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Identification, characterization 
and control of a sequence variant 
in monoclonal antibody drug 
product: a case study
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Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and 
may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence 
modifications, that can result in altered physicochemical and or biological properties, is therefore 
desirable in product manufacturing. Because of their low abundance, and finite resolving power of 
conventional analytical techniques, they are often overlooked in early drug development. Here, we 
present a case study where trace amount of a sequence variant is identified in a monoclonal antibody 
(mAb) based therapeutic protein by LC–MS/MS and the structural and functional features of the SV 
containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected 
reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent 
and inconspicuous nature of the variant in process chromatography. We present the extensive 
characterization of a sequence variant in protein biopharmaceutical and first report on control of 
sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method 
during the purification steps.

Expressing the right clone is one of the important steps in the product development of protein biotherapeutics1. 
In spite of the near absolute fidelity of DNA polymerases, single nucleotide polymorphisms are observed due to 
erroneous gene transcription, which results in altered amino acid sequences. The sequence alterations can also 
result from mistranslation or improper tRNA acylation by either nonsense read-through or misreading at the 
level of transcription or translation2. Additionally, mis-cleavage during the posttranslational processing can also 
lead to non-native amino acid substitutions3. These sequence variants in the final drug product are undesirable, 
as they may possess altered physicochemical and or biological properties compared to wild-type product, which 
therefore can affect the overall efficacy, stability or safety of the biomolecule drug. The most unwanted outcome 
of these substitutions are the perturbations in tertiary structure of the protein leading to formation of new con-
formational epitopes which might elicit varying levels of unwanted immune responses. The safety consequences 
of immune responses to therapeutic protein products are generally unpredictable and can range from no appar-
ent effect to serious adverse events depending on immune tolerance of the patient to that particular therapeutic 
protein. Recent survey conducted by International Consortium for Innovation & Quality in Pharmaceutical 
Development (IQ) demonstrated that biopharmaceutical industry has SV workflows incorporated in their early 
development with appropriate mitigation strategy to counteract specific mis-incorporation mechanisms at the 
genetic, translation, and cellular levels4. The survey also reported that several organizations discard cell lines 
with > 1% SV and understand that hard limits on SV is not practical and a cell line with SV can be used for fur-
ther product development if adequate risk assessment for the criticality of its low abundant presence in the mAb 
drug product has been performed. The US Food and Drug Administration (US-FDA) guidelines recommends 
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that the micro heterogeneity of pharmaceutical products that are not expected to change product performance 
should be characterized to ensure product consistency5. This means that, sequence variants if observed, their 
levels and control strategy need to be provided by the applicant at the time of registration. Thus, the detection 
of these sequence modifications early in product development is desirable.

The occurrence of amino acid substitution in a small population of the secreted protein, monoclonal antibod-
ies in present context, has been reported by many biopharmaceutical companies in recent times6–14. It is impor-
tant to understand the origin of sequence variants whether it is genetic, misincorporation or other modification 
to prevent their manifestation in the protein product. While genetic mutation is clone specific and appear at the 
mutation site, amino acid misincorporation can be found across entire protein sequence10–15. Biopharmaceutical 
industry consortium (IQ) reported occurrence 5–20% genomic mutations and 5–30% of mis-incorporations 
while analyzing multiple samples during early development4. Many technologies are available for detection of 
sequence modification at DNA/RNA and protein level. Real-time polymerase chain reaction (PCR) and mass 
spectrometry based methods are the more commonly used techniques for estimating the relative abundance of 
mutant species4, 16–21. However, in general the de-novo identification of these sequence modifications in clones 
are challenging due to their low abundance. Next-generation sequencing technologies (NGS) have been revolu-
tionizing genome research by sequencing personal genomes, characterize genomic landscapes, and detect and 
identify a large number of low abundant sequence variants19–21. Advancements in NGS workflows have enabled 
detection of as low as 0.1% SV in production cell lines with 0.5% as reliable threshold4,12. NGS is now used as 
frontline to identify mammalian cell clones with genetic mutations. Zhang et.al. proposed used of NGS based 
identification (~ 0.2%) and mass spectrometry confirmation for cell line quality control on sequence variants 
throughout the different developmental stages19. The NGS leads can be used for more selective and targeted 
search of sequence substitutions in mass spectrometry (MS) based peptide mass fingerprinting analytics. Use 
of LC–MS/MS in SV workflow has been reported to confirm NGS identified low-level (0.4–1%) genetic SV in 
high-titer “top clones” of interest21.

The mass spectrometry based detection and identification of sequence variants is enhanced when coupled 
with UV based chromatographic separation techniques8,22–26. The altered physicochemical property of sequence 
variants may allow them to elute separately from the main variant in either ion exchange chromatography, hydro-
philic interaction chromatography or reversed-phase chromatography. When present in considerable amounts, 
these new peaks can be identified and further characterized for any amino acid substitution(s) using mass 
spectrometry. Various factors that impact the quality of peptide map data include choice of enzyme, alkylating 
agent and duration of proteolytic cleavage for sample processing, resolution of mass analyzers, MS and MS/MS 
parameters with appropriate sensitivity and acquisition speed18, 26, 27. This improves SV detection by proteomic 
softwares. MS proteomic software like error tolerant search using MASCOT, MassAnalyszer (PepFinder™ and 
Biopharma Finder™ from Thermo-Fisher Scientific), Byologic/Byomap from ProteinMetrics and Expressionist 
from Genedata are commonly used for sequence variant detection using peptide mass fingerprinting data3,17,28–37. 
Identification of each peptide in software assisted MS detection is score based that is affected by the quality of 
MS/MS data which is again dependent on the abundance of the substitution, instrument sensitivity, degree of 
chromatographic separation, ionization efficiency of the separated peptides and ionization suppression by more 
dominant ions co-eluting in the complex matrix of the protein digest38, 39. In addition, these informatics tools 
often generate many false positives3,15,40 primarily due to misinterpretation of chemical modifications, N and 
C-terminal modifications as sequence variants. In addition, manual investigation, which is extensive and often 
time-consuming, is required to verify the data18. Recently published work from Wenzhou et al. reported use of 
PERL script to evaluate every identified hit to remove the false positives from the search results of PepFinder™40. 
Dynamic exclusion duration can also be used to reduce the effects of ionization suppression where repeated MS/
MS scans of the most abundant precursor ions are disabled for specified time, thus allowing MS/MS detection of 
less abundant ions41. However, minimal influence of dynamic exclusion duration on the proteome coverage is also 
reported27. Many sequence variant containing peptides do not present exploitable physicochemical attribute(s) 
for chromatographic separation from wild-type sequences. Additionally, low-abundance peptides may not yield 
good MS/MS data for sequence identification with confidence. The detection is further limited by the speed with 
which the mass spectrometer can perform MS/MS experiments of ions that are observed in the survey scan. 
As a result, many sequence variants may escape detection at early clone screening and appear in later stages of 
product enrichment or scale-up productions. In such advanced stages where the product is characterized for its 
functional advances in efficacy, development of strategies to control sequence variant(s) in the desired product 
weighs over evaluating new clones.

High-resolution separation techniques and highly sensitive detection and quantitative methods are required 
for efficient control of the sequence variant(s). Yang et al. reported 0.03% as the limit of detection of well-resolved 
variant peptide relative to total peak area of all peptides in the tryptic peptide map in UV-PMF (ultra-violet 
detection based peptide mass fingerprinting) profile generated from linear ion trap quadrupole (LTQ)3. This 
corresponded to ∼3% (w/w) spiking of variant peptide containing antibody in control antibody. Similarly, 0.5% 
(w/w) was established as the limit of detection of PMF using extracted ion chromatogram. As low as 0.01% 
sequence variant was detected using LTQ Orbitrap by Yu et al. while the intermediate precision of 10–15% was 
established at 0.5%11. Post identification of the sequence variant, the quantitation limit, range, accuracy, and 
precision of any variant peptide are expected to be sequence dependent. More sensitive and selective methods 
like selected reaction monitoring (SRM) are required to perform quantitative analysis for very low abundant 
mis-incorporation events as part of routine product quality assessment17. Although most recent instruments 
are designed to perform this sophisticated analysis39, triple quadrupole mass spectrometers are most suited for 
this purpose due to the relatively higher selectivity.

Once a sequence variant is detected, the general approach is to reject the clone for further development to 
avoid adverse safety and efficacy related implications4,21. Genetic mutations cause more concern compared to 
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mis-incorporations as change of cell line may be required while latter can be addressed by media optimization4. 
Depending on the stage of the development, this approach may incur a moderate to significant delay in reaching 
the drug to patients. Alternatively, the impact of very low levels sequence variant in a functionally inactive region 
of the protein can be nullified theoretically9 and the development can move forward. Although this approach 
avoids any delay in the program, it comes with a bigger risk- possibility of failing in the immunogenicity dur-
ing the clinical trial. Here we report a third approach, where the physicochemical and the functional properties 
of a glutamic acid (E) to lysine (K) sequence variant, identified by LC–MS/MS in end of fermentation product 
during initial development of a monoclonal antibody based therapeutic, is studied thoroughly by an array of 
analytical techniques and additional process steps and highly sensitive analytical methods are implemented to 
make sure that the sequence variant containing version is efficiently controlled in the product. Multiple batches 
of drug products containing less than 0.04% sequence variant were thus manufactured using this approach. In 
this particular case, this approach not only avoided the delay due to starting again with a new clone but also 
mitigated the risk of failure in the clinical trial stage. Similar control strategy can be adopted for undesirable 
sequence variants using their unique physicochemical property.

