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Superiority of coarse eggshell 
as a calcium source over limestone, 
cockle shell, oyster shell, and fine 
eggshell in old laying hens
Woo‑Do Lee1,4, Damini Kothari1,4, Kai‑Min Niu1,2, Jeong‑Min Lim1, Da‑Hye Park1, Jaeeun Ko3, 
Kidong Eom3 & Soo‑Ki Kim1*

Chicken eggshell (ES) waste is a rich source of calcium carbonate (CaCO3); however, the potential of 
ES as dietary calcium (Ca) in old laying hens has not been explored. This study compared the effects of 
feeding limestone, cockle shell, oyster shell, fine ES, and coarse ES as the sole Ca source on production 
performance, egg quality, blood biochemical constituents, and tibia characteristics in old laying 
hens. A total of 450 ISA-Brown laying hens at 73 wk of age with similar egg production rate (EPR) 
were randomly assigned to 5 treatment groups (90 hens/group, 9 hens/replicate) for 7 wk. Dietary 
treatment groups comprised a corn-soybean meal based diet containing different Ca sources: (i) 
limestone (LS; < 2 mm and 2–4 mm mixed in the ratio of 3:7) as control, (ii) cockle shell (CS; 1–4 mm), 
(iii) oyster shell (OS; 3–16 mm), (iv) ES fine particles (ESF; < 1 mm), and (v) ES coarse particles (ESC; 
3–5 mm). Results indicated that dietary inclusion of coarse ES particles significantly increased average 
egg weight (P < 0.001) and daily egg mass (P < 0.05), and decreased feed conversion ratio (P < 0.001) as 
compared with the other treatments. However, no significant differences in EPR, feed intake, cracked 
egg proportion, and mortality were observed among the dietary treatments (P > 0.05). Notably, 
the use of ESF led to a lower proportion of cracked eggs than ESC (P < 0.05). ESC fed hens produced 
the heaviest eggs whereas CS fed hens produced the lightest (P < 0.001); the particle size of ES also 
affected the egg weight (P < 0.05). The eggs from OS and ESC fed hens showed a greater albumen 
height in comparison to eggs from CS group (P < 0.05); but no significant difference was observed 
among the LS, OS, ESF, and ESC groups (P > 0.05). The yolk color was darker in the eggs of group ESF 
as compared with other dietary groups (P < 0.01). However, no significant effects on Haugh units and 
shell properties were observed among the treatments (P > 0.05). The blood biochemistry results were 
not affected by the dietary Ca (P > 0.05) except for lower levels of high-density lipoprotein percentage 
(HDL %) in OS and ESC fed hens (P < 0.05). The tibia characteristics including weight, length, width, 
and breaking strength did not differ among the dietary groups (P > 0.05). However, the ESC and OS fed 
hens showed higher tibia bone mineral density (BMD) than the other groups (P < 0.001). In conclusion, 
coarse ES as a sole Ca source had beneficial effects on the production performance, egg quality, and 
tibia BMD in old laying hens.

Feed constitutes approximately 60–70% of the total cost of poultry production1. In recent years, the use of 
unconventional feed resources which are cheap, widely available, and relatively high in nutrient content, as well 
as reducing environmental problems have become increasingly popular. Chicken eggshell (ES), a major poultry 
by-product, is largely considered as a hazardous solid waste under the EU legislation and approximately 110 bil-
lion tons of ES were wasted in 2016 globally2. In Korea, about 90,000 tons of ES waste are produced every year3. 
Currently, most of the ES waste without any pre-treatment is transported to countryside landfill at a high manage-
ment cost4. ES contains more than 96% calcium carbonate (CaCO3), so it could act as a potential substitute for 
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natural mined limestone4,5. ES represents about 40% of elemental calcium (Ca) and contains about 385–401 mg 
Ca per gram6,7. Generally, laying hens require an average of 4 to 4.5 g of Ca supplementation every day8 and, 
therefore, approximately 12 g of ES could provide their daily Ca need. Consequently, for every thousand tons 
of ES waste, 400 tons of Ca could be produced to feed approximately 80 million laying hens daily. This would 
reduce the cost of feed as well as increase the sustainability of poultry production.

In efforts to reduce the widespread occurrence of ES waste, several researchers investigated the potential of 
ES as a Ca substitute in laying hen diets. Muir et al.9 reported no adverse effect of ES supplementation on egg 
production, body weight, egg weight, and eggshell thickness in laying hens during 32 to 72 wk of age. Scheideler10 
indicated the high availability of Ca from ground ES to support egg production in laying hens but recommended 
that it should be combined with a large-particle Ca source to support optimal eggshell quality. Gongruttananun11 
also reported that ground ES can be fully used as a Ca source in the first-cycle layer diets without negative effects 
on productive traits, egg and eggshell quality, serum Ca balance, bone mineralization, and gonadal performance. 
Apart from the Ca source, the particle size of Ca sources may also influence its availability to the hens12–15. How-
ever, the particle size of ES was not considered in these previous studies. Also, the age-related decline in eggshell 
and bone quality is another major concern in the poultry industries16,17 pertaining to the lower efficiency of Ca 
absorption in old laying hens14,18–20. In this context, Lichovnikova13 recommended that diets of old laying hens 
should contain two-thirds large particle Ca to achieve good eggshell quality.

