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The causal interaction in human 
basal ganglia
Clara Rodriguez‑Sabate1,2,3, Albano Gonzalez4, Juan Carlos Perez‑Darias4, Ingrid Morales1,2 & 
Manuel Rodriguez1,2*

The experimental study of the human brain has important restrictions, particularly in the case of basal 
ganglia, subcortical centers whose activity can be recorded with fMRI methods but cannot be directly 
modified. Similar restrictions occur in other complex systems such as those studied by Earth system 
science. The present work studied the cause/effect relationships between human basal ganglia with 
recently introduced methods to study climate dynamics. Data showed an exhaustive (identifying basal 
ganglia interactions regardless of their linear, non-linear or complex nature) and selective (avoiding 
spurious relationships) view of basal ganglia activity, showing a fast functional reconfiguration of their 
main centers during the execution of voluntary motor tasks. The methodology used here offers a novel 
view of the human basal ganglia which expands the perspective provided by the classical basal ganglia 
model and may help to understand BG activity under normal and pathological conditions.

The experimental study of the human brain presents important restrictions, particularly in the case of the deep 
brain nuclei. The basal ganglia (BG) are located under the brain cortex and cannot be directly manipulated, but 
their activity can be recorded with non-invasive methods. Magnetic resonance imaging (MRI) can provide infor-
mation about the functional activity (functional MRI; fMRI), and functional connectivity (functional connectiv-
ity MRI; fcMRI) of the BG of subjects who are performing particular tasks1–5. These methods use the dynamics 
of the blood oxygenation level dependent (BOLD) signal, to quantify the vasodilatation (relative concentration 
of oxy- and deoxy-hemoglobin) induced by brain activity. The increase in the BOLD signal is normally used to 
identify the brain centers involved in particular tasks, and the time-relationship of the BOLD signal fluctuation 
of two centers (time-series) is often used to analyze the functional interaction of these centers. Unfortunately, 
only statistical dependencies can be evaluated from these observational data, and the cause/effect relationship 
necessary to develop robust models of the brain activity may not be properly established. Similar handicaps are 
present in other complex systems such as those studied by the Earth system science, and where the variables 
involved in their functional dynamics can be monitored but not experimentally manipulated. Thus, there is a 
growing interest to develop mathematical frameworks suitable for studying the cause/effect relationship of these 
complex systems by analyzing the time-series generated by the activity of their components. These methods, 
which began with the seminal studies of Wiener and Granger (1950s–1960s), have evolved rapidly6–13, and are 
being used successfully for the study of several climate signals and the dependence between them8. Different 
European groups (e.g., the Aerospace Center in Germany and the Grantham Institute of the Imperial College 
in London) have recently introduced new methods which facilitate the study of the cause/effect relationships 
involved in climate dynamics8,10,11. Unlike the study of correlations between pairs of time series, the methods 
for reconstructing causal networks allow us to distinguish between direct and indirect dependencies, in addi-
tion to detecting common drivers in a set of time series. These methods were used here to study the causality 
relationships between BG nuclei.

During the 1980s and 1990s, BG were grouped in four cortico-subcortical closed-loop circuits by a model 
which was later used to explain the role of each nucleus in the physiology and physiopathology of BG. This model, 
which is widely used today, arranges BG in a serial succession of centers which process the information received 
from the brain cortex, and return the processed information to its cortical origin (cortico-subcortical loop). One 
of these closed-loop BG networks is the BG motor circuit (BGmC), which receives the motor information pro-
vided by the primary motor cortex (M1), successively processes this information in the putamen (Put), external 
globus pallidum (GPe), subthalamic nucleus (STN), internal globus pallidum (GPi) and substantia nigra (SN), 
and finally returns the processed information to the M1 through the anterior thalamus (motor thalamus; Tal). 
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Thus, the M1 is considered as both the input and output of the BGmC, and is also the cortical center which finally 
controls the neurons that directly modulate muscle activity. The BGmC is composed of three parallel closed-
loop networks, the direct (M1 → Put → SNr/GPi → Tal → M1), the indirect (M1 → Put → GPe → STN → GPi/
SNr → Tal → M1) and the hyperdirect (M1 → STN → SNr/GPi → Tal → M1) cortico-subcortical closed-loops. 
In the classical BG model, the three loops compete for the functional control of the M1 activity14–16. Although 
this model has been successfully applied to explain some motor symptoms of BG disorders16–24, other symp-
toms remain unexplained18,19,25, and there is a growing interest in updating this BG model26–32. The classical 
BG model uses the excitatory/inhibitory interactions of BG neurons recorded in experimentation animals to 
estimate the cause/effect relationship of BG centers and the overall dynamics of the human BGmC. Different 
methods have recently been introduced to study the functional relationships between human BG31–33 but the 
cause/effect interaction of these centers has never been directly tested in humans. In addition, a number of 
subcortical pathways that may be critical for understanding the global dynamics of BG are often not included in 
the classical BG model34. The present work uses the causation analysis developed to study the climate and other 
complex systems that cannot be experimentally manipulated to study the functional relationships of the human 
BGmC with fcMRI recordings.

Results
Three complementary statistical methods were used here to identify the functional interactions of BG nuclei. 
The first one is based on classical statistics and provides a robust theoretical background. It assumes linear rela-
tionships between variables, testing the conditional independence through the corresponding partial correla-
tion (PC). The second one uses a non-parametric method based on gaussian process regression and a distance 
correlation (GPDC)35 to test the dependence, allowing the detection of non-linear dependencies. The last one is 
the conditional mutual information test based on nearest-neighbor (CMIknn) estimator36. It is the most general 
dependency measure, and makes no assumptions about the parametric form of the dependencies by directly 
estimating the underlying joint density. The non-parametric and model-free methods allow the detection of non-
linear relationships in complex systems, but they are based on weaker theoretical results. These methods were 
used to identify instantaneous dependencies and delayed causations. The instantaneous dependency indicates 
that two nuclei present functional relationships but, because it occurs within the same time-window of the fcMRI 
methods (1.6 s), the nuclei which activate this relationship cannot be identified. The delayed causation shows a 
slow functional interaction between two nuclei (one nucleus is activated at least 1.6 s before the other nucleus). 
The nucleus activated first is considered as the cause of this interaction.