Results
Early detection of the sequence variant.  The monoclonal antibodies (mAbs) undergo different chemi-
cal and enzymatic post-translational modifications (PTM). Although LC–MS/MS based peptide map analysis in 
high resolution mass spectrometers (HRMS) coupled with software driven search options during data analysis 
is a powerful tool to detect the PTMs and inherent modifications such as SVs, modifications present in very 
minute amounts (< 1%) may evade the software driven search due to the lack of definitive MS and/or MS/MS 
signals. Some of these modifications result in differences in the pI of the protein and subsequently lead to the 
acidic (lower pI) and basic (higher pI) variants of the mAb. These charge variants are separated by ion-exchange 
chromatography (IEX) and characterized to understand the nature of the PTM. The probability of identifying 
the PTMs and other variants are enhanced in the purified charged variants due to the enrichment of the modi-
fications in these fractions. The Glutamic acid (E) to Lysine (K) sequence variant described here was first identi-
fied during the charge variant characterization of a far basic variant (FBV) in the end-of-fermentation product 
(EOF) of a monoclonal antibody (mAb X) (Fig. 1a). The protein A purified mAb X was fractionated through 
CEX and fractions enriched in FBV and the main variant (MV) was analyzed side by side extensively by mass 
spectrometry to understand the modification present in FBV.

The intact and sub-unit (heavy chain and light chain) mass of the charge variant FBV are compared with the 
main variant (MV) in Table S1 (supplementary material). The main variant deconvolutes to an intact mass of 
148,082 Da comprising of two light and two heavy chains with dominant glycoform G0F (termed as G0F/G0F). 
Additionally, trace amounts of other glycoforms (G1F and G2F) were also observed. The same species were 

Figure 1.   (a) Cation exchange (CEX) chromatogram of end of fermentation (EOF) product of mAb X. The 
acidic, main, basic (B1, B2, B3, B4) and far basic variant (B5) are marked. (b) Stacked overlay of a portion of 
tryptic peptide map UV profile of far basic variant (FBV, top panel) and main variant (MV, bottom panel) of 
mAb X. The extra signal (at RT = 57.39 min) in FBV profile is marked. (c) Comparison of MS signals observed 
around RT of 57–58 min in FBV (top panel) and MV (bottom panel). The m/z 906.45, z = 2 signal is observed in 
FBV and absent in MV.
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identified in FBV. Lysine (K) variant (addition of 128 Da for one K), due to the incomplete processing of C-ter-
minal lysine on both the heavy chains of mAb X resulting in a mass of 148,337 Da (termed as G0F/G0F + 2 K), 
was also observed in FBV and no additional species was identified. Similarly, in reduced mass analysis, a mass of 
50,646 Da corresponding to the dominant G0F isoform of heavy chain, was observed both in main variant and 
FBV, while an additional mass of 50,775 Da was observed in FBV, indicating C-terminal lysine variant (G0F + K) 
of single heavy chain. The mass of light chain observed in main variant and FBV was comparable to the theoreti-
cal mass of 23,412 Da and no additional mass was observed in FBV.

C-terminal lysine variants are known modifications in monoclonal antibodies that add positive charge to the 
net surface charge of the molecule imparting basic nature to the antibody42. The extracellular carboxypeptidase 
in mammalian expression systems generally clips off the C-terminal lysine at the heavy chain, the unprocessed 
anti-bodies appear as basic variants in the purified pool and add to antibody heterogeneity43. However, in mAb 
X cation exchange profile, the lysine variants (G0F/G0F + K and G0F/G0F + 2 K) elutes just after the main vari-
ant (peaks B1, B2, B3) and much before the far basic variant B5 (Fig. 1a). Thus, the far basic nature of charge 
variant FBV cannot be explained by the presence of lysine at the C terminus of HC alone and therefore needed 
further investigation.

Peptide mass fingerprinting (PMF) is a powerful technique for characterizing the primary structure of pro-
teins including its amino acid sequence and posttranslational modifications (PTMs)44. For complete sequence 
coverage, complementary enzymes are used to generate peptides, which can be separated on reversed phase-
high or ultra-performance liquid chromatography (RP HPLC/UPLC) and detected with UV detector45. The 
separated peptides are then investigated for amino acid sequence and PTMs using an accurate, high-resolution 
and sensitive mass spectrometer.

The enriched main and far basic variants of mAb X were digested by trypsin and the peptides thus generated 
was separated by liquid chromatography (LC) using a 120 min long gradient of 0.09% TFA in 90:10 acetonitrile: 
water. The separated peptides were detected by UV detector and then identified by mass spectrometer (Orbitrap 
LTQ) coupled to the LC outlet. Figure 1b presents a part of the PMF-UV profile overlay of mAb X charge variants 
MV and FBV. The UV profile overlay was comparable for all the peaks observed except an extra signal observed 
at 57.39 min in FBV (Fig. 1b). The mass spectrometry (MS) profile of this extra UV signal revealed monoisotopic 
mass at m/z 906.45 (z = 2), which was not present in MV (Fig. 1c). The single charged (z = 1) m/z of 1811.88 
was also observed, however, z = 2 was the dominant charge state. Furthermore, MS/MS analysis identified the 
sequence of the peptide as VTCVVVDVSHEDPEVK (Fig. 2). This peptide appeared to be truncated part of the 
heavy chain tryptic peptide TPE262VTCVVVDVSHEDPEVK278 eluting at ~ 72 min (m/z 1070.02, z = 2) in both 
FBV and MV (refer Fig. 3b). Since the amino acid preceding V263 is E262, trypsin should not cleave at that site. 
One possibility is that the FBV contains a shorter version of the mAb X, truncated at E262. Truncation at heavy 
chain E262 site of mAb X will result in a protein with mass of 22,759 Da (with G0F mass), which could be easily 
detected by intact and sub-unit mass analysis. Further, the fragmented protein will be detected by other impu-
rity identification techniques such as size exclusion chromatography (SEC) or CE-SDS. However, the truncated 
protein was not identified in FBV by intact and reduced mass analysis (Table S1) and by SEC or CE-SDS analysis 
(data not shown). This led to the hypothesis that, some population of the secreted mAb X is expressing K or 
R at the 262 amino acid position of heavy chain, instead of E, and thus presenting an additional cleavage site 
for trypsin, subsequently resulting in a shorter peptide V263TCVVVDVSHEDPEVK278 instead of the expected 
peptide T260PE262VTCVVVDVSHEDPEVK278 (Fig. 3a) during trypsin digested peptide map analysis. However, 
the other part of the peptide (T260PK262 or T260PR262) was not detected in this experiment, mostly because of the 
small size of it. Thus, the actual substitution (E to K or E to R) could not be confirmed from this experiment. 

Figure 2.   MS/MS analysis of the extra signal at m/z 906.45 (z = 2) elucidating the amino acid sequence.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13233  | https://doi.org/10.1038/s41598-021-92338-1

www.nature.com/scientificreports/

Nevertheless, E to R substitution would lead to a mass difference of 27 Da in heavy chain mass, which can be 
detected by intact and reduced mass analysis. On the other hand, E to K substitution would lead to only 1 Da 
of mass difference and is not expected to be detected by intact and reduced mass analysis. Thus, no mass differ-
ence (apart from lysine variants) observed in FBV during intact and sub-unit mass analysis (Table S1) indirectly 
indicates the presence of E262K substitution. This hypothesis was further verified by Glu-C digested peptide 
map, as described below.

The extracted ion chromatograms of native peptide T260PE262VTCVVVDVSHEDPEVK278 and truncated 
peptide V263TCVVVDVSHEDPEVK278 in FBV and MV are shown in Fig. 3b, indicating the presence of both the 
peptides in FBV and only the native peptide in MV. The partial purity of FBV could lead to the presence of wild-
type mAb X in FBV, subsequently generating the native peptide. Additionally, it is also plausible that E262K/R 
mutation is present only in one heavy chain of the E262K/R substituted mAb X, thus generating both native and 
substituted peptides during the PMF analysis of FBV. The presence of this truncated peptide was searched by 
extracted ion chromatogram in all the enriched charge variants of mAb X and it was found to be unique to FBV.