Mitigation of food waste is a step toward attaining global environmental goals21. Keeping this in mind, we 
focused on the utilization of ES for laying hen nutrition which may reduce the global burden of ES waste to a cer-
tain extent. This study was designed to evaluate the effects of ES in different particle sizes (< 1 mm and 3–5 mm), 
completely replacing limestone, on productive performance, egg quality, blood biochemical constituents, and 
tibia characteristics of laying hens during the late laying period. Other commonly used supplemental Ca sources 
in Korea were included for the purposes of comparison.

Results
Production performance.  The effects of different Ca sources on laying hens’ productivity are shown in 
Table 1. The laying performance of the birds was lower than breed standard22 for the ISA-Brown layers in this 
study with respect to their age period, which could be explained by lower egg production rate (EPR) at the start 
of experiment (data not shown) pertaining to the high environmental temperature (30–34℃). There was no 
difference among the treatments in EPR, feed intake (FI), cracked eggs, and mortality during the 7-week experi-
mental period (P > 0.05). However, the average egg weight (AEW) was affected by the source of Ca (P < 0.001), 
with the ES coarse particles (ESC; 3–5 mm) fed group producing the heaviest eggs followed by ES fine particles 
(ESF; < 1 mm), limestone (LS; < 2 mm and 2–4 mm mixed in the ratio of 3:7), oyster shell (OS; 3–16 mm), and 
cockle shell (CS; 1–4 mm) fed groups. The OS and ESC treatments increased the daily egg mass as compared 
to the control (LS) (P < 0.05), which contributed to an improvement in feed conversion ratio (FCR) in the OS 
and ESC groups (P < 0.05). Considering the effect of ES particle size, it was observed that ESC treatment had 
significantly improved AEW, daily egg mass, and FCR as compared with ESF (P < 0.05); however, the proportion 
of cracked eggs was lower in ESF than ESC (P < 0.05).

Egg quality.  The average egg quality traits for a period of 7 week are presented in Table 2. Hens fed ESC pro-
duced the heaviest eggs whereas CS fed hens produced the lightest (P < 0.001); the particle size of ES also affected 
the egg weight (P < 0.05) during the 7-week experimental period. Dietary Ca sources had a significant effect on 
albumen height with the eggs obtained from OS and ESC fed hens having greater albumen height than CS group 
(P < 0.05); however, no significant difference was observed among the LS, OS, ESF, and ESC groups (P > 0.05). 
The yolk color measurements also differed significantly among the dietary treatments (P < 0.01), whose highest 
value was recorded in the ESF group and the lowest in eggs from the CS group. Nevertheless, the ES particle size 
had no significant effect on albumen height and yolk color (P > 0.05). Furthermore, there was no difference in 

Table 1.   Overall performance of laying hens according to the dietary treatments between 73 and 80 week of 
age. Results are the means of 10 replicates of 9 hens each per treatment for the 7-wk experimental period. LS 
limestone (< 2 and 2–4 mm mixed in 3:7); CS cockle shell (1–4 mm); OS oyster shell (3–16 mm); ESF eggshell 
fine particles (< 1 mm); ESC eggshell coarse particles (3–5 mm). SEM standard error of means, ES eggshell, 
EPR egg production rate, FI feed intake, FCR feed conversion ratio. a-c Means with the different superscript in 
the same row differ significantly (P < 0.05).

Items

Treatments

SEM

P-value

LS CS OS ESF ESC Source ES size

EPR, % 52.40 57.60 55.69 54.04 57.03 1.27 0.903 0.619

Average egg weight, g 65.06b 63.20c 64.87b 65.21b 65.93a 0.186  < 0.001 0.049

Daily egg mass, g/hen/day 34.07c 36.45ab 36.17ab 35.21bc 37.64a 0.350 0.011 0.017

FI, g/hen/day 106.3 107.3 105.6 106.4 106.5 0.795 0.979 0.964

FCR, g feed/g egg 3.26a 3.21ab 3.05bc 3.27a 2.90c 0.035  < 0.001  < 0.001

Cracked egg proportion, % 1.69 1.69 1.99 1.41 2.53 0.160 0.222 0.029

Mortality, % 5.56 6.67 6.67 3.33 3.33 0.157 0.781 1.000
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Haugh units and eggshell properties (color, strength, and thickness) among the dietary treatments during the 
experiment (P > 0.05).

Blood biochemical constituents.  No statistically significant changes were observed in the blood bio-
chemical constituents among the dietary treatments (P > 0.05), except for high density lipoprotein (HDL) (%) 
(Table 3). The HDL proportion showed a decreasing trend in response to dietary ESC  and OS supplementation 
as compared with LS, ESF, and CS treatments (P < 0.01).