Figure 1 shows the instantaneous dependency (top) and delayed causation (bottom) found with PC, GPDC 
and CMIknn methods during the resting intervals. PC showed 15 instantaneous and 2 delayed dependencies 
which were also found with the GPDC methods. The only exception was the GPe-SN instant dependency that 
was observed with PC but not with GPDC (although GPDC identifies the linear relationships found by PC, it has 
less sensitivity than PC for this type of causation). In addition to the linear dependencies found by PC, GPDC 
showed 1 instantaneous and 5 delayed (3 single-delayed and 2 double-delayed) non-linear dependencies. CMIknn 
can detect all types of dependencies but it is much less sensitive than PC for linear dependencies and than GPDC 
for non-linear dependencies. Nonetheless, MCIknn identified most of the linear and non-linear instantaneous 
dependencies found by the other two methods, also showing an SN-Put instantaneous dependency not found 
by the other methods and whose characteristics are not presently identified. The low sensitivity of CMIknn was 
more clearly observed in the delayed causation where only the SN → M1 single-delayed linear causation was 
detected with this method. The right-side of Fig. 1 shows a summary of the main relationships (true dependen-
cies), indicating their linear (green), non-linear (purple) or complex (cyan) nature. Taken together, present data 
show 17 instantaneous dependencies (15 linear, 1 non-linear and 1 complex) and 7 delayed causations (2 linear, 
3 non-linear single-delayed and 2 non-linear double delayed).

Figure 2 shows the task-dependent (resting-task in blue and motion-task in red) and task-independent 
(permanent dependencies found in both resting and motor tasks are shown in black) instantaneous and delayed 
dependencies. The statistical value of each functional interaction during the resting-task and motor-task is 
shown in Tables 1 and 2, respectively). Out of the 140 possible permanent dependencies (42 instantaneous+ 49 
single-delayed+ 49 double-delayed causations), 30 showed a frequency higher than expected at random, with 
most of them being instantaneous dependencies (28 instantaneous+ 2 single-delayed dependencies). Most per-
manent instantaneous dependencies were produced between BG nuclei (11), and only 3 involved cortical areas 
(1 between M1 and S1 and 2 between BG and S1). Only 2 permanent delayed causations were found (STN → SN 
and SN → M1). Out of the 280 possible task-dependent dependencies (84 instantaneous+ 98 single-delayed+ 98 
double-delayed causations), 11 showed a frequency higher than expected at random, with most of them being 
delayed causations (3 instantaneous+ 5 single-delayed+ 3 double -delayed causations). Most task-dependent 
dependencies involved the M1.

Figure 3 shows the relationships for each region of the BGmC. M1 and S1 showed a completely different set 
of relationships with the other centers of the BGmC. M1 showed an instantaneous and a delayed dependency 
with S1 during the resting-task (M1 working as causative nucleus). The brain area of the BGmC which most 
changed with the motor tasks was M1. Most M1 interactions with BG were delayed (6 delayed vs. 2 instantane-
ous) task-dependent (7 task-dependent vs. 1 permanent) dependencies. M1 worked as a causative center of 
the GPe activity during resting, and of the SN and Tal activity during the motion-task. In addition, M1 was a 
response center for the Tal activity during the resting-task. The instantaneous dependencies of M1 also changed 
with tasks, and were linked to SN during resting and with STN during motion. Thus, most M1-BG interactions 
were activated by particular motor tasks, with the SN → M1 being the only delayed causation observed during 
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both the resting and motor tasks. S1 showed only three instantaneous relationships (with SN, Tal and M1) that 
did not change with the motor task.

Put showed instantaneous dependencies with GPe, GPi and Tal which did not change with the motor task. 
In addition, Put acted as a causative center of a double-delayed causation with both the GPe (during the resting-
task) and M1 (during the motor-task). GPe showed an instantaneous connectivity with Put, STN, GPi, SN and 
Tal during the resting-task that did not change during the motor-task. STN showed an instantaneous interaction 
with GPe, GPi, SN and Tal during the resting-task which did not change during the motor task. STN acted as a 
single-delay causative center of the SN activity, a behavior that was similar during the resting and motor tasks. 
Similarly to that observed for the GPe, GPi showed an instantaneous dependency with different BG (Put, GPe, 
STN and SN) during resting that did not change with the motor-task. Thus, the main difference between GPe 
and GPi was the interaction with Tal, which was found for GPe but not for GPi. SN was the BG region with the 
highest number of interactions (8 different interactions). SN showed five permanent dependencies, which were 
instantaneous in four cases (GPe, STN, GPi and S1) and single-delayed in one case (M1). In addition, SN showed 
three task-dependent interactions (instantaneous with Tal and M1 and single-delayed with GPe) which were 
observed during the resting-interval and vanished during the motor-interval. Tal showed permanent instantane-
ous dependency with Put, GPe, STN and S1. In addition, Tal showed an instantaneous interaction with SN during 
the resting-task that vanished during the motor-task intervals, and also showed a single-delayed causation with 
M1 which was observed during the resting tasks.

Figure 1.   Instantaneous dependence vs. delayed causation during the resting task. Connections between 
centers show dependence or causation relationships with statistical value (p < 0.01). A summary of the main 
dependence relationships is shown at the top-right (true dependence), and a summary of the main causation 
relationships is shown at the bottom -right (true causation). PC: partial correlation, GPDC: Gaussian process 
regression and distance correlation, CMIknn: conditional mutual information test (based on nearest-neighbor). 
M1: primary motor cortex, S1: primary somato-sensory cortex, Put: putamen, GPe: external globus pallidum, 
STN: subthalamic nucleus, GPi: internal globus pallidum, SN: substantia nigra, Tal: motor thalamus.
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Discussion
The causation methods previously developed to study the evolution of atmospheric phenomena and other com-
plex systems showed here an unprecedented vision of the intricate activity of the human BG. The combination of 
three dependent statistics procedures identified linear, non-linear and complex functional relationships between 
the main nuclei of the BGmC, also showing their functional connectivity with the primary motor cortex and 
primary somatosensory cortex. A portion of detected functional interactions (those performed in a time-window 
longer than the 1.6 s of the fMRI recording interval) showed causality relationships, thus identifying the causative 
and the response center. The rapid functional relationships (time-window less than 1.6 s) were also identified 
but, in this case, the causative center could not be recognized. Present methods showed an exhaustive (identify-
ing all interactions regardless of their linear, non-linear or complex nature) and selective (avoiding the spurious 
relationship generated by the closed-loop arrangement of BG) view of the BGmC behavior. The functional 
interactions changed with the task, showing an unstable functional connectivity of BG that facilitates their fast 
reconfiguration during the execution of different motor tasks. The methodology used here offers a novel view of 
the human BG which expands the perspective provided by the classical BG models and may help to understand 
the BG activity under normal and pathological conditions.