The E262K/R substitution was further confirmed using Glu-C enzymatic digestion of enriched 
FBV. Fig.  S1a shows schematic of Glu-C digested wild-type and substituted mAb X. The native 
sequence L237LGGPSVFLFPPKPKDTLMISRTPE262VTCVVVDVSHEDPE276 would generate 
L237LGGPSVFLFPPKPKDTLMISRTPE262 and V263TCVVVDVSHEDPE276 as fragments post Glu-C diges-
tion (in bicarbonate buffer), while the E262K or E262R substituted peptide would not undergo diges-
tion at 262 site and appear as L237LGGPSVFLFPPKPKDTLMISRTPK262VTCVVVDVSHEDPE276 
or L237LGGPSVFLFPPKPKDTLMISRTPR262VTCVVVDVSHEDPE276. The masses correspond-
ing to these peptides were searched, through extracted ion chromatogram (EIC), in the mass spec-
trometry data from the Glu-C digested peptide map of main variant and far basic variant of mAb 
X. Among these, the mass corresponding to peptides L237LGGPSVFLFPPKPKDTLMISRTPE262 
and V263TCVVVDVSHEDPE276 was observed in MV and FBV, while the mass corresponding to 
L237LGGPSVFLFPPKPKDTLMISRTPK262VTCVVVDVSHEDPE276 was detected in FBV (m/z = 1435.75, z = 3 and 
m/z = 1077.07, z = 4) (Fig. S1b) only. Peptide L237LGGPSVFLFPPKPKDTLMISRTPR262VTCVVVDVSH- -EDPE276 

Figure 3.   (a) Schematic of generation of truncated tryptic peptide V263TCVVVDVSHEDPEVK from 
substituted peptide TPK/R262VTCVVVDVSHEDPEVK in mAb X. (b) Extracted ion chromatogram of native 
peptide TPE262VTCVVVDVSHEDPEVK and truncated peptide V263TCVVVDVSHEDPEVK in FBV and MV 
of mAb X. Signals from both the peptides are visible in FBV, while only the native peptide is present in MV. (c) 
PCR amplification plot showing the amplification of primers containing the wild-type sequence and with the 
sequence containing the SNP corresponding to the E262K SV.
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(m/z = 1445.09, z = 3 and m/z = 1084.07, z = 4) was not detected in any of these samples. The sig-
na l  cor resp onding  to  L 237LGGPSVFLFPPKPKDTLMISRTPK 262V TCVVVDVSHEDPE 276 
(m/z = 1435.75, z = 3 and m/z = 1077.07, z = 4) was distinguished from the trace amounts of undigested 
L237LGGPSVFLFPPKPKDTLMISRTPE262VTCVVVDVSHEDPE276 (m/z = 1436.07, z = 3 and m/z = 1077.30, z = 4) 
present in FBV sample by the difference in monoisotopic mass obtained from the high resolution Orbitrap mass 
spectrometer. Presence of this peptide was further confirmed by the MS/MS analysis (Fig. S1c). Taken together, 
trypsin and Glu-C digested peptide map MS & MS/MS analysis of MV and FBV confirms the presence of E262K 
substituted mAb X in FBV. Substitution of an acidic amino acid (glutamic acid) to a basic amino acid (lysine) 
also explains the basic nature of the E262K substituted mAb X.

Origin of the E to K substitution.  Single nucleotide polymorphism (SNP) in the genomic DNA is one 
of the most common origin of sequence variant in the resultant protein7,28. In order to detect the SNP at the 
genomic level leading to E262K substitution, Cast-PCR (Competitive allele-specific Taqman qPCR) technique46 
was employed. The technique utilizes an allele specific primer for somatic mutant allele detection that com-
petes with an MGB blocker oligonucleotide to suppress the predominant wild-type background thus allowing 
1:1000 (mutant: wild type allele) sensitivity. The amino acid E262K is possible only when the triplet codon ‘gag’ 
changed to ‘aag’ and therefore, primers were designed accordingly. In brief, the genomic DNA extracted from 
mAb X clone was analyzed by qPCR using primers specific to wild type (atgatctcccggacccctgaggtcacatgcgtggtg-
gtggacgtg) and primer specific to sequence variant (atgatctcccggacccctaaggtcacatgcgtggtggtggacgtg). The ampli-
fication was observed using both the primers (Fig. 3c), indicating the presence of the SNP specific to base change 
from ‘g’ to ‘a’ which lead to E262K at protein level. Moreover, the relative abundance of the SNP was estimated 
from the cycle threshold (Ct) of the PCR reactions and was found to be ~ 1%. The presence of this SNP was fur-
ther confirmed through next generation sequencing (NGS) by using both Illumina and Ion-Torrent platforms 
(data not shown).

Characterization of the SV containing mAb X (mAb X’).  The structural and functional features of the 
modified (E to K substituted at 262 position in heavy chain) mAb X was assessed by several physicochemical 
and in-vitro bioassay techniques. This study was conducted to understand the structural and functional differ-
ences in the SV containing mAb X (called as mAb X’ from here on), compared to the native mAb X. Different 
lots of mAb X may have small differences in product related variants, due to the complex process involved in 
mAb manufacturing. Also, the inherent variabilities present in the analytical techniques used may also lead 
to small differences in the variant contents in different lots of mAb X. Thus, data from multiple lots of mAb X 
(manufactured in-house and sourced from external agencies) was utilized to obtain a range of data for mAb X 
and the data generated for mAb X’ was compared against that range. Nevertheless, to assess the presence of new 
impurities/variants or to understand the profile differences in case of peptide map and higher order structure 
methods, three mAb X lots were analyzed side by side with the mAb X’ lot.

The mAb X’ was enriched and purified from mAb X by cation exchange chromatography and the purity 
(~ 98%) was confirmed by analytical cation exchange chromatography (Fig. 4a). The second peak observed in 
purified mAb X’ was found to be lysine variant (discussed below). Post purification, mAb X’ was buffer exchanged 
to the mAbX formulation buffer and stored appropriately.

The results obtained from the characterization of mAb X’ is summarized in Table 1. The primary structure 
of the mAb X’ and mAb X was compared by intact and sub-unit mass analysis and amino acid sequencing by 
LC–MS. The intact mass of mAb X’ and mAb X was similar and same heavy chain and light chain mass was 
observed for these two proteins as well (Table S1, Supplementary material). Apart from the extra tryptic peptide 
(V263TCVVVDVSHEDPEVK278) due to the E262K substitution in mAb X’, no other difference was detected in the 
amino acid sequence of mAb X’ and mAb X. Although the mAb X’ was not contaminated with mAb X (Fig. 4a), a 
significant amount of native peptide (T260PE262VTCVVVDVSHEDPEVK278) was detected in the tryptic peptide 
map mAb X’ (Fig. 4b). This indicates that the E262K substitution is present in only one of the heavy chains of 
mAb X’, while the other chain is unmodified. Thus, during reduction, mAb X’ generates equal amounts of native 
and modified heavy chains (Fig. 4c) and produces almost equal amounts of native and truncated peptides, post 
trypsin digestion.

The disulfide links in mAb X’ and mAb X was assessed by non-reduced Lys-C digested peptide map LC–MS 
and all the eight disulfide links were found to be conserved in both the proteins. Two extra peaks were observed 
in the non-reduced peptide map profile of mAb X’ (Fig. S2, supplementary material), compared to the mAb X, 
due to the extra Lys-C digestion site in mAb X’ resulting from the E262K sequence variant. The overall secondary 
structure of these two antibodies was tested by far-UV CD (circular dichroism) and FT-IR (Fourier-transform 
infrared) spectroscopy. The far-UV CD profile of mAb X’ was similar to the profiles of mAb X lots analyzed 
side by side, while the contribution from different secondary structure elements determined by FTIR was also 
similar between mAb X’ and mAb X. Similarly, no difference was observed between the near-UV CD profiles of 
mAb X’ and mAb X lots, indicating similar tertiary structures in these two products. The melting temperatures 
obtained from the differential scanning calorimetry (DSC) studies also indicated similar unfolding patterns in 
mAb X and mAb X’.

The aggregate content in mAb X’ was very low and the low molecular weight impurities, measured by non-
reduced CE-SDS, was similar to the mAb X. mAb X is IgG1 and is Fc glycosylated. N-glycan profiles of both 
mAb X and mAb X’ was also compared and found similar. The pI of mAb X’ was more basic than mAb X due to 
the substitution of acidic E with basic K, and the same was evident in the pI variant analysis by imaged capillary 
isoelectric focusing (iCE) (Fig. 5a,b). mAb X’ showed three peaks: the first minor peak aligned with main peak 
of mAb X and two major peaks aligned with basic peaks B1 and B2 of mAb X; the more basic peak disappeared 
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post carboxypeptidase B (CPB) treatment. Notably, the basicity of mAb X’ relative to mAb X in iCE analysis was 
not as much as seen in cation exchange chromatography. As mentioned earlier mAb X’ eluted as two peaks in 
cation exchange chromatography (CEX) (Fig. 4a). The second peak of the two also disappeared after CPB treat-
ment (Fig. S3 supplementary material), indicating that the second peak is lysine variant of mAb X’.