Serum Ca and P levels.  The analysis of serum Ca and P levels during light and dark periods provides valu-
able information about the daily Ca utilization in hens. There was no significant effect on the Ca to P ratio in 
the serum of hens fed different dietary Ca sources during light and dark periods (Fig. 1). At the first sampling 
time (3 pm), when the hens consumed sufficient feed, there was no significant effect of the different Ca dietary 
sources on the Ca to P ratio. When the lights were turned off (9 pm), the serum Ca to P ratio increased in all the 
treatment groups, indicating efficient Ca absorption from different Ca sources. At 3 am (in this study, oviposi-
tion occurred at 3 am-10 am), the serum Ca levels decreased while P levels increased (Supplementary Table S3), 
resulting in the lower serum Ca to P ratio in case of all the treatment groups, which indicated the use of all 
dietary Ca sources for shell formation. In the next light period (9 am), when the birds started eating again, the 
serum Ca to P ratio replenished, implying the absorption of Ca from the different dietary sources.

Table 2.   Egg quality traits of laying hens according to the treatments between 73 and 80 wk of age. Results 
are the means of randomly sampled 280 eggs per treatment (40 eggs per treatment at each week; 4 eggs per 
replicate) during 73 to 80 week of age. LS limestone (< 2 and 2–4 mm mixed in 3:7); CS cockle shell (1–4 mm); 
OS oyster shell (3–16 mm); ESF eggshell fine particles (< 1 mm), ESC eggshell coarse particles (3–5 mm). SEM 
standard error of means, ES eggshell. a-c Means with the different superscript in the same row differ significantly 
(P < 0.05).

Items

Treatments

SEM

P-value

LS CS OS ESF ESC Source ES size

Egg weight, g 65.40b 63.15c 64.93b 65.43b 66.30a 0.214  < 0.001  0.035

Haugh units 84.85 83.60 86.06 84.90 85.98 0.313 0.072 0.249

Albumen height, mm 7.40ab 7.14b 7.65a 7.50ab 7.62a 0.060 0.035 0.457

Egg shell color 34.98 34.40 34.83 34.23 34.30 0.346 0.952 0.953

Egg yolk color 5.78bc 5.71c 5.75bc 5.97a 5.88ab 0.026 0.004 0.212

Egg shell breaking strength, kgf 3.62 3.79 3.72 3.76 3.76 0.025 0.252 0.837

Egg shell thickness, mm 0.392 0.393 0.393 0.383 0.389 0.002 0.636 0.460

Table 3.   Blood biochemical constituents of laying hens at 80 week of age according to the treatments. 
Results are the means of 12 hens at 80 week of age. LS limestone (< 2 and 2–4 mm mixed in 3:7); CS cockle 
shell (1–4 mm); OS oyster shell (3–16 mm); ESF eggshell fine particles (< 1 mm); ESC eggshell coarse 
particles (3–5 mm). SEM standard error of means, ES eggshell, AST aspartate aminotransferase, ALT alanine 
aminotransferase, LDH lactate dehydrogenase, TG triglycerides, TC total cholesterol, HDL high density 
lipoprotein, LDL low density lipoprotein, VLDL very low density lipoprotein, TP total protein, BUN blood urea 
nitrogen (BUN). a,b Means with the different superscript in the same row differ significantly (P < 0.05).

