcriptase qPCR analysis.  Total RNA was extracted from dissected colonic mucosa, stored 
in RNAlater using TRIzol reagent and purified with the Total RNA Purification Plus Kit (48300; Norgen Biotek) 
according to the manufacturer’s instructions. Total RNA was extracted from isolated and cultured colonic IECs 
using the Single Cell RNA Purification Kit (51800; Norgen Biotek). Complementary DNA for mRNA was gener-
ated from 500 ng of RNA using the High-Capacity Complementary DNA Reverse Transcription Kit (4368814; 
Thermo Fisher Science). Comparative-Ct-TaqMan with a relative quantification qPCR for mRNAs was per-
formed on the QuantStudio 3 RT-PCR system using TaqMan Fast Advanced Master Mix (4444557; Thermo 
Fisher Science) with individual TaqMan probes (TaqMan Gene Expression assays, assay ID: Hs01085333_m1 
[ACE2], Hs02339424_g1 [RPS9]). Expression of ACE2 was normalized to RPS9.

https://doi.org/10
http://ncbi.github.io/sra-tools/
https://www.R-project.org/


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13533  | https://doi.org/10.1038/s41598-021-92979-2

www.nature.com/scientificreports/

Statistical analysis.  All numeric data in the figures are expressed as means ± standard deviation (SD). Dif-
ferences between the 2 groups were analyzed by a Mann–Whitney or Fisher exact test. Differences between the 
3 groups were analyzed by a Kruskal–Wallis test followed by Dunn’s multiple comparison test. P values less than 
0.05 were considered significant. The Kaplan–Meier method was used to generate survival curves and differ-
ences between 2 groups were evaluated by a log-rank test. GraphPad Prism (version 9.1.1 for macOS; GraphPad 
Software, San Diego, California, USA, www.​graph​pad.​com) was used for these data analyses. Calculation of 
propensity score and a Cox regression analysis were performed using R v4.0.3 (citation: R Core Team (2020). R: 
A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
https://​www.R-​proje​ct.​org/), and the R package ‘survival’ (citation: Therneau T (2021). A Package for Survival 
Analysis in R. R package version 3.2–10. https://​CRAN.R-​proje​ct.​org/​packa​ge=​survi​val).

Ethical considerations.  This study was conducted in accordance with the Declaration of Helsinki and 
Good Clinical Practice. The study protocol was approved by the Institutional Review Board at the University 
of North Carolina at Chapel Hill (approval numbers: 19-0819 and 17-0236). All participants provided written 
informed consent before inclusion in the study. All participants were identified by number and not by name or 
any protected health information.

All authors had access to the study data and reviewed and approved the final manuscript.
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