Hydrophobic interaction chromatography (HIC) separates variants in order of increasing hydrophobicity 
and works orthogonal to SEC and CEX separation in principle. The HIC profile of mAb X shows four peaks 
where peak 3 is the main peak; peak 1 and 2 correspond to basic variants in CEX profile (data not shown). 
Earlier published work by John Douglass et al. also reported lysine variants as early HIC peaks47. Interestingly, 
the mAb X’ eluted slightly earlier than mAb X in HIC analysis (Fig. 5c), indicating that mAb X’ is slightly more 
hydrophilic than mAb X. Since E to K substitution should not enhance the hydrophilicity of the protein (actu-
ally E is slightly more hydrophilic than K), increased hydrophilicity in mAb X’ is likely to be caused by the slight 
structural variation of the molecule which either makes the molecule more compact making the hydrophobic 
residues less accessible or makes the molecule more open making hydrophilic residues more accessible. This 
structural variation could also lead to some differences in charge distribution of the molecule which is detected 
in cation exchange chromatography. However, the cIEF is run under denaturing condition and thus was not able 
to detect the structural variation.

The E262K substitution in mAb X’ is in the CH2 region of the antibody and thus may impact the Fc recep-
tor binding activities of mAb X’. The fragment crystallizable γ (Fcγ) receptors and neonatal Fc receptor (FcRn) 
interacts with the Fc region of the mAbs and induces potent and diverse immune responses48. Different post-
translational modifications in mAb, such as N-glycosylation, deamidation, oxidation, are known to affect the 
interaction with specific Fc receptors49,50. The relative Fc receptor binding activities of mAb X’ was assessed 
by Surface Plasmon Resonance (SPR) based in vitro assay, using mAb X as standard, where a relative binding 
potency of 0.80–1.25 is considered as similar, based on the precision of the assay. As shown in Table 1, The FcγRIa, 
FcγRIIIa, FcγRIIIb, FcRn and C1q binding of mAb X’ was found to be similar to mAb X. On the other hand, a 
marginal increase was observed in FcγRIIb binding of mAb X’, and interestingly, the FcγRIIa binding potency of 
mAb X’ was found to be considerably higher than mAb X. Since, E262 is not directly involved in FcγRIIa binding 
to the Fc48, the E262K substitution alone is not expected to impact the binding. Thus, this data also indicates the 
possibility of a structural alteration due to the E262K substitution in mAb X’, affecting the FcγRIIa binding to 
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the mAb. This alteration seems not to be impacting global structure and thus was not captured in higher order 
structure assessment techniques like CD, FT-IR and DSC, but more local in nature causing change in charge 
distribution and surface hydrophobicity so as to be picked up by CEX and HIC techniques, respectively.

Relative quantitation of the sequence variant by peptide mapping fingerprint and extracted 
ion chromatogram (PMF‑EIC).  The E262K modification identified in mAb X Fc region affects the Fc 
receptor binding activities of the mAb in vitro and thus the same can be reflected in vivo as well, affecting the 
biological function. Additionally, as discussed earlier, the immunogenic effect of this substitution is unknown 
and very difficult to predict through any in vitro studies. Thus, control of the mAb X’ in the final drug substance 
and drug product is very important. To enable a downstream/purification process for removal of the mAb X’, a 
method is required to quantify this modification accurately at different in-process stages. The relative abundance 
of E262K mAb X’ can be quantified from LC–MS analysis of the trypsin digested protein, using the equation 
below (Eq. 1).

Table 1.   Summary of comparative characterization of mAb X’. (n = number of mAb X lots analysed to obtain 
the mAb X range). The range includes mAb X manufactured in-house and sourced from external agencies. 
FcγRIIa and FcγRIIb Binding for mAb X’ is outside the range of mAb X. a Relative binding against mAb X.

Attribute mAb X range mAb X’ Analytical technique

Intact mass (Da) (n = 6)

(G0F/G0F) 148,082–148,086 148,084 LC–MS

Reduced mass (Da) (n = 3)

Light chain 23,410–23,413 23,412 LC–MS

Heavy chain (G0F) 50,640–50,645 50,646

Amino acid sequence (n = 3) The amino acid sequence of mAb X and mAb X’ was identical except the presence of E262K SV in 
mAb X’

Reduced peptide map
LC–MS/MS

Disulfide map (n = 3) Non-reduced peptide map

All the expected disulfide linkages are intact in mAb X and mAb X’. Extra peptide observed in mAb 
X’ profile due to the E262K SV LC–MS

Secondary structure (n = 3) mAb X’ profile similar to the mAb X profile Far-UV CD

Secondary structure (n = 6)

β-sheet (%) 52–58 54 FTIR

β-turn (%) 19–22 21

Random (%) 23–26 25

Tertiary structure (n = 3) mAb X’ profile similar to the mAb X profile Near-UV CD

Thermal unfolding (n = 3)

Tm1 (°C) 66–68 67 DSC

Tm2 (°C) 72–74 74

Tm3 (°C) 82–83 84

Aggregate content (n = 10)

High molecular weight species (%) 0.2–0.3 0.1 SE-HPLC

Fragment content (n = 10)

Total fragments (%) 1.8–2.2 1.9 NR CE-SDS

pI variants (n = 2)

pI of acidic peak 8.53–8.69 8.73 iCE

pI of main peak 8.78–8.81 8.82

pI of basic peak 8.91–9.05 8.92–9.04

Hydrophilic variant (n = 3) mAb X’ is more hydrophilic than mAb X HIC

N-Glycan variants (n = 10)

Total mannosylation (%) 3.9–5.6 4.2 HPLC

Total galactosylation (%) 23.9–27.6 28.7

Total afucosylation (%) 7.3–9.1 7.6

Fcγ receptor bindinga

FcγRIa binding 0.73–1.17 1.12 Indirect ELISA

FcγRIIa binding 0.83–1.12 1.45 SPR

FcγRIIb binding 0.75–1.14 1.31 SPR

FcγRIIIa binding 0.73–1.32 0.90 SPR

FcγRIIIb binding 0.75–1.12 1.03 SPR

FcRn binding 0.60–1.33 0.85 SPR

C1q binding 0.75–1.11 0.95 Indirect ELISA
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w h e re  E 2 6 2 K  p e pt i d e  i s  V 2 6 3 TC V V V DVSH E DP EV K 2 7 6  an d  Pare nt  p e pt i d e  i s 
T260PEVTCVVVDVSHEDPEVK276

The quantification of the area under the curve from the corresponding UV signals from the tryptic peptide 
map profile is the simplest way; however, both the E262K peptide and parent peptide co-elutes with other pep-
tides in the LC profile and thus quantification based on the UV signal would not be accurate enough. Complete 
separation of these two peptides from other peptides could not be achieved using multiple enzymes and long and 
shallow gradient (120 min of 2–96% of 0.09% TFA in 90:10 acetonitrile: water). Additionally, the intensity of low 
levels of substituted peptide was insufficient to provide good UV signal for quantitation. As a result, UV profil-
ing could not be used for relative quantitation and signals from coupled mass spectrometer were used for this 
purpose. Extracted ion chromatogram (EIC) peak of the E262K and parent peptides from LC–MS were used to 
quantitate the area under the curves of E262K peptide and parent peptide for relative quantitation as per Eq. (1).

The PMF-EIC method was developed on LTQ Orbitrap XL mass spectrometer (ThermoFisher Scientific) 
to detect and quantify the E262K substitution at various in-process stages and in drug substance and in drug 
product to ensure effective control of E262K variant through the purification process. However, in general the 
PMF-EIC method has two major challenges: (1) matrix or ion suppression by co-eluting peptides; (2) ionization 
efficiency of the peptides due to sequence and peptide size18,38. Thus, the relative quantitation of E262K modi-
fication was based on the following two assumptions- (1) The ionization potential of both E262K/mutant and 
Native/parent peptides are similar because they are similar in size and largely share a common sequence and (2) 
the MS response is linear in quantitation range of both E262K peptide and parent peptide present in the sample.

The PMF-EIC method was tested for different validation parameters as per ICH guideline Q2(R1) to establish 
the suitability of this method for the intended purpose. Although the method was able to produce repeatable 
data during multiple analysis within a single day, a high relative standard deviation (~ 19%) was observed during 
inter-day precision study over 6 days with a sample containing ~ 0.1% E262K modified peptide (Table 2A). The 
specificity of this method to this particular modification was tested using the same antibody from a different 
source (mAb X2) and with other mAbs (mAb A and mAb B) having the same sequence in the Fc region. These 

(1)%E262K =
Area under E262K peptide signal

Area under E262K peptide signal + Area under parent peptide signal
*100
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mAbs do not show far basic variants in CEX analysis and thus are not expected to contain the E262K modifica-
tion. Interestingly, small amounts (< 0.07%) of truncated peptide (E262K peptide) was also observed in these 
antibodies. Similar to the FBV of mAb X, this peptide in mAb X2, mAb A and mAb B, eluted at a different RT 
than the parent peptide, negating the possibility of in-source fragmentation of the parent peptide during MS 
analysis. This data indicates that small amount of E262K peptide (VTCVVVDVSHEDPEVK) peptide can also 
be generated during sample processing, as degradation product of the parent peptide (TPEVTCVVVDVSHED-
PEVK). Non-specific cleavage by trypsin during 16 h digestion in Tris Cl buffer (pH 8), extended storage in 
auto-samplers at 4 °C and freeze − thaw of digested samples could also contribute to the degradation observed. 
The estimated % substitution was highly variable at these levels indicating that the detection was below the limit 
of quantitation (LOQ). Based on multiple inter-day analyses of the same batch of mAb X2, maximum of 0.07% 
substitution was observed and assigned as noise. Similar noise was also observed in other antibodies (mAb A 
and B) which share similar sequence in Fc region.