Items

Treatments

SEM

P-value

LS CS OS ESF ESC Source ES size

AST, U/L 184.7 183.1 171.41 178.3 194.2 5.22 0.752 0.359

ALT, U/L 6.58 4.25 5.67 5.17 8.75 0.732 0.365 0.126

LDH, mg/dl 6749.2 7511.7 6414.2 5594.2 5594.2 309.7 0.403 0.506

TG, mg/dl 2464.2 1900.0 2644.2 3084.2 3132.5 171.7 0.138 0.928

TC, mg/dl 134.0 103.8 138.1 150.3 157.8 6.53 0.084 0.707

HDL, mg/dl 40.00 32.42 33.92 39.00 36.58 1.09 0.128 0.472

HDL, % 32.09a 32.70a 24.53b 27.38ab 24.87b 0.959 0.007 0.367

LDL + VLDL, mg/dl 94.00 71.42 104.2 111.3 121.2 5.78 0.065 0.573

Glucose, mg/dl 267.3 280.6 282.9 269.7 272.0 7.53 0.961 0.926

TP, g/dl 6.81 6.03 6.78 6.77 7.11 0.122 0.068 0.359

Albumin, g/dl 2.43 1.98 2.03 2.13 2.65 0.092 0.092 0.068

Creatinine, mg/dl 0.250 0.250 0.267 0.242 0.275 0.014 0.947 0.471

BUN, mg/dl 2.44 2.40 2.41 2.64 2.53 0.047 0.447 0.471
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Tibia characteristics.  There were no significant differences in weight, length, width, and bone breaking 
strength of tibiae among the dietary treatments (Table  4). However, significant  differences in the  tibia bone 
mineral density (BMD) among treatments were observed at the end of the experimental period (Table 4). The 
tibia neck of LS, OS, and ESC fed hens had higher BMD as compared with CS and ESF fed hens (P < 0.001). In 
addition, significantly higher BMD in proximal and distal tibia regions as well as in total tibia were observed in 
OS and ESC fed hens as compared with other treatments (P < 0.001). Furthermore, ESC treatment had higher 
tibia BMD as compared with ESF treatment (P < 0.001; P < 0.05), indicating higher mineralization of dietary Ca 
in the bones.

Discussion
Several studies have supported the nutritional value of ES waste as a possible alternative Ca source for laying 
hens9–11. However, the effects of different particle sizes of ES on the production performance, egg quality, blood 
biochemical profile, and tibia characteristics in old laying hens have not been investigated yet. In the present 
study, EPR was not different among the groups, suggesting a similar dietary efficiency of all the Ca sources. These 
results are in line with several findings10,11,23,24, which indicated non-significant effects of the Ca source on egg 
productivity in laying hens. In contrast, Ahmad and Balander25 indicated improved egg productivity when 50% 
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Figure 1.   Effects of different dietary Ca sources on the serum Ca and P ratio during light and dark periods 
(18 h) in laying hens at 80 week of age. LS limestone (< 2 and 2–4 mm mixed in 3:7); CS cockle shell (1–4 mm); 
OS oyster shell (3–16 mm); ESF eggshell fine particles (< 1 mm); ESC eggshell coarse particles (3–5 mm). Results 
are the means of 4 hens per treatment.

Table 4.   Tibia bone quality traits of laying hens at 80 week of age according to the treatments. Results are the 
means of 16 hens at 80 wk of age. LS limestone (< 2 and 2–4 mm mixed in 3:7); CS cockle shell (1–4 mm), OS 
oyster shell (3–16 mm); ESF eggshell fine particles (< 1 mm); ESC eggshell coarse particles (3–5 mm). SEM 
standard error of means, ES eggshell, BMD bone mineral density. a,b Means with the different superscript in the 
same row differ significantly (P < 0.05).

Items

Treatments

SEM

P-value

LS CS OS ESF ESC Source ES size

Bone weight, g 12.33 11.83 11.98 11.92 12.31 0.141 0.746 0.400

Bone length, mm 118.1 116.8 118.7 117.7 118.4 0.452 0.743 0.658

Bone width, mm 7.20 7.13 7.47 7.67 7.33 0.077 0.218 0.185

Bone breaking strength, kgf 23.95 23.97 23.12 23.95 25.47 0.743 0.917 0.542

BMD, mg/cm3

Tibia neck 276.1a 226.5b 295.4a 219.1b 309.5a 8.11  < 0.001  < 0.001

1/3 tibia 302.2b 284.8b 378.2a 261.1b 384.7a 9.13  < 0.001  < 0.001

2/3 tibia 340.8b 322.6b 463.4a 363.9b 452.4a 12.21  < 0.001 0.016

Total BMD 306.4b 278.0b 379.0a 281.4b 382.2a 8.63  < 0.001  < 0.001
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of limestone in the diet was replaced by oyster shell. Over the course of entire experiment (73 to 80 week), the 
feed consumption was not affected, indicating all the Ca sources used in this study were able to provide sufficient 
Ca to the hens. The improvements in AEW, daily egg mass, and FCR in the ESC and OS fed groups observed 
in this study are most likely due to their larger particle size. Large particles of Ca are reported to stay longer in 
the gizzard because of their slow passage in the gastrointestinal tract, which in turn increases in vivo solubility 
and availability as compared with those of fine particles26,27. Although, the literature supporting the improved 
performance traits with ES with different particle sizes in laying hens is scarce, only one study recommended 
that ES product when used as a Ca supplement in layers’ diet should not be ground10. Nonetheless, there are 
several studies that investigated the effect of inclusion of limestone or oyster shell with different particle sizes on 
laying hens’ productivity12,14,23,28–30. For example, Saunders-Blades et al.29 indicated that feeding large particle 
limestone decreased bone resorption in laying hens and thereby had beneficial effects on the birds’ health and 
production quality. Skřivan et al.30 demonstrated that feeding younger and older hens a Ca source with large 
particles (0.8–2 mm) of limestone increased egg production, egg weight, and FCR. However, the longer reten-
tion of a coarse Ca source may sometimes induce negative effects in old laying hens due to its inability to supply 
sufficient amount of Ca for initial stages of egg shell formation31. The intake of exclusively coarse ES particles in 
ESC group in this study might have caused lower availability of Ca for initial stages of shell formation, resulting 
in the increased percentage of cracked eggs as compared with the ESF group.