Methodological comments.  The study of the internal dynamics of the human neural networks during 
the execution of particular motor task is presently a challenging goal for neuroscience, particularly when the 
nuclei involved in these networks are located deep in the brain and their experimental manipulation is not 
possible. This is the case of the BG, whose cause/effect relationships were studied here by analyzing BOLD 
signals recorded from the main BG with new methods which have recently been introduced to research causal 
relationships in complex systems where an experimental approach is not possible8,10,11. The causality which these 
methods provide is not exactly the same causality provided by the experimental studies. The “experimental cau-
sality” considers X to be the cause of Y only when the repeated manipulation of X has the same effect on Y, a 

Figure 2.   Permanent (resting + motion tasks) and task-dependent interactions. Connections between centers 
show relationships with statistical value (p < 0.01). M1: primary motor cortex, S1: primary somato-sensory 
cortex, Put: putamen, GPe: external globus pallidum, STN: subthalamic nucleus, GPi: internal globus pallidum, 
SN: substantia nigra, Tal: motor thalamus.
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Re 
sponse\
causative Method M1 S1 Put GPe STN GPi SN Tal

Lag 0

M1
PC
GPDC
CMIknn

1
1
0.704

 − 0.139
0.122

S1
PC
GPDC
CMIknn

1
1
0.704

 − 0.149
0.021

 − 0.224
0.047
0.066

Put
PC
GPDC
CMIknn

0.457
0.205
0.169

0.322
0.124
0.129

0.073
0.542
0.205
0.223

GPe
PC
GPDC
CMIknn

0.457
0.205
0.169

0.123
0.078
0.102

0.452
0.120
0.162

0.212
0.073

0.432
0.089
0.149

STN
PC
GPDC
CMIknn

0.123
0.078
0.102

0.551
0.316
0.284

0.970
0.981
0.514

0.374
0.044
0.109

GPi
PC
GPDC
CMIknn

0.322
0.124
0.129

0.452
0.120
0.162

0.551
0.316
0.284

0.251
0.049
0.150

SN
PC
GPDC
CMIknn

 − 0.139
0.122

 − 0.149
0.021 0.073 0.212

0.073
0.970
0.981
0.514

0.251
0.049
0.150

0.031
0.118

Tal
PC
GPDC
CMIknn

 − 0.224
0.047
0.066

0.542
0.205
0.223

0.432
0.089
0.149

0.374
0.044
0.109

0.031
0.118

Lag 1

M1
PC
GPDC
CMIknn

0.257
0.056
0.097

0.014

S1
PC
GPDC
CMIknn

 − 0.637
0.377

Put
PC
GPDC
CMIknn

GPe
PC
GPDC
CMIknn

0.013

STN
PC
GPDC
CMIknn

GPi
PC
GPDC
CMIknn

SN
PC
GPDC
CMIknn

0.127

Tal
PC
GPDC
CMIknn

Lag 2

M1
PC
GPDC
CMIknn

S1
PC
GPDC
CMIknn

Put
PC
GPDC
CMIknn

GPe
PC
GPDC
CMIknn

0.012 0.090

STN
PC
GPDC
CMIknn

GPi
PC
GPDC
CMIknn

Continued
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Table 1.   Statistical values of each functional link during the resting-task computed with the partial correlation 
(PC), gaussian process regression and distance correlation (GPDC), and conditional mutual information 
test (CMIknn) methods. Columns correspond to causative nuclei and rows to response nuclei. Only those 
relationships with p-values < 0.01 are shown. All the statistical values in this table were normalized between 
0 and 1, a procedure that facilitates the comparison of the results obtained with the three methods. M1 
primary motor cortex, S1 primary somato-sensory cortex, Put putamen, GPe external globus pallidum, STN 
subthalamic nucleus, GPi internal globus pallidum, SN substantia nigra, Tal motor thalamus.

Re 
sponse\
causative Method M1 S1 Put GPe STN GPi SN Tal

SN
PC
GPDC
CMIknn

Tal
PC
GPDC
CMIknn

manipulation which cannot generally be performed in human BG. What can be studied with present method 
is the “statistical causality”, the probability that the finding of X will be followed by the finding of Y. Different 
definitions have been proposed for statistical causality (bivariate Granger causality, bivariate transfer entropy, 
conditional mutual information, phase transfer entropy, etc..), with the time-sequence of events (X → Y) being 
the main characteristic to identify causes (previous events) and effects (subsequent events) in all these defini-
tions. All the causality methods require a number of preconditions (stationarity, causal sufficiency, faithfulness..) 
that cannot always be verified (particularly in brain studies), thus the term “causality” could be replaced by other 
less demanding terms such as “directionality” (which only suggests the existence of a time-sequence between X 
and Y). The term causality was used here because it is employed in most previously studies which applied similar 
analytical methods. When the time-resolution of the fcMRI did not allow the determination of the sequential 
order of brain activations, the term causality was replaced by “instantaneous dependence”, but when one center 
was clearly activated before the other center, the term used was “causation”, with the earlier activated nucleus 
being referred to as “causative nucleus” and the subsequent nucleus as “response nucleus”. The time resolution of 
present fMRI methods is 1.6 s, and only the activation sequences of centers performed within intervals of 1.6 s 
or 3.2 s (delayed causation) were considered here. The activation sequence cannot be interpreted as an excita-
tion or direct activation carried out by the causative nucleus on the responsive nucleus. The activation sequence 
only means that during the execution of BG tasks these centers present a statistical trend to activate successively. 
With an example, the arrival of the night is usually followed by the turning on of the city lights, and this does not 
mean that the darkness can act directly on the light switches. This is particularly clear in the case of the delayed 
causations where the activation of a center is not followed by the activation of the other center until 3.2 s have 
elapsed. These slow transitions could be associated with the succession of tasks (e.g. the execution of a movement 
and the following adaptation of the muscle tone needed to balance the new body posture) rather than with the 
involvements of both centers in the same task.