Further, to establish the linearity and accuracy of the method, synthetic peptides were used. The E262K 
peptide (VTCVVVDVSHEDPEVK) and the parent peptide (TPEVTCVVVDVSHEDPEVK) were chemically 
synthesized and alkylated at the cysteines to mimic the E262K and parent peptides obtained during the reduced 
peptide map analysis. To assess the linearity of the area under the curve (AUC) obtained from E262K peptide over 
a dynamic range of the concentration, serial dilutions of E262K peptide was analyzed by PMF-EIC method and 
the signal (AUC) obtained (Fig. S4a and b, supplementary material) was plotted against the respective peptide 
concentration. Based on the concentration of samples injected in a typical PMF-EIC experiment (and, consider-
ing 100% cleavage by trypsin), the concentration range of the peptide was selected to mimic samples with as low 
as 0.01% E262K peptide. Although, a linear response was observed from the AUC of the E262K peptide over 86 
fmole to 17.2 nmoles concentration range (Fig. S4c, supplementary material), the recovery (actual concentration 
relative to the concentration calculated from linear plot), for most of the concentration points, was far outside 
the generally acceptable range of 0.8–1.2 (Table S2, supplementary material). Additionally, to assess the accuracy 
of the method, E262K peptide and parent peptides were mixed at 1:1 molar ratio (so the expected % E262K is 
50) and analyzed through the PMF-EIC method (Table 2B). At low column load (~ 8 pmol) the method was 
accurate enough to estimate the % E262K (47% compared to the expected 50%), however the variability among 
the three triplicate analysis was very high (CV = 44.3%). On the other hand, although the method was consistent 
(CV = 5.7%) with high column load, the estimate of % E262K was not accurate (28% compared to the expected 
50%). Overall, these results indicate the limitations of this method to estimate % E262K in accurate and consistent 
manner and sheds reasonable doubt on the basic assumption of similar ionization potential for the two peptides 
and the linear response of the peptides in the quantitation range.

Based on these limitations found for PMF-EIC based method, a SRM based method was developed for accu-
rate quantitation of E262K variant in mAb X.

Absolute quantitation of the sequence variant by SRM based mass spectrometry 
(QQQ‑SRM).  In an effort to develop an accurate method for more selective and sensitive detection of pep-
tides, selective reaction monitoring (SRM) approach was utilized. In contrast to PMF-EIC, where the mass of 
interest is extracted post data acquisition, in SRM parent ions are exclusively selected, fragmented and dominant 
daughter ions can be selected to produce the final MS signal. Thus the method is very selective as the final MS 

Table 2.   A Inter-day intermediate precision of PMF-EIC method with mAb X containing ~ 0.1% of E262K 
substitution. The % substitution is calculated using Eq. (1). B Accuracy of PMF-EIC method at ~ 400 pmol 
and ~ 8 pmol column load.

Intermediate inter-day precision % E262K

A

Day 1 0.08

Day 2 0.12

Day 3 0.14

Day 4 0.10

Day 5 0.12

Day 6 0.09

Average 0.11

% CV 18.8

Column load AUC of EK peptide AUC of native peptide %E262K Average %E262K % CV

B

  ~ 400 pmol

130,195,529 331,971,597 28.2

28.8 5.7128,506,560 296,820,826 30.2

131,613,201 339,193,814 28.0

  ~ 8 pmol

3,463,371 2,633,558 56.8

47.5 44.31,958,042 3,970,226 33.0

1,918,275 1,717,359 52.8
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signal is generated from selected daughter ions only (more commonly called as multiple reaction monitoring-
MRM), while MS signals from multiple daughter ions can be added to increase sensitivity. LTQ Orbitrap, how-
ever, does not have true MRM mode and only one precursor and one of its daughter ions can be selected at a time 
(called as segment), thus limiting the sensitivity of this instrument in SRM mode. Nevertheless, the linearity of 
the SRM method was assessed in LTQ Orbitrap (Fig. S5a and b and Table S3, supplementary material) and the 
results were largely unsatisfactory. Although the SRM signal was reasonably linear (R2 = 0.98) across the EK 
peptide concentration range of 0.16–80 pmol, the recoveries were inconsistent and mostly outside the generally 
acceptable range of 0.8–1.2.

Due to unsatisfactory linearity and sensitivity in LTQ Orbitrap, the SRM method was explored on triple Quad 
quantitative MS instrument, TSQ Quantum Ultra (with triple Quadrupole analyzers) from Thermo. Triple-
quadruple (QQQ) tandem mass spectrometer (MS/MS) provides multiple reaction monitoring (MRM) mode 
wherein multiple parent and daughter ions can be selected. The dominant charge states of both E262K and parent 
peptide were selected and subjected to fragmentation to release daughter ions. The dominant daughter ions were 
selected to give final signal for area quantitation against standard calibration plots (in moles) from synthetic 
E262K and parent peptides. The absolute quantity of E262K peptide (in moles) and the Native peptide (in moles) 
was then used to determine the % E262K substitution in mAb X as per the Eq. (2).

The gradient method and mobile phases used in PMF-EIC was further optimized for shorter run time 
(30 min) and increased ionization, and the method was assessed for linearity, accuracy, precision and matrix 
effects using the synthetic peptides in the desired linearity range. Unlike the PMF-EIC technique, this method 
was not only linear over a dynamic range of peptide concentrations (Fig. 6), it was also able to measure the 
concentration accurately (recovery 0.9–1.1) at all the concentration points (Table 3).

The precision and accuracy was evaluated at four concentration levels of quality control standards: LLOQ 
(lower limit of quantitation), LQC (Lower quality control), MQC (Medium quality control) and HQC (High 
quality control). The design of calibration curve is based on expected % E262K content in samples from antibody 
manufacturing process where very low levels of E262K peptide were observed in comparison to Native peptide. 
The acceptance criteria were adopted from regulatory guidelines for bioanalytical methods where the observed 
concentration should be within ± 15% of nominal value at LQC, MQC and HQC and ± 20% for LLOQ51–53, while 
four out of six (67%) of QC standards at each concentration level should pass this criterion. The results of this 
study is summarized in Table 4. The % CV calculated between the six analysis at LQC, MQC and HQC was within 
10% for EK and native peptides, while the % CV was less than 15% at LLOQ level for both the peptides. All six 
analyses at LQC, MQC and HQC level with EK peptide was within the ± 15% of nominal value and four out of 
six analyses was within ± 20% of nominal value at LLOQ level. On the other hand, in case of the native peptide, 
all six analyses at LQC and MQC level and five out of the six analysis at the HQC level was within the ± 15% of 
nominal value and all six analyses at the LLOQ level was within ± 20% of nominal value.

The study samples (trypsin-digested mAb X) would have multiple other tryptic peptides as background matrix 
to E262K and Native peptide. Moreover, shorter runtime adopted for this method (to increase through-put) 
resulted in co-elution of multiple peptides, which can significantly suppress the ionization of target peptides 
or reduce selectivity due to matrix interference. In the expected range of % E262K substitution in mAb X test 

(2)% E262K =
Moles of E262K peptide

Moles of E262K peptide + Moles of parent peptide
*100

Figure 6.   Plots showing the linearity between the peptide concentration and MS signal for (a) EK peptide and 
(b) native peptide by SRM based method in triple-Q MS.
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samples, Native peptide is generally highly abundant and the EK peptide is present at very low amounts, the EK 
peptide was therefore tested for matrix interference through spike recovery. mAb X2, which has identical amino 
acid sequence as mAb X but does not contain the E262K, was used as E262K free matrix and six replicates at 
four concentration levels of QC samples (LLOQ, LQC, MQC and HQC) of EK peptide were spiked in trypsin 
digested mAb X2. The concentration of EK peptide on these spiked samples were estimated by SRM method 
and spike recovery was calculated (Table 5). At all the concentration levels at least five out of six replicates met 
the acceptance criteria, while the % CV between the six replicates was within the acceptable range as well. The 
recovery of Native peptide is discussed in Supplementary material (Table S4 and Supplementary text) However, 
since the % CV was on the higher side (> 10% in three out of four concentration levels), we adopted the strategy 
of running n = 2 independent preparations and reporting the average value only when the % CV between the 
two replicates is ≤ 15%, while the analysis will be repeated if the % CV between the two replicates is > 15%. This 
approach provided consistent results in routine analysis when the runtime of the sample sequence is not more 
than 20 h. Additionally, for effective removal of matrix interference and carry over in subsequent runs, the flow 
rate was increased to 1.5 ml/min in the wash step of the LC run which was diverted to waste.