The dietary treatments did not affect most of the egg quality traits significantly, except for egg weight, albu-
men height, and yolk color. Guinotte and Nys12 indicated that layer hens fed larger limestone particles produced 
heavier eggs as compared with those consuming fine limestone particles. Egg shell quality is one of the major 
concerns while investigating the effects of different dietary Ca sources29. The Ca sources examined in this study, 
by completely replacing the limestone, did not induce any effects on egg shell quality (strength, thickness, and 
color). Previously, Olgun et al.32 also reported the inclusion of limestone, oyster shell and eggshell as Ca sources 
did not significantly affect the shell strength and thickness, in agreement with our results. Similarly, Ahmad and 
Balander25 reported no significant difference in the egg shell thickness when 50% of the limestone was replaced 
by oyster shell. In contrast, Lichovnikova13 recommended that two-thirds of the Ca source should be fed in the 
form of large particles (limestone grit or oyster shell) to ensure good egg shell quality in the last third cycle of 
the laying period. Likewise, Karunajeewa33 indicated the improvement in egg shell quality by cockle shell sup-
plementation as compared with limestone. Our results might suggest that the requirement of laying hens to 
maintain egg shell quality was met by all the Ca sources used as per the recommendations of NRC34. Herein, 
the ES fed hen produced eggs with darker yellow yolk as compared with the other treatments. There is no infor-
mation concerning the effect of ES or particle size of the ES on yolk color; thus, further studies are required to 
delineate the underlying mechanism.

The blood biochemical constituent analysis can be used to evaluate the metabolism of birds, thereby providing 
some indices for their health status35. The activities of aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), and lactate dehydrogenase (LDH) are routinely used to evaluate liver health in laying hens36,37. 
In this study, the use of different Ca sources did not affect the serum ALT, AST, and LDH levels in laying hens, 
hence supporting their safety in laying hen diets on the liver metabolism. Serum proteins play a key role in 
body homeostasis and albumin serves as the most favorable source of amino acids for protein synthesis. Cre-
atinine, along with blood urea nitrogen (BUN), are also indices of protein metabolism and kidney functions38. 
In our study, no differences in the levels of total proteins, albumin, creatinine, and BUN were observed among 
the treatment groups, indicating that Ca source had no effects on protein metabolism. Serum total cholesterol 
(TC) content has a major impact on egg yolk production in laying hens39 and it could be affected by various 
factors such as age, genetics, and nutrition, and typically ranges 100–200 mg/dl in laying hens35. In this study, 
TC remained unaffected among the dietary treatments; however, hens receiving ESC and OS containing diets 
presented a significant decrease in the HDL proportion as compared with LS, ESF, and CS fed groups. Neverthe-
less, the decreased proportion of HDL was within the normal range of HDL level, i.e. > 22 mg/dl, hence supports 
the safety of ESC or OS in lipid metabolism. Glucose levels are often used as indicators in determining insulin 
resistance and hyperglycemia40, remained unaffected at the end of experiment, indicating unaltered glucose 
metabolism by the Ca sources.

Ca and P are essential mineral nutrients in laying hens, as they play important roles in the bone and egg shell 
formation41. Ca is incorporated into bone as hydroxyapatite [Ca5(PO4)3(OH)], a P containing compound, and 
into egg shell as calcium carbonate (CaCO3). The metabolism of Ca and P is regulated by the dietary levels of 
each and through the synergistic actions of intestine, kidney, and skeleton42,43. Phosphorus, required in small 
amounts, reduces blood acidosis by flushing excess hydrogen ions through excretion and, hence, contributing 
to the maintenance of bicarbonate levels for egg shell formation44. However, when P is in excess, it binds with 
Ca in the intestine to form insoluble phosphate and interferes with the Ca absorption in the body, resulting in 
deterioration of egg shell quality. Conversely, P deficiency could induce Ca excretion, leading to false gait and 
leg abnormalities such as cartilage and cage scattering fatigue, so it is crucial to maintain a proper Ca to P ratio44. 
During an egg laying cycle, the serum Ca and P levels are changed in a dynamic manner45,46. Hens generally 
need 25–26 h to lay an egg, most of the time required for shell formation (18–20 h)31,47. Shell formation requires 
large amounts of Ca (2–2.5 g of Ca per egg), around 2/3rd of which is supplied directly from the hen’s diet and 
the remaining 1/3rd is mobilized from the medullary bone48. Shell formation occurs during the night period, the 
time when Ca levels are low in the gut since birds show nocturnal fast49. To establish the synchronization between 
the circadian availability of dietary Ca and the circadian deposition of Ca into the egg shell, two mechanisms 
were proposed: (a) efficient absorption of Ca during the early dark period, when feed is present in the gut; and 
(b) efficient bone resorption process during the later dark period8. In this study, the dietary inclusion of CS, OS, 
ESF, or ESC as a sole Ca source did not significantly affect serum Ca and P ratio before and after oviposition 
(P > 0.05) when compared with LS fed hens. Additionally, when the lights were turned off (9 pm), the serum 
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Ca to P ratio was numerically higher in OS and ESC fed hens as compared with other groups, indicating the 
enhancement of Ca absorption for egg shell formation. Consequently, lower mobilization of Ca from medullary 
bones will occur for egg shell formation in the OS and ESC fed hens. This study’s results conjecture the advantage 
of using large particle Ca in layer’s diet, consistent with previous studies which indicate that the large particles 
may have slow passage through the gut because of their low solubility, thereby Ca being available to the hen for 
a longer period24,30,31,50.