Although present methods were designed to reject the most common spurious causations, artefactual inter-
actions cannot be completely ruled out11. However, the methodological precautions used (e.g., long time-series, 
non-parametric significance tests, etc.) and the identification of the same functional interactions with different 
methods suggests that most functional relationships reported here are genuine. The use of different mathematical 
approaches provides clear advantages over other causal methods, including the possibility of identifying linear, 
non-linear, or more complex causations11. A limit of the present methodological approach is that it can identify 
individual interactions between two centers, but not multiple simultaneous interactions between the different 
centers of the same network. The independent component analysis37–39 and data-driven sparse GLM40,41 can 
simultaneously work with multiple regions but these multifactorial methods mainly identify linear interactions, 
functional relationships that do not always occur in the BG31,42,43 where many neurons display a non-linear 
dynamic44–46. Multifactorial methods have recently been developed that may work with multiple regions at the 
same time, but they do not provide an identification of BG interactions as exhaustive as the present method 
does (e.g., multiple correspondence analysis)31, and they do not identify causal relationships (multiple covari-
ance method)32.

The joint application of present analytical methods offers additional advantages to their individual separate 
use. The most sensitive method for linear interactions is the PC. In this case, the spurious causations generated 
by the closed-loop arrangement of BGmC (which facilitates the repeated circulation of information) were pre-
vented by using a partial correlation that subtracted the possible action of all the other centers of the network 
from the interaction between the two studied centers. The possible effect of performing many statistical contrasts 
was prevented by using a contrast method based on a block-shuffle permutation test. Non-linear interactions 
were studied with the GPDC, a method that avoids the possible interference of non-parametric noise and that 
can also identify linear relationships (although it is less sensitive than PC). Spurious causations were prevented 
here using partial correlations and the effect of repeating the statistical contrasts were avoided using shuffled 
data. Generally, PC and GPDC cannot identify complex relationships (e.g., those with phase transitions). The 
CMIknn method is the least sensitive and the most time-demanding method (a parallel version of the knn algo-
rithm was used and several days were required for each time series, using 24 Intel Xeon Gold 6140 cores), but 
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Response\causative Method M1 S1 Put GPe STN GPi SN Tal

Lag 0

M1
PC
GPDC
CMIknn

0.909
0.983
0.561

 − 0.149
0.032

S1
PC
GPDC
CMIknn

0.909
0.983
0.561

 − 0.243
0.027
0.088

 − 0.162
0.044
0.112

Put
PC
GPDC
CMIknn

0.516
0.177
0.292

0.303
0.085
0.143

0.534
0.216
0.254

GPe
PC
GPDC
CMIknn

0.516
0.177
0.292

0.177
0.022
0.116

0.403
0.092
0.259

0.269
0.011
0.144

0.364
0.051
0.211

STN
PC
GPDC
CMIknn

 − 0.149
0.032

0.177
0.022
0.116

0.520
0.252
0.282

1
1
0.725

0.359
0.077
0.289

GPi
PC
GPDC
CMIknn

0.303
0.085
0.143

0.403
0.092
0.259

0.520
0.252
0.282

0.277
0.016
0.189

SN
PC
GPDC
CMIknn

 − 0.243
0.027
0.088

0.269
0.011
0.144

1
1
0.725

0.277
0.016
0.189

Tal
PC
GPDC
CMIknn

 − 0.162
0.044
0.112

0.534
0.216
0.254

0.364
0.051
0.211

0.359
0.077
0.289

Lag 1

M1
PC
GPDC
CMIknn

0.226
0.036

S1
PC
GPDC
CMIknn

Put
PC
GPDC
CMIknn

GPe
PC
GPDC
CMIknn

STN
PC
GPDC
CMIknn

GPi
PC
GPDC
CMIknn

0.012

SN
PC
GPDC
CMIknn

0.158
0.110 0.186 0.120

Tal
PC
GPDC
CMIknn

0.014

Lag 2

M1
PC
GPDC
CMIknn

0.137
0.020
0.112

S1
PC
GPDC
CMIknn

Put
PC
GPDC
CMIknn

GPe
PC
GPDC
CMIknn

0.027

STN
PC
GPDC
CMIknn

GPi
PC
GPDC
CMIknn

0.014

SN
PC
GPDC
CMIknn

Continued
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Table 2.   Statistical values of each functional link during the motor-task computed with the partial correlation 
(PC), gaussian process regression and distance correlation (GPDC), and conditional mutual information 
test (CMIknn) methods. Columns correspond to causative nuclei and rows to response nuclei. Only those 
relationships with p-values < 0.01 are shown. All the statistical values in this table were normalized between 
0 and 1, a procedure that facilitates the comparison of the results obtained with the three methods. M1 
primary motor cortex, S1 primary somato-sensory cortex, Put putamen, GPe external globus pallidum, STN 
subthalamic nucleus, GPi internal globus pallidum, SN substantia nigra, Tal motor thalamus.

Response\causative Method M1 S1 Put GPe STN GPi SN Tal

Tal
PC
GPDC
CMIknn

Figure 3.   Influence of tasks on the functional interactions of BG. Connections between centers show 
relationships with statistical value (p < 0.01). Blue lines show the statistical interactions only observed during the 
resting task. Red lines show the statistical interactions only observed during the motor task. Black lines show the 
statistical interactions observed during both resting and motor tasks. M1: primary motor cortex, S1: primary 
somato-sensory cortex, Put: putamen, GPe: external globus pallidum, STN: subthalamic nucleus, GPi: internal 
globus pallidum, SN: substantia nigra, Tal: motor thalamus.
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it can detect complex relationships that the other two methods cannot identify (e.g., those including nonlinear 
multiplicative noise). Considering the estimation of conditional mutual information, it scales approximately 0(n 
log(n)) regarding the time complexity, with n being the sample sizes, and linearly with the number of nuclei and 
the maximum time lag11. Therefore, the integrated application of these methods proved to be useful to identify 
functional BG interactions not observed with other methods, reducing the possibility of incorporating spurious 
causation into the BG model.