Table 3.   Recovery of EK and Native peptide in triple-Q MS using SRM.

Amount (p moles) Peak area Calculated amount from linear plot (pmoles) %Recovery (actual/calculated)

EK peptide

0.065 68,305 0.062 1.0

0.130 186,779 0.146 0.9

0.325 390,302 0.292 1.1

0.651 947,436 0.690 0.9

3.255 4,829,049 3.462 0.9

6.510 9,465,545 6.773 1.0

32.550 43,326,864 30.954 1.1

65.100 83,221,433 59.444 1.1

Native peptide

126.187 86,146,234 118.632 1.1

252.375 182,163,787 277.256 0.9

378.562 257,317,432 401.412 0.9

504.749 327,136,398 516.756 1.0

630.936 407,050,857 648.777 1.0

757.124 459,068,585 734.712 1.0

883.311 518,580,860 833.029 1.1

1009.498 585,917,249 944.271 1.1

Table 4.   Accuracy and precision of EK and native peptide obtained in triple-Q MS using SRM.

Peptide

LLOQ (0.065 pmol) LQC (0.26 pmol) MQC (1.302 pmol) HQC (52.08 pmol)

Estimated 
(pmoles) Accuracy (%)

Estimated 
(pmoles) Accuracy (%)

Estimated 
(pmoles) Accuracy (%)

Estimate 
(pmoles) Accuracy (%)

EK

0.082 26.71 0.273 5.13 1.325 1.80 46.796 − 10.15

0.077 18.38 0.286 9.85 1.217 − 6.52 51.969 − 0.21

0.063 − 2.57 0.287 10.22 1.320 1.41 53.371 2.48

0.065 0.57 0.247 − 5.02 1.304 0.17 46.432 − 10.84

0.080 23.07 0.264 1.54 1.334 2.45 48.453 − 6.96

0.069 5.74 0.254 − 2.19 1.340 2.91 49.834 − 4.31

%CV 11.1 6.1 3.5 5.6

Peptide LLOQ (126.2 pmol) LQC (378.6 pmol) MQC (504.7 pmol) HQC (908.5 pmol)

Native

104.8 − 16.93 338.578 − 10.56 450.023 − 10.84 778.725 − 14.29

137.3 8.84 345.075 − 8.85 475.883 − 5.72 739.915 − 18.56

115.3 − 8.65 331.741 − 12.37 460.245 − 8.82 837.976 − 7.77

111.0 − 12.00 339.177 − 10.40 460.111 − 8.84 828.069 − 8.86

114.2 − 9.51 360.945 − 4.65 495.992 − 1.73 843.571 − 7.15

108.9 − 13.69 338.206 − 10.66 515.043 2.04 844.758 − 7.02

%CV 9.9 2.9 5.2 5.3
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Taken together, the SRM based approach in Triple-Q MS system was validated successfully for E262K SV 
estimation in mAb X samples with lower limit of quantitation as low as 0.007%. This was calculated considering 
on-column protein load (~ 65 µg) and lower limit of EK peptide calibration curve ie. 65 f. moles.

Control of E262K substituted product during downstream purification.  Once a sensitive method 
was established to quantify the E262K SV, the next step was to control the variant in the final drug product. To 
achieve this, protein A purified mAb X was fractionated through preparative CEX and tested on analytical CEX. 
As expected, the initial fractions were enriched in acidic variants and the basic variants gradually increased 
towards the later fractions. B1, B3 were identified as lysine variants, while B4 was characterized to be aggregates. 
Since B5 was characterized as E262K sequence variant, all the B5 containing fractions were discarded and rest of 
the fractions along with CEX load were analyzed by SRM mass spectrometry. Table 6 provides the distribution 
of acidic and basic charge variants and % E262K substitution in all these fractions in a representative batch of 
mAb X. The CEX load (inclusive of all charge variants and B5) contained 0.456% E262K substitution. Although 
the fractions reported here did not contain any detectable  B5, trace amount of E262K substitution was still 
estimated in them illustrating the inconspicuous nature of the sequence variant. The E262K variant was more 
prominent in the later fraction and, contrary to the basic nature of this variant, early acidic fractions (F1, F2) 
also contained relatively higher amounts of E262K SV. The reason for this distribution could be the charge profile 
of sequence variant itself. Similar to mAbX, mAbX’ is also an antibody which will have its own basic and acidic 
species. The occurrence of E262K substitution in later basic fractions of mAbX is due to overlap of acidic variants 
from mAbX’. The early acidic fractions of mAbX are enriched in fragments, the E262K detected in these frac-
tions could be fragments of mABX’ eluting there. Interestingly, excluding the early acidic fractions, a correlation 
between % B3 and % E262K was apparent in this analysis. The same correlation was also explored in another 
independent batch of mAb X and a linear relationship between % B3 and % E262K was established (Fig. 7).

Generally, sequence variant at < 0.1% level at a single site is considered to be acceptable to make sure that the 
sequence variants in total remain below a threshold (1–2%)4,7. However, a very conservative approach was taken 
here and only the fractions containing ≤ 0.050% E262K substitution was considered for pooling, which corre-
sponds to ≤ 10% B3, as per the linear correlation established between B3 and % E262K. Having B3 below 10% also 
helped in controlling basic charge variants in the final drug product. Thus, in addition to the established pooling 

Table 5.   Spike recovery of EK peptide at LLOQ, LQC, MQC and HQC levels. *ns, no signal observed.

Peptide

LLOQ (0.065 pmol) LQC (0.26 pmol) MQC (1.302 pmol) HQC (52.08 pmol)

Estimated 
(pmoles) Accuracy (%)

Estimated 
(pmoles) Accuracy (%)

Estimated 
(pmoles) Accuracy (%)

Estimated 
(pmoles) Accuracy (%)

EK

0.046 − 29.77 0.175 − 32.72 1.119 − 14.03 33.164 − 36.32

0.061 − 6.40 0.246 − 5.49 1.071 − 17.76 45.91 − 11.85

0.057 − 11.74 0.246 − 5.45 1.121 − 13.93 46.153 − 11.38

0.063 − 3.43 0.249 − 4.19 1.161 − 10.82 47.306 − 9.17

0.067 3.34 0.264 1.50 1.186 − 8.88 47.931 − 7.97

0.077 19.08 0.265 2.00 ns* −  47.027 − 9.70

%CV 16.7 13.9 3.9 12.7

Table 6.   Charge variant and % E262K distribution in CEX fractions during mAb X purification. Far basic 
variant was annotated as basic 5 variant.

Fraction number Acidic (%) Main (%) B1 (%) B2 (%) B3 (%) B4 (%) B5 (%) E262K by MS (%)

CEX load 0.456

 F1 61.9 34.7 2.2 1.1 0.0 0.0 0.00 0.053

 F2 42.5 53.8 2.9 0.8 0.0 0.0 0.00 0.037

 F3 31.5 63.0 4.5 1.0 0.0 0.0 0.00 0.030

 F4 24.7 68.6 5.9 0.8 0.0 0.0 0.00 0.018

 F5 20.2 71.7 7.4 0.7 0.1 0.0 0.00 0.022

 F6 16.9 73.4 9.4 0.1 0.1 0.0 0.00 0.016

 F7 14.2 74.4 11.2 0.1 0.1 0.0 0.00 0.020

 F8 7.9 70.0 19.7 1.2 1.3 0.0 0.00 0.012

 F9 2.6 44.6 38.1 3.8 10.3 0.6 0.00 0.055

 F10 1.8 44.1 42.3 7.4 22.8 1.5 0.00 0.122

 F11 1.7 15.5 37.0 9.6 34.7 1.4 0.00 0.223

CEX pool (F3 to F8) 0.012

Drug substance 0.014
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criteria to control the product quality attributes such as fragment, aggregate, deamidation etc., this criteria 
(B3 ≤ 10%) was also applied to pool the CEX fractions for further processing. Thus fraction F3 to F8 were pooled 
for the batch illustrated in Table 6 and the final drug product obtained had % E262K substitution as low as 0.014.

This approach was used to control the E262K variant in ten consecutive batches of mAb X and the SV was 
controlled to under 0.04% in all these batches. Further, pre-clinical toxicology study conducted in monkeys 
with multiple doses of mAb X having ~ 0.080% E262K did not reveal any product specific safety findings. Taken 
together, the highly sensitive SRM method enabled the control of E262K variant to a level where it does not 
impart any efficacy and safety concern.

Discussion
In this communication, we have reported the identification and characterization of a sequence variant in mono-
clonal antibody based therapeutic and developed two different LC–MS/MS based approaches to estimate the SV. 
The more sensitive technique between these two, the SRM based approach in a QQQ mass spectrometer, was 
validated and further utilized to control the SV in the final drug product during downstream purification process.