The high Ca demands in laying hens during production to maintain structural bone quality have been well 
documented51. As birds grow older, bone mechanical properties and BMD gradually decline because of higher 
bone resorption and lower bone formation in the birds52. Additionally, the incomplete restoration of the circadian 
loss of bone Ca in the subsequent daylight period from feed results in poor bone quality in laying birds. In this 
study, supplementation of different Ca sources did not make any difference in bone weight and bone breaking 
strength of laying hens at late stage of production, indicating their ability to preserve the bone quality in old 
laying hens. In contrast, Meyer et al.53 reported higher bone strength in the hens fed oyster shell, eggshell, and 
limestone large particles than those consumed limestone small particles. Guinotte and Nys12 also indicated that 
the inclusion of large limestone or oyster shell led to improved tibial characteristics. QCT have been used to 
determine BMD in egg-laying hens29,51. The significantly increased BMD of total and individual tibia regions 
(proximal and distal) in the ESC and OS fed hens implied that less bone resorption might have occurred to sup-
port the egg production in old laying hens. This finding is consistent with the report of Saunders-Blades et al.29, 
which indicated that the inclusion of larger Ca particles (limestone) in diet improved tibia BMD in laying hens 
at 74 wk of age. Reports investigating the effect of different particle sizes of ES on tibia BMD are scarce in the 
available literature.

In conclusion, the complete substitution of limestone with ES provided sufficient Ca for performance, egg 
quality, and bone mineralization in old laying hens over the 7 week of study. In addition, ES with either fine or 
coarse particles did not show any adverse effects on biochemical constituents, and Ca and P levels in the serum 
of laying hens. The superiority of coarse ES particles was observed over the fine ES particles and may be attrib-
uted to their large particle size. However, the implications of long term feeding of the ESC containing diet to 
determine its efficacy in laying hens should be studied further. The application of ES waste as a commercial Ca 
source for laying hens could improve the economic efficiency while simultaneously reducing the environment 
burden of landfills.

Methods
Ethical statement.  All experimental protocols were approved by the Animal Care and Use Committee 
(Approval number: KU18057) of Konkuk University (Seoul, Republic of Korea). Experiments were conducted 
at a private laying hen farm (Chung-ju, Republic of Korea) during August–October 2017 in accordance with the 
approved guidelines and regulations, and in compliance with the ARRIVE guidelines54.

Experimental diets.  Five different Ca sources including limestone (< 2  mm and 2–4  mm mixed in the 
ratio of 3:7; LS), cockle shell (1–4 mm; CS), oyster shell (3–16 mm; OS), ES fine particles (< 1 mm; ESF) and ES 
coarse particles (3–5 mm; ESC) were used in this study. Limestone and cockle shell were purchased from Seoul 
Feed Co., Ltd., (Seoul, Republic of Korea) and oyster shell was purchased from Jisan Industrial Co., Ltd. (Seoul, 
Republic of Korea). The fine and coarse particles of ES were produced and supplied by Poonglim Food Co., Ltd. 
(Seoul, Republic of Korea). Briefly, ES membranes were removed by washing with water followed by heating at 
150℃ for 12 h, and then ES were crushed to a particle of 3–5 mm using a hammer mill (SM-D3, Wilhelm Siefer 
GmbH & Co., Velvert, Germany). ES particles of less than 1 mm were separated through a 1 mm sieve after 
further crushing.

A corn-soybean meal based diet was formulated to meet or exceed nutrient requirements of laying hens34. To 
the basal diet, each of the pre-analyzed Ca sources was added to achieve the desired concentration of Ca (4.1%) 
in the final diets. Cellulose was used as a filler in the experimental diets so that all diets could be formulated with 
various Ca sources at the same concentration. The Ca sources and cellulose were mixed thoroughly for 10 min 
in a feed mixer (DKM-350SU, Daekwang Machinery Co. Ltd., Hwaseong, Republic of Korea). All diets were 
isocaloric and isonitrogenous differing only in the ingredients used as the main Ca source. The ingredients and 
chemical composition of the experimental diets are shown in Table 5.