The causality data and previous BG models.  The M1 showed an instantaneous and a delayed depend-
ency with the S1. The instantaneous dependence was observed during both the resting and motor tasks, and 
was analogous to that previously observed with other methods31,47. This permanent dependency could be at 
the basis of the continuous M1-S1 exchange of information that is necessary for checking the fit between the 
planned and executed movements48,49. The M1-S1 instantaneous dependence may be mediated by cortico-cor-
tical pathways50–52, but the synchronous arrival of somatosensory information to the S1 and M1 could also be 
involved in this functional dependence53–55. The delayed M1 → S1 causation showed the M1 as the causative 
center of the S1 activity. The maintenance of body posture is normally performed by an active process that is 
continuously counterbalancing the unexpected fluctuations of the posture. The counterbalance process begins 
by identifying unexpected movements, a task that needs the comparison of the desired body posture (computed 
in the M1) and the actual posture (somatosensory data continuously transmitted from the thalamus to the S1). 
During the resting task, the delayed M1 → S1 causation could facilitate the M1 → S1 transmission of the body 
posture to be preserved, with the S1 activity being necessary to detect mismatches between expected and real 
data56. Finally, the M1-S1 instantaneous dependence could facilitate the continuous interchange of sensitive-
motor information which is necessary for the fast correction of the body posture57.

Most functional relationships found between the M1 and BG were delayed (6 delayed vs. 2 instantaneous) 
task-related (7 TdC vs. 1 PC) dependencies. The M1 worked both as causative center of the GPe (during resting) 
and SN/Tal (during motion) activity, and as a response center for Tal activity (during resting). In addition, the 
M1 showed instantaneous dependency with the SN (during resting) and STN (during motion). Thus, most func-
tional dependencies between the M1 and BG changed with the tasks, with the SN → M1 being the only causation 
observed during both the resting and motor tasks. The M1 is the exit door through which the cortico-subcortical 
motor loops of BG send information to α-motoneurons (for activating motor behaviors) and to ϒ-motoneurons 
(for modulating the posture and muscle tone). In the classical BG model, the M1 output is the result of a deli-
cate balance between the excitatory (M1 → ↑ Put → ↓ SN/GPi → ↑ Tal → ↑ M1) and inhibitory (M1 → ↑ Put → ↓ 
GPe → ↑ STN → ↑ SN/GPi → ↓ Tal → ↓ M1 and M1 → ↑ STN → ↑ SN/GPi → ↓ Tal → ↓ M1) action of BG on the 
M1, with the excitation-inhibition imbalance being the main cause of the motor disturbances in PD16–24. However, 
present data suggest that the M1 is much more than a passive exit door for the BG activity. The M1 showed an 
active influence on the behavior of many BG, and was particularly relevant for the GPe, STN, SN and Tal activity. 
The M1-BG interaction was markedly influenced by the motor task, suggesting that the M1 action on most BG 
is the result of a task-dependent functional reconfiguration of the BG loops. Many of the functional relationships 
of the M1 and BG were causative, with the M1 acting as the causative nucleus and BG centers as response nuclei. 
Taken together, these data suggest that the M1 has executive functions that organize the activity of BG according 
to the task to be performed, and not only as a passive exit door that the BG use to control the posture and the 
motor behavior. Contrary to that observed for the M1, the S1 showed few interactions with BG that were not 
modified by the motor task, which justifies the no inclusion of this area in most of the BGmC models14–16,24.

Although the Put receives massive excitatory inputs from the M1, no direct M1 → Put causation was found 
here, neither during resting nor during motion. fMRI detects functional changes in brain centers only when a sig-
nificant percentage of their neurons increase their activity and produce enough metabolic changes to generate the 
vasodilatation that the fMRI can identify. These facts probably do not occur in the Put because the medium-sized 
spiny cells, which are 95% of the neurons of this center, present a relatively low sensitivity to excitatory cortical 
afferences which is produced by the concurrent action of: (1) a hyperpolarized resting membrane potential, (2) a 
sustained inhibition generated by an inwardly rectifying potassium current, (3) a sustained collateral inhibition by 
the other GABA neurons of the putamen. Therefore, the response of these neurons needs the strong synchronous 
action of many cortical inputs and is generally local (only few striatal neurons at a time) and transient (persists as 
long as sufficient excitatory drive is present to maintain depolarization)58–60. Thus, the massive neuronal response 
necessary to induce the metabolic changes that the fMRI can detect are probably not very frequent in the Put.

The Put does not project to the M1 and its influence on this cortical area can be performed only through the 
direct and indirect pathways of the BGmC. These pathways present antagonistic actions on the brain cortex, the 
direct pathway activating and the indirect pathway inhibiting the M1 activity. This, and the fact that Put → M1 
causation is probably lower than that induced by other cortical areas including the S1, may explain the finding 
of no Put → M1 statistical causation during the resting-task. The double-delayed Put → M1 causation found 
during the motor-task suggests that the Put action on M1 activity is much more marked during the execution of 
voluntary movements than during resting. Although the Put → M1 causation could be induced by an activation 
of the direct pathway or by an inhibition of the indirect pathway, the GPe data commented below is more in line 
with the second possibility.