While next generation sequencing (NGS) and software based SV searches in high resolution LC–MS/MS 
data generated from the enzymatic peptide map analysis of drug product or upstream products are used widely 
to identify sequence variants in therapeutic proteins, both of these techniques have challenges, especially when 
the SV is present in trace amounts. NGS can be time and cost consuming and may result in false positives, while 
trace amounts of SV may evade the software based search due to lack of sufficient MS or MS/MS data. However, 
an approach combining NGS and LC–MS/MS, where all the hits resulted from NGS analysis can be further 
verified by targeted processing of LC–MS/MS data, can be the most reliable approach for SV identification in a 
product or clone. In absence of NGS capabilities, LC–MS/MS based characterization of enriched charge variants 
was utilized here to identify any sequence variants in mAb X. The E to K substitution at 262 position in heavy 
chain Fc region was identified by tryptic peptide map LC–MS/MS analysis of the far basic variant (FBV) and 
this finding was further validated by Glu-C digested peptide map LC–MS analysis. The E262K containing mAb 
X (mAb X’) was purified (~ 98%) from CEX and characterized by an array of physicochemical and Fc related 
functional assays. Interestingly, although E is more hydrophilic than K, the mAb X’ was appeared to be more 
hydrophilic than mAb X in HIC analysis, indicating the possibility of a structural difference between these two 
variants. This observation was further substantiated by the differences observed in FcγRIIa binding capabilities 
of these two products. Since E262 is not known to be directly involved in FcγRIIa interaction, it is more likely 
that a structural alteration due to E262K modification in mAb X’ is affecting the FcγRIIa binding potency. 
Additionally, the apparent structural alterations may also lead to the far basic nature of mAb X’. As evident from 
the iCE analysis of mAb X and mAb X’, the pI of mAb X’ is similar to the one lysine variant of mAb X (Fig. 6a). 
However, in CEX analysis the mAb X’ elutes much later than the one lysine variant (B1) of mAb X (Fig. 5a). The 
separation in CEX depends on the accessible charge of the protein and the accessible charge may depend on 
the structure of the protein. Certain structural changes may expose relatively charged residues to the column 
resulting in a change in the column-protein interaction and thus these variants may elute differently. Hence, the 
relatively strong basic nature of mAb X’ may signify certain structural modification in the SV containing protein. 
However, this structural alteration was not detected in Far and Near UV CD, FT-IR and DSC indicating that the 
global structure may not be impacted. At this moment the exact location of this suspected structural modifica-
tion is not clear and high resolution methodologies such as hydrogen–deuterium exchange mass spectrometry 
(HDX-MS) can be used further to pin-point the exact region of the apparent structural alteration.

Since the modified (SV containing) mAb X elutes as far basic variant in analytical CEX, the same separa-
tion technique can be used during the downstream purification to control the SV in drug substance and drug 
product. To enable this approach highly sensitive Mass spectrometry based methods were developed to estimate 
the trace amount of SV. Although the peptide map LC–MS-extracted ion chromatography (PMF-LC–MS-EIC) 
based method is a relatively simple and widely used for MS based PTM/variant analysis, this method was not 
able to estimate the E262K variant with acceptable accuracy and consistency. This method presumes that the 
peptides involved in % variant calculation (native and EK peptide, in this case) ionize similarly under the given 
mass spectrometry conditions. However, the method validation results indicate that this assumption may not be 
true and the three amino acid difference between these two peptides may bring in some differences in mass spec 
ionization potential, leading to inconsistent and inaccurate data. The alternate approach, SRM based method 
in a Triple-Q MS, was found to be much more sensitive and accurate. This method depends on the absolute 
quantification (in pmoles) of the native and EK peptides based on the parent and daughter ions specific to these 

Figure 7.   Correlation between the % B3 variant and % E262K variants in two batches of mAb X CEX fractions.
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two peptides. Additionally, the SRM based method was designed to be a shorter one and thus providing a better 
turn-around-time (TAT) for in-process sample analysis during the downstream purification. This method was 
successfully validated and used as in-process control to limit the E262K content in the purified mAb X. All the 
CEX fractions generated during the CEX purification step was analyzed by SRM based method and only the 
fractions containing insignificant amounts (≤ 0.05%) of SV was pooled to proceed further. Generally, the CEX 
fractions are pooled based on certain product quality attributes such as aggregate, fragments, charge variants 
etc. and results in some loss of the product. The additional pooling criteria (% E262K ≤ 0.07 and % B3 ≤ 10, 
based on the correlation between % E262K and % B3) imposed here ensured insignificant amounts (< 0.04%) 
of E262K SV in the drug product and it was utilized to generate mAb X consistently in the lab and at the pilot 
and manufacturing scales. Animal toxicity studies was conducted in Cynomolgus monkeys with a drug product 
with ~ 0.08% E262K SV and no toxic reactions were reported. Further, the same approach was endorsed by 
regulatory agencies for manufacturing drug products for clinical use. Interestingly, although the SRM based 
method was able to detect and quantify the SV in all the CEX fractions, the SV was below detection level of the 
PMF-EIC method in many fractions. The PMF-EIC method was not able to detect the SV in the drug product 
as well. This observation further emphasizes the importance of developing a very sensitive technique to estimate 
trace amounts of sequence variants.

Overall, sequence variants are considered to be undesired for the bio-therapeutics and appropriate measures 
should be taken to control SVs at the very early stage of the product development. While a combination of NGS 
and HRMS can be a tool for early detection of SVs at the clone level, the time and cost associated with a reliable 
NGS assessment may make this approach non-accessible for all the developmental programs, especially at the 
early stage. In those scenario, thorough characterization of enriched product variants through multiple analytical 
techniques can provide reliable information on the nature of different variants present in the product, including 
the sequence variants. Further, as described here, the inherent chemical and structural nature of the SV can be 
utilized to purify out the variant containing product and availability of a very sensitive analytical technique to 
reliably estimate trace amounts of SV is pivotal to this approach. To our knowledge, such an extensive charac-
terization of sequence variant in antibody biopharmaceutical and its control in the final drug product using mass 
spectrometry has not been demonstrated earlier. At times the clone producing the highest titer and a product 
with desirable quality attributes may contain trace amounts of SV and rejecting the clone right away may impart 
serious business implications. Thus, the approach presented here can be utilized to understand the properties of 
the SV extensively and based on the assessment, sensitive techniques and strategies can be designed to control 
the SV in the purified drug product.

Methods
Samples and materials.  The IgG1 mAbs X, X’, A and B were expressed in standard CHO cells and purified 
using standard antibody purification procedures at Biocon. No animals were used for experimentation. mAb X2 
was sourced from external agency. The list of reagents and other materials used is described in Supplementary 
material. Reagents and materials used in analytical techniques were procured from various vendors as described 
below. Dithiothreitol (DTT), Tris base [tris(hydroxymethyl)aminomethane)], trifluoroacetic acid (TFA), acetic 
acid (glacial), calcium chloride dihydrate, and hydrochloric acid used in sample processing were purchased from 
Sigma-Aldrich and Guanidine hydrochloride and iodoacetamide (IAM) were obtained from Sigma. Trypsin 
(sequencing-grade) was purchased from Promega and LysC (sequencing grade modified) was obtained from 
Roche. Acetonitrile from J.T. Baker was used in mobile phases. Deionized water (18 MΩ cm at 25 °C) for mobile 
phases was prepared using a Millipore’s Milli-Q purification system. Customized peptides: VTCVVVDVSHED-
PEVK (EK peptide) and TPEVTCVVVDVSHEDPEVK (Native peptide) were custom synthesized from Gen-
Script (Piscataway, NJ). C-13 and N-15 labelled Valine containing EK peptide: V*TCVVVDVSHEDPEVK and 
Native peptide TPEV*TCVVVDVSHEDPEVK were used as internal standards and custom synthesized from 
Polypeptide (France). * indicates C-13 and N-15 labelling of Valine. Primers atgatctcccggacccctgaggtcacatgcgtg-
gtggtggacgtg and atgatctcccggacccctaaggtcacatgcgtggtggtggacgtg were obtained from Life Technologies.

Intact mass analysis.  Intact antibody samples were diluted to a concentration of 1  mg/mL with 0.1% 
TFA in 50: 50 acetonitrile: water and analyzed using reverse-phase LC–MS on Waters ACQUITY UPLC with a 
photo diode array (PDA) detector coupled to Waters Synapt high definition mass spectrometry (HDMS) system 
equipped with an ESI source. The samples were injected on an ACE5 C4 column (100 × 2.1 mm) for chromato-
graphic separations. Mobile phase A was 0.1% Formic acid in Milli-Q water and mobile phase B was acetonitrile. 
Elution was achieved using a 10 min gradient of 10–90% of acetonitrile. Flow rate and column oven temperature 
were set at 200 μL/min and 40 °C, respectively, throughout the run. Mass spectrometric analysis was carried out 
in positive ion mode. Scan range of 2000–4000 m/z was used along with 3.00 kV capillary voltage and 40 V as 
cone voltage. Desolvation gas temperature was set to 300 °C and source temperature was 120 °C. Trap and trans-
fer collision energy values were 5 V each. Instrument was calibrated in the m/z range of 150–4000 using Sodium 
Iodide. Deconvolution of the ESI mass spectra was done using Max Ent 1 algorithm in Mass Lynx v4.1 software. 
The mass range used for deconvolution was 145,000–155,000, minimum intensity ratio left and right being 20%. 
Damage model was “Uniform Gaussian” and width at half height was 2.4. Number of iterations was set to 15.