Birds and treatments.  A total of 450 ISA-Brown hens at 71 week of age (1900.0 ± 271.4 g) were housed in 
two-stage metal cages (735 cm2/hen) under controlled conditions of temperature (23.6 ± 2.6 ℃) and humidity 
(76.4 ± 15.7%). After the 2-week adaptation on a corn-soybean meal based commercial diet (Supplementary 
Table S4), birds with the same egg production rate (EPR) were randomly assigned to 5 treatment groups with 10 
replicates (cages) (nine birds per replicate/cage) and each cage was provided with three nest boxes. Group LS, 
serving as the control group, was provided with a layer diet comprising limestone as the Ca source, group CS 
was placed on a layer diet that contained cockle shell as the Ca source, group OS received a layer diet containing 
ground oyster shell as the Ca source, group ESF received a layer diet containing fine ES particles (< 1 mm) as the 
Ca source, and group ESC received a layer diet containing coarse ES particles (3–5 mm) as the Ca source. Feed in 
mash form was distributed manually once daily at 10 am. Feed and water were provided for ad libitum consump-
tion. The birds were exposed to a total of 16 h of artificial photoperiod (16L:8D) daily from an automated light-
ing control system (SJP-E16 3 W, Seojun Electric Co. Ltd., Seoul, Republic of Korea) which was programmed to 
switch on between 5 am and 9 pm during the entire experiment.
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Hen productivity.  The number of eggs laid by birds in each replicate was recorded daily once at 10 am 
and expressed as the percentage of egg production. The hen-day EPR is calculated by dividing the total number 
of eggs collected by the number of live hens daily in each replicate55. The total eggs produced in a day were 
weighed collectively for every replicate and was used to estimate average egg weight (AEW). Daily egg mass was 
calculated by multiplying EPR by AEW. Feed intake (FI) was measured weekly once per replicate, weighing the 
amount of feed distributed and that of residual and scattered feed. The feed conversion ratio (FCR) was calcu-
lated based on FI and daily egg mass56. The proportion of cracked eggs in each replicate was calculated weekly by 
dividing the number of cracked eggs by total eggs. Mortality was recorded during the experiment.

Egg quality.  Forty eggs per treatment (4 eggs per replicate) were randomly selected after each week and 
analyzed for their quality on the same day of collection. Egg quality traits including egg weight, albumen height, 
Haugh unit, yolk color, shell strength, and shell thickness were determined using an automatic egg analyzer 
(Digital egg tester DET6000, NABEL, Co. Ltd., Japan). The Haugh unit is calculated using the following equa-
tion: 100 × log (H + 7.57–1.7 × W0.37), where H = albumen height (mm) and W = egg weight (g)57. Shell color was 
determined by using a QCR shell color reflectometer (Technical Services and Supplies, York, UK) as indicated 
by Safaa et al.23. A total of 1400 eggs were analyzed throughout the 7 week of study.

Table 5.   Ingredients and nutrient composition of the experimental diets. LS limestone (< 2 and 2–4 mm 
mixed in 3:7); CS cockle shell (1–4 mm); OS oyster shell (3–16 mm); ESF eggshell fine particles (< 1 mm); ESC 
eggshell coarse particles (3–5 mm). Met methionine, Cys cysteine. a Vitamin premix supplied the following 
per kg of diet: vitamin A, 8000 IU; vitamin D3, 3300 IU; vitamin E, 20 g; vitamin K, 2.5 g; vitamin B1, 2.5 g; 
vitamin B2, 5.5 g; vitamin B3, 30 g; vitamin B5, 8 g; vitamin B6, 4 g; vitamin B7, 75 mg, vitamin B9, 0.9 g; 
vitamin B12, 23 mg. b Mineral premix supplied the following per kg of diet: Choline, 110 g; Manganese, 90 g; 
Zinc, 80 g; Iron, 40 g; Copper, 8 g; Iodine, 1.2 g; Selenium, 0.22 g. c 1,000,000 phytase units (FTU).