The GPe is an intermediate center of the indirect pathway and is the only nucleus that is exclusively involved 
in this pathway in most BG models (GPi and SN are also involved in the direct pathway and STN in the hyper-
direct pathway). Present data agree with this possibility, showing an instantaneous connectivity of the GPe with: 
(1) Put and STN (its preceding and subsequent centers in the indirect pathway); (2) GPi and SN (the two output 
centers of the indirect pathways); (3) Tal (a center that moves the GPi/SN activity to the M1). The finding of a 
permanent instantaneous dependence of the GPe with all the other BG suggests that the indirect pathway presents 
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a basal influence on the BGmC that is not task-related. In addition to this permanent activity, the GPe worked 
as a response center for the SN, M1 and Put causative activity, a fact that was observed only during the resting 
intervals and which suggests that the indirect pathway is particularly relevant for the physiological functions 
that the BG perform during motor resting (e.g., maintaining posture, modulating muscle tone.). No GPe-M1 
dependency was found during the motor activity, which suggests that the above commented Put → M1 causation 
is linked to an inhibition of the indirect pathway more than to an activation of the direct pathway.

The STN showed an instantaneous dependency with most BG which agrees with its key role in both the indi-
rect (M1-Put-GPe-STN-GPi/SN) and hyperdirect (M1-STN-GPi/SN) pathways. The STN showed a permanent 
functional dependency with the GPe (its input nucleus in the indirect pathway), and with the GPi, SN and Tal 
(its output centers in the indirect and hyperdirect pathways), data suggesting that the STN performs a perma-
nent activity on the BGmC that does not change with the motor tasks. On the other hand, the STN showed an 
instantaneous dependence with M1 activity during motion that was not observed during resting, suggesting that 
the hyperdirect pathway is activated for the execution of voluntary movements61. The massive permanent inter-
action of the STN with most BG and the activation of the STN-M1 relationship observed during motion agree 
with the therapeutic action induced by the modification of the STN activity on both the passive (hypertonia.) 
and the active (bradykinesia, hypokinesia..) motor disorders of PD62.

The classical BG model suggests that the SN and GPi are involved in the integration of the activity of the 
direct, indirect and hyperdirect pathways, with both centers performing similar functions in the BGmC where 
they act as a single functional entity16,18. Present data do not support this possibility. Although the SN and GPi 
showed a permanent dependency between them and both centers showed permanent interactions with the GPe 
and STN (which suggests the SN and GPi perform similar functions), the permanent dependence of the GPi with 
the Put was not found for the SN and the permanent dependence of the SN with S1 was not found for the GPi 
(which suggests that the SN and GPi perform different functions). In addition, the SN-Tal and SN-M1 relation-
ship observed during resting was not found for the GPi, and the M1 → SN causation observed during motion 
was not found for the GPi. Thus, the differences found for the functional connectivity of the SN and GPi with 
the other BG indicate that they perform different functions in the GBmC, particularly during the execution of 
voluntary movements. However, we must be cautious with this interpretation of data since the SN in this study 
includes both its compacta and reticulate sub-regions. These sub-regions present a different connectivity and 
are probably involved in different functions and, although they can be clearly segregated with anatomical63 and 
electrophysiological64 methods in animals, their MRI segregation in humans may provide not reliable fMRI data. 
Thus, the segregated analysis of both areas was avoided here.

The Tal showed a permanent dependence with the Put, GPe, STN and S1. The Put-GPe interaction could be 
mediated by the thalamo-striatal glutamatergic projections, which acting on the medium-sized spiny neurons 
of the indirect pathway could be at the basis of the Tal-GPe and Tal-STN permanent dependence. The Tal-S1 
permanent dependence could be caused by the fast feed-back interactions observed between the Tal and S1 
neurons (supported by Tal → S1 and S1 → Tal glutamatergic projections). The role of this feed-back circuit within 
the BG motor-loop has not been elucidated but, bearing in mind the role proposed for the same circuit in other 
cortex-BG loops65, it could be at the basis of the motor attention which is often activated when the body posture 
or the progression of motor actions do not follow the initial plans.

The previous comments are an attempt to look at the data presented here from the perspective of the classical 
BG model. The classical model uses the firing-rate of neurons and their fast excitatory/inhibitory interactions 
recorded in the brain of experimental animals to estimate the activity of each BG and the global dynamics of the 
BG networks in the human brain. The present study uses the metabolic dynamics of the human BG obtained dur-
ing the execution of different tasks to estimate the causation relationships between BG and their re-configuration 
during the execution of different motor tasks. The nature of the data (electrophysiological vs. metabolic), and the 
spatial (microns vs. millimeters) and time (milliseconds vs. seconds) scenarios of both approaches are different, 
and the models constructed from these different approaches should be considered as complementary models 
and not as incompatible models.

The activity of the human BG according to the causation data: a global view.  In the classical 
model, the goal of the excitatory/inhibitory interactions of the successive nuclei of the BGmC is the modulation 
of the M1 activity (left-side Fig. 4), with the PD disorders being induced by the low activity of the M1 induced by 
the preponderance of the indirect pathway (↓dopamine → ↑Put → ↓GPe → ↑STN → ↑GPi/SNr → ↓Tal → ↓M1) 
over the direct pathway (↓dopamine → ↓Put → ↑SNr/GPi → ↓Tal → ↓M1). Present data suggest a more complex 
organization of BG where each nucleus may directly or indirectly interact with any of the other BG. The reen-
trant signaling induced by feed-back loops has been proposed as a mechanism that facilitates the functional 
coupling of many cortical areas66. The circular arrangement of the cortico-subcortical BG loops facilitates the 
reentrant signaling and may be at the basis of many of the functional interactions observed here, even in the 
case of nuclei which do not present direct anatomical pathways between them. For instance, the M1 showed a 
complex influence on the activity of most BG even when it only projects to the Put and STN and receives direct 
input from the Tal.