Reduced mass analysis.  Intact antibody samples were denatured with Guanidium hydrochloride (final 
concentration of 3 M), reduced with DTT (final concentration of 10 mM) at 37 °C for 1 h and diluted to a final 
concentration of 1 mg/mL with 0.1% TFA in 50% acetonitrile. The samples were injected on an ACE 5 C4-300 
(100 × 2.1 mm; 5 μm particle size; 300 Å pore size) column for chromatographic separations. Mobile phase A 
was 0.1% Formic acid in Milli-Q water. Elution was achieved using a 27 min gradient of 10- 50% acetonitrile 
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as Mobile phase B. Flow rate was set at 150 μL/min for elution step and 200 μL/mL for washing step. Column 
temperature was maintained at 40 °C throughout the run. Mass spectrometric analysis was carried out in posi-
tive ion mode. Scan range of 500–4000 m/z was used along with 3.00 kV capillary voltage and 25 V as cone 
voltage. Desolvation gas temperature was set to 300 °C and source temperature was 120 °C. Trap and transfer 
collision energy values were 5 V each. Instrument was calibrated in the m/z range of 150–4000 using Sodium 
Iodide. Deconvolution of the ESI mass spectra was done using Max Ent 1 algorithm in Mass Lynx v4.1 software. 
The mass range used for deconvolution was 20,000–60,000, minimum intensity ratio left and right being 20%. 
Damage model was “Uniform Gaussian” and width at half height was 1.2. Number of iterations was set to 15.

Peptide mass fingerprinting—EIC method.  Intact antibody samples were denatured using guanidium 
chloride (final concentration of 3 M), reduced using DTT (final concentration of 10 mM) at 37 °C for 1 h and 
then alkylated using IAM (final concentration of 20 mM) at 37 °C for 1 h. After alkylation, the samples were 
desalted using a size exclusion GE HiTrap Desalting (5 mL) column at a flow rate of 0.3 mL/min using 0.05% 
TFA in 40:60 acetonitrile: water as the mobile phase. The protein eluting from the column was collected in a 
microcentrifuge tube and concentrated in a Savant SPD121P SpeedVac concentrator (Thermo Scientific). The 
optical density (OD) of the samples was determined by recording the absorbance at 280 nm and correcting for 
any light scattering at 340 nm using a spectrophotometer and the final concentration of the protein (mg/mL) 
was calculated from the OD reading using extinction co-efficient of 1.64 (theoretical extinction coefficient based 
on the confirmed amino acid sequence). The desalted sample equivalent to 250 µg of collected protein was con-
centrated further for digestion with trypsin up to a final volume of 70 μL. Trypsin (1:25 w/w) was added to the 
sample after adjusting the sample pH to 8.0 and the sample was incubated at 37 °C for 16 h to obtain the peptide 
mixture. This peptide mixture was separated using RP LC–MS on a Shimadzu UFLC coupled to LTQ Orbitrap 
XL (ThermoFisher Scientific) mass spectrometer. Mobile phase A was 0.1% TFA in Milli-Q water and mobile 
phase B was 0.09% TFA in 90:10 acetonitrile: water. 125 μg of the peptide mixture was injected on an ACE 5 
C18-300 (250 × 4.6 mm; 5 μm particle size; 300 Å pore size) column, separated at 40 °C using a 120 min gradient 
of 2- 96% Mobile phase B at a flow rate of 0.8 mL/min. The eluting peptides were detected using a UV detector at 
215 nm followed by mass spectrometry using LTQ Orbitrap XL in positive mode. The MS system was calibrated 
in the m/z range of 100–2000 using Thermo Scientific Pierce LTQ ESI Positive Ion Calibration Solution (mixture 
of caffeine, MRFA and Ultramark 1621 in a solution of acetonitrile, methanol, and acetic acid). MS/MS analyses 
were performed in a data-dependent mode with one cycle of scans consisting of one full MS scan of m/z range 
100- 2000 in profile mode using the FTMS analyzer (resolution = 30,000), followed by MS/MS of the fragment 
ions using the ion trap analyzer in profile mode at a normal scan rate. Ion selection for MS/MS was done using 
an isolation width of 1 Da, then fragmentation was done by collision induced dissociation (CID) with helium 
gas using normalized collision energy of 35, activation Q of 0.25 and activation time of 30 ms. The default charge 
state was set at 2. Quantification of the area corresponding to the EIC signals of EK peptide and Native/parent 
peptides was done using QualBrowser within Xcalibur v 2.5.5 SP1 (ThermoFisher Scientific). Mass range for 
extraction of native/parent peptide was 1070–1073 m/z and 906.45–908.45 m/z for the EK peptide covering 
full isotopic distribution for both peptides. Integration of the peptide peaks was done using the ICIS algorithm.

Peptide mass fingerprinting—SRM method.  Intact antibody samples were denatured using guan-
idium chloride (final concentration of 3 M), reduced using DTT (final concentration of 10 mM) at 37 °C for 
30 min and then alkylated using IAM (final concentration of 20 mM) at 37 °C for 1 h. Desalting, OD estimation, 
sample concentration, and trypsin digestion was done as described above. After adding trypsin, the samples 
were incubated at 37 °C for 5 h. At the end of 5 h, it was diluted with cold diluent (2% acetic acid in 20: 80 
acetonitrile: water, kept at 2- 8 °C) and injected on an ACE 5 C18- 300 (250 × 4.6 mm; 5 μm particle size; 300 Å 
pore size) column maintained at 40 °C. Mobile phase A consisted of 1% acetic acid in Milli-Q water and Mobile 
phase B was acetonitrile. Flow rate of 0.8 mL/min was used during the peptide elution step and 1.5 mL/min was 
used for the washing step and the divert valve was used to divert the flow to waste during the higher flow rate. 
A 13 min gradient of 6- 45% acetonitrile (3% per min) was used for elution of the peptides. The peptides were 
detected TSQ Quantum ultra AM mass spectrometer (ThermoFisher Scientific) equipped with an ESI source. 
The MRM transitions used were 245.75 Da (± 0.2 m/z) for parent ion 604.67 Da from EK peptide and 226.53 Da, 
327.61 Da, 471.70 Da (± 0.2 m/z) for parent ion 1070.01 Da from Native peptide. Instrument parameters were 
optimized separately for EK and Native peptides and therefore both peptides were detected in separate segments. 
Data was acquired in positive mode with Centroid data type. Scan width (0.2 m/z), scan time (0.02 s), peak width 
(Q1 and Q3: 0.70 FWHM), number of micro scans (1) and collision gas pressure (1.5 mTorr) were kept common 
for both EK and Native/parent peptides. Collision energy of 22 V was used for EK peptide and 50 V was used 
for Native/parent peptide. Spray voltage of 3500 V, vaporizer temperature of 300 °C, sheath gas and auxiliary gas 
pressures of 60 mTorr and 20 mTorr, respectively, and capillary temperature of 275 °C were other instrument 
parameters optimized to get maximum peptide signal. LC Quan v 2.5 was used for data processing. ICIS peak 
detection algorithm was used for optimal peak integration.

SNP detection using cast‑PCR (competitive allele‑specific Taqman qPCR) technique.  SNP 
leading to E262K substitution was detected using cast-PCR (Competitive allele-specific Taqman qPCR) tech-
nique as described previously46. Briefly, the cDNA extracted from mAb X clone was analyzed by qPCR using 
primers specific to wild type (atgatctcccggacccctgaggtcacatgcgtggtggtggacgtg) and SNP containing genomic 
DNA (atgatctcccggacccctaaggtcacatgcgtggtggtggacgtg). Standard TaqMan™ thermocycling conditions were 
used: 10 min at 95 °C, 40 cycles of 20 secs at 95 °C, 45 secs at 60 °C. Amplification (ΔRn vs cycle) was determined 
from standard amplification plot.
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Preparation of calibration curve using peptide standards.  Synthetic peptides for EK and Native/
parent sequences were used as standards for the quantification of % EK in unknown samples. The working 
stock of the native/parent and EK peptides was prepared separately by denaturing (using guanidium hydrochlo-
ride), reducing (using DTT) and alkylating (using IAM) 1 mg/mL master stock solution and further diluting to 
0.12 mg/mL (Native) and 0.04 mg/mL (EK) using the diluent (2% acetic acid in 20:80 acetonitrile: water). Master 
stock solution was prepared by dissolving the lyophilized powder of respective synthetic peptides (Native and 
EK) in 50 mM Tris HCl buffer with 1 mM Calcium Chloride (pH 8.0) to get 1 mg/mL solution.

Tables S5 and S6 show the scheme of preparation of standards for calibration curve and quality control 
standards of EK and Native/parent peptides from respective working stock solutions.

For recovery experiments 100 µL of appropriate standard was added to 900 µL of mAb A’ trypsin digested 
sample and 50 µL was injected on HPLC. For Native peptide, to reduce contribution of inherent Native peptide 