Items

Treatments

LS CS OS ESF ESC

Ingredients, %

Corn 54.1 54.1 54.1 54.1 54.1

Soybean meal 23.6 23.6 23.6 23.6 23.6

Rapeseed meal 2.00 2.00 2.00 2.00 2.00

Distillers dried grains with solubles 6.00 6.00 6.00 6.00 6.00

Tallow 1.11 1.11 1.1 1.11 1.11

Molasses 0.500 0.500 0.500 0.500 0.500

Methionine (98%) 0.132 0.132 0.132 0.132 0.132

Dicalcium phosphate 0.510 0.510 0.510 0.510 0.510

Choline-Cl (liquid) 50% 0.100 0.100 0.100 0.100 0.100

Limestone, 37.2% Ca 10.5 – – – –

Cockle shell, 37.5% Ca – 10.4 – – –

Oyster shell, 36.39% Ca – – 10.7 – –

Fine ES, 34.17% Ca – – – 11.4 –

Coarse ES, 36.13% Ca – – – – 10.8

Cellulose 0.900 1.00 0.700 – 0.600

Salt 0.250 0.250 0.250 0.250 0.250

Sodium bicarbonate 0.060 0.060 0.060 0.060 0.060

Vitamin premixa 0.100 0.100 0.100 0.100 0.100

Mineral premixb 0.100 0.100 0.100 0.100 0.100

Phytasec 0.050 0.050 0.050 0.050 0.050

Calculated nutrient composition, %

Crude protein 17.0 17.0 17.0 17.0 17.0

Crude fat 3.87 3.87 3.87 3.87 3.87

Crude fiber 3.39 3.48 3.27 2.69 3.19

Ash 14.8 14.8 14.8 14.8 14.8

Ca 4.11 4.10 4.09 4.01 4.10

Total P 0.430 0.441 0.477 0.499 0.490

Met + Cys 0.700 0.700 0.700 0.700 0.700

Available P 0.380 0.380 0.380 0.380 0.380

Metabolizable energy (MJ/kg) 11.4 11.4 11.4 11.4 11.4
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Blood sampling and analysis.  At the end of the experiment, four hens (80 week of age) were randomly 
selected from each treatment at 3 pm, 9 pm and 3 am and designated for blood sampling. Blood samples were 
collected in Vacutainer Serum Tubes (BD, New Jersey, USA) from hens by cardiac puncture after CO2 euthanasia. 
Serum was collected by centrifugation at 1500 rpm for 10 min and stored at − 20 °C until analysis. Serum con-
centrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), 
lactate dehydrogenase (LDH), creatinine, glucose, total cholesterol (TC), high density lipoprotein (HDL) (mg/
dl), HDL (% total), low density lipoprotein (LDL) + very low density lipoprotein (VLDL), total protein (TP), 
albumin and triglycerides (TG) were determined by using an automated clinical chemistry analyzer (FUJI DRI-
CHEM 7000i, FUJIFILM Corporation, Japan). HDL (%) was expressed with the ratio of HDL to TC content, and 
LDL + VLDL was calculated by subtracting HDL from TC58.

To determine the serum Ca and P levels during light and dark periods, blood samples were collected at four 
time points (3 pm, 9 pm, 3 am, and 9 am) from four hens (80 week of age) per treatment as described above. Ca 
and P contents of the serum were measured using the automated clinical chemistry analyzer.

Tibia characteristics.  At the end of the experiment, 16 laying hens (80 week of age) per treatment group 
were randomly selected to collect right or left tibia after removing the non-bone tissues (fat, tendon, and mus-
cle). The tibiae were individually sealed in plastic bags to minimize moisture loss and stored at 4 ℃ for one day. 
The length and width of the tibia was measured using a micrometer caliper and the weight was recorded. Tibia 
strength was determined from a 3-point bending test (ASAE Standards S459, 2001) using an Instron Universal 
Testing Machine (Model 3342, USA) at 50 kg load range and with a crosshead speed of 50 mm/min; tibia sup-
ported on a 3.35-cm span59.

Bone mineral density.  The bone mineral density (BMD) of all the collected tibiae was analyzed using 
quantitative computed tomography (QCT) at the college of Veterinary Medicine, Konkuk University (Korea, 
Seoul). Three positions of each tibia  including neck (section of the mastoid arthrodesis), 1/3 of the proxi-
mal portion, and 2/3 of the distal portion were scanned using a CT scanner (LightSpeed Plus, GE Healthcare, 
Amersham, UK). The scanning conditions were as follows: 120 kV and 200 mA, slice thickness 1.25 mm, slice 
interval 1.25 mm, pitch 1.5:1, rotation time 0.6 s, and scanning speed 7.5 mm/rotation. The scanned images 
were archived in DICOM (Digital Imaging and COmmunications in Medicine) format and were evaluated by 
using a 3D slicer software (Version 4.6.2 r25516, National Alliance for Medical Image Computing). The Houns-
field unit (HU) values of each standard point of the three positions in a tibia were taken and the trend equation 
was obtained using a single-layer computerized photograph through QCT calibration phantom (QRM-BDC/3, 
QRM GmbH, Moehrendorf, Germany). The HU values obtained from the QCT scans were used to calculate 
BMD (mg/cm3).

Statistical analysis.  Data were analyzed in a completely randomized design with 5 treatments using the 
PROC GLM procedures of SAS 9.4 (SAS Institute, Cary, NC, USA). The replicate (9 hens each) was the experi-
mental unit for analysis of performance data. The egg quality traits were analyzed statistically at each week by 
considering the number of eggs as the experimental unit. The data were pooled for all 7-week periods and the 
results are presented in the manuscript. For blood parameters and bone quality measurements, the individual 
bird served as the experimental unit. Significant differences among the treatments were determined using Dun-
can’s multiple range test at P < 0.05. Effects of the ES particle size (LS, ESF, and ESC) were further determined by 
the “contrast” option of the GLM procedure. Data are presented as the least squares means and standard error 
of the means (SEM).

Data availability
The data analyzed during the current study are available from the corresponding author on reasonable request.
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