The classical model uses stable functional excitatory/inhibitory interactions of BG nuclei to explain the BG 
functions. The present data suggest that the functional interactions of BG may be quickly reconfigured accord-
ing to the task that is being executed. For instance, when the task is to maintain a stable body posture, the M1 
coordinates its activity with the SN and modulates the activity of the GPe. However, when the task is to perform 
voluntary movements, the M1 coordinates its activity with the STN and modulates the activity of the SN and 
Tal. The feed-back return of BG to the M1 will be different in both cases, and thus the action of the M1 on the 
body posture and motor activity may also be different.
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The interaction of the direct, indirect and hyperdirect cortico-subcortical circuits are used in the classical 
model to explain the motor functions of the BGmC. However, there are a number of subcortical loops which may 
facilitate the back-propagation of the information flux, the cross transmission between BG nuclei (not following 
the BG-loop) and the sub-cortical reentry of information, and which have been comparatively little studied. One 
of the characteristics that have driven the use of the classical BG model is its “simplicity”, a feature that is lost 
when all the BG pathways are included in the functional model (structural model in Fig. 4). Present methods 
do not provide evidence about the path followed by the information within the BG. However, they were useful 
here to identify the functional connections of BG nuclei, even though the pathways that support this functional 
connectivity could not be identified (right-side Fig. 4). The present data also showed the nuclei that are com-
manding the inter-nuclei interactions (causative nucleus). The causative nucleus could not be identified in all 
cases, but this is the consequence of the limited time-resolution of the fMRI and not of the analytical method 
applied. The instantaneous dependency does not mean the non-existence of a causative nucleus, it may simply 
be an indicator that the time resolution of the BOLD signal is not enough to detect the origin of fast functional 
interactions, a limitation that in the future could be solved with the introduction of faster fMRI techniques.

There is previous evidence showing the functional arrangement of more than two BG during the execution 
of particular tasks31,32. Present methods can provide an exhaustive list of all interactions that have occurred 
between two nuclei of the BG, but they cannot identify the possible functional grouping of three or more of the 
BG nuclei. This is a limitation of the analytical method and could benefit from the development of new math-
ematical approaches that can identify causation in more than two areas at once. Finally, the nuclei of the BGMC 
present a number of input/output direct and indirect relationships with many cortical (e.g. supplementary motor 
area, pre-suplementary motor area, dorsal–ventral and rostral-caudal parts of the premotor cortex, rostral and 
caudal parts of the cingulate motor areas, precuneus, different areas of the prefrontal cortex..) and subcortical 
(e.g. pedunculo pontine nucleus, amygdala, red nucleus of the stria terminals, nucleus accumbens, superior col-
liculus, periacueductal grey, parabrachial nucleus..) areas which probably determinates its short and long-term 
dynamic. The study of the functional interactions between these centers and the BGmC nuclei will be necessary 
to gain a deeper understanding of the BG physiology, and of the biological basis of motor disorder in PD and 
other neurological illnesses. The use of causation methods can help the progress of these studies.

Methods
Participants.  Twenty right-handed volunteers with no history of neurological or mental disease partici-
pated in this study (10 males and 10 females between 23–65 years of age; 45.4 ± 9.1 years old). Written informed 
consent was provided by all participants, all procedures were in accordance with the ethical standard of the 1964 
Helsinki declaration, and the study was approved by an institutional review board (Institutional Human Studies 
Committee of La Laguna University).

Data collection.  The basic experimental procedures were similar to those reported in recent studies67,68, 
but using two experimental conditions, motor-resting (subjects maintained their body posture and did not 

Figure 4.   Basal ganglia models. The classical basal ganglia model (left-side) is mainly based on the excitatory 
(red) and inhibitory (blue) interactions of the BG centers involved in the direct, indirect and hyperdirect 
pathways of the cortico-subcortical loops. The structural model shows most of the BG pathways, also including 
those involved in subcortical loops. The causation model (right-side) includes all the instantaneous (lines) and 
delayed (arrows) interactions observed during resting (blue), motion (red) and both resting + motion (black). 
M1: primary motor cortex, S1: primary somato-sensory cortex, Put: putamen, GPe: external globus pallidum, 
STN: subthalamic nucleus, GPi: internal globus pallidum, SN: substantia nigra, Tal: motor thalamus.
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perform any planned movement) and motor-task (subjects performed a repetitive sequence of finger exten-
sions/flexions with the right-hand). BOLD-contrast images (4 × 4x4 mm voxels in-plane resolution; echo-planar 
imaging with repetition time 1.6 s; echo time 21.6 ms; flip angle 90º) were recorded in blocks of 100 volumes 
in the following sequence: motor block → resting block → motor block → resting block (400 total volumes/
subject = 100 volumes × 2 motor-blocks × 2 resting-blocks). fMRI data were co-registered with 3D anatomical 
images (1 × 1 × 1 mm voxel resolution; repetition time 7.6 ms; echo time 1.6 ms; flip angle 12°; 250 × 250 mm 
field of view; 256 × 256 sampling matrix). A representative region of interest (ROI) of each BG was located on a 
subject-by-subject basis by considering: (1) the Talairach coordinates, (2) the shape of the nucleus, and (3) the 
anatomical relationship of the nucleus with neighboring structures. All regions were identified in coronal slices 
located 4–27 mm posterior to the anterior commissure and according to a previously reported procedure68. All 
data sets were normalized to the Talairach space (Table 3 shows the position and size of ROIs).

Data preprocessing.  The data preprocessing included a slice scan time correction, a 3D motion correc-
tion, and a time filter which eliminates frequencies below 0.009 Hz. Studies with images showing a displace-
ment > 0.5 mm or a rotation > 0.5degrees were removed. No spatial smoothing was performed. Residual motion 
artifacts and physiological signals unrelated to neural activity (e.g., respiration, cardiac activity) were removed 
by regressing the BOLD signals recorded throughout the brain with the mean average of the BOLD signals 
recorded in white matter and brain ventricles69,70.

For each brain nucleus, the time series for all the participants were concatenated to obtain two data sequences, 
one for the motor case and the other for the resting case. As a first step, data for each subject were normalized 
around the mean. Then each 100 samples block (motor or resting) was concatenated with the other blocks of the 
same type, two for each person, for the whole set of participants, obtaining a single time series of 100 volumes × 2 
motor/resting blocks × 20 participants = 4000 samples. In order to avoid spurious correlations between series due 
to block concatenation, the first and last 5 samples of each block were filtered using a gaussian moving average 
window of size 5, smoothing the transitions between different recordings.

The time series for each nucleus and of the same type (motor/resting), Xi, were joined to create multivariate 
time series, X, of dimension N (with N being the number of brain nuclei considered; N = 8). For each time step 
Xt = (X1t, X2t,…,XNt).

Causality analysis.  In this work, a causal network algorithm has been used to infer dependencies between 
the eight BG nuclei. In particular, the PCMCI method was applied to the multivariate time series for the motor 
and resting cases71. This causal discovery method consists of two steps. In the first one, it uses a version of the 
algorithm proposed by Peter and Clark (PC)72 but only to select the conditions necessary for the next step, recon-
structing the causal parents of each nucleus through iterative conditional independence tests. In the second one, 
the momentary conditional independence (MCI) test is applied, which uses the sets of parents to determine the 
strength of causal relationships. Specifically, Python package Time Series Graph Based Measures of Information 
Transfer (TiGraMITe), available at https://​github.​com/​jakob​runge/​tigra​mite.​git, has been used.

To find causal relationships between the different nuclei, at different time lags, it is necessary to identify pro-
cesses that directly influence each of them, in other words, their parents. To estimate the relationship between 
two processes (nuclei signals), Xi and Xj, a particular definition of conditional independence is used. In general, 
conditional independence of Xi

t − λ and Xj
t given Z, denoted by Xi

t − λ ∐ Xj
t | Z, can be expressed in terms of the 

corresponding conditional probabilities:

 where Xi
t−τ indicates the time series corresponding to nucleus i at lag τ, and Z is a subset of all other processes 
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TiGraMITe provides several test statistics to test independence hypotheses, which are typically based on 

specific assumptions about the underlying dependence between processes, three of which have been used in this 
study. The first one assumes linear relationships between variables. In this case, the conditional independence 
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Table 3.   Coordinates (Talairach) are shown in mm. The size of the ROIs is shown by the number of their 
voxels.

X Y Z Size

Primary somatosensory 
cortex 31.1 ± 3.9  − 20.1 ± 5.1 48.3 ± 4.62 34.8 ± 7.1

Primary motor cortex 38.2 ± 4.6  − 17.2 ± 4.8 45.1 ± 6.3 35.4 ± 12.0

Putamen 24.0 ± 0.8  − 4.9 ± 1.0 0.2 ± 0.3 22.3 ± 3.4

External pallidum 12.2 ± 4.3  − 2.1 ± 0.7 2.6 ± 1.1 9.6 ± 2.1

Internal pallidum 13.2 ± 1.4  − 5.8 ± 1.3  − 1.4 ± 1.0 11.2 ± 1.1

Subthalamic nucleus 9.7 ± 1.4  − 12.1 ± 2.1  − 4.2 ± 2.7 2.8 ± 0.5

Substantia nigra 7.1 ± 1.1  − 17.7 ± 1.4  − 7.6 ± 1.9 45.6 ± 7.8

Ventral-anterior thalamus 8.6 ± 1.4  − 9.1 ± 1.1 6.8 ± 2.1 24.4 ± 7.8

https://github.com/jakobrunge/tigramite.git
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can be tested by removing the linear influence of Z from both Xi
t−λ and Xj

t and testing for the correlation between 
their residuals, that is, computing the corresponding partial correlation (PC), ⍴(Xi

t−λ, Xj
t | Z). The second one 

uses a non-parametric regression based on gaussian process regression and a distance correlation (GPDC)35 
to test the dependence, allowing the detection of those dependences that are non-linear. The last one is the 
conditional mutual information test based on nearest-neighbor (CMIknn) estimator36. It is the most general 
dependency measure, and makes no assumptions about the parametric form of the dependencies by directly 
estimating the underlying joint density. The linear method is based on classical statistics and provides a robust 
theoretical background. The non-parametric and model-free methods allow the detection of non-linear relation-
ships in complex systems, but they are based on weaker theoretical results11. In all cases, even in the linear one, 
the statistical significance of conditional independence tests were computed using a block-shuffle permutation 
test73. This prevents the assumption that the samples are independent and identically distributed, as required by 
analytic methods, because the time series are usually autocorrelated. In this study, a two-sided significance level 
of 0.01 and a maximum time lag of T = 2 (3.2 s) were chosen, implying that parent processes occurred before 
this time or those with a significance below 99% are neglected.

Although causal discovery algorithms are a powerful tool for studying dependencies between variables, they 
are based, like all statistical methods, on different assumptions than cannot always be fulfilled in brain studies. 
In this case, the most important assumptions are time-order, causal sufficiency, the causal Markov condition, 
and faithfulness11. Time-order means that causes precede effects. Causal sufficiency assumes that all direct com-
mon drivers are in the set of observed time series, in other words, there are no other unobserved processes that 
directly or indirectly influence any other pair of the studied processes. Causal Markov condition implies that 
once Xi

t parent values are known, all other variables in the past are not relevant for predicting the value of Xi
t. 

Faithfulness, together with causal Markov condition, guarantees that a measured statistical dependence is due 
to some, direct or indirect, causal mechanism and, conversely, a measured independence implies that there is 
no direct causal mechanism.

Despite the limitations due to the above assumptions, the method of reconstructing causal networks from 
time series has multiple advantages over simpler and commonly used methods, such as those based on the study 
of correlations between pairs of time series. Correlations do not allow us to infer the direction of the relationship, 
so they are not suitable for studying causal effects. Correlations between the time series of two nuclei can also be 
highly sensitive to possible indirect connections through a third nucleus. In fact, in complex systems, there are 
generally many more indirect than direct connections, and a bivariate analysis would show many statistically 
significant correlations, but it cannot establish causal relationships between the different nuclei. Moreover, if 
there is a common driver, that is, one nucleus exerts a causal action on two others, these, in turn, will show some 
correlation, even if there is no direct interaction between them. The causal discovery algorithms overcome all 
these spurious relationships, at least among the observed variables included in the analysis74.

Compliance with ethical standards.  Experiments were conducted in in agreement with European 
Union directives (Ley 32/2007, Real Decreto 1201/2005, Ley 9/2003 and Real Decreto 178/2004, 86/609/CCE, 
91/628/CEE and 92/65/CEE), and was supported by a Local Institutional Human Studies Committee. This arti-
cle does not contain any studies with animals performed by any of the authors. Informed consent was obtained 
from all individual participants included in the study.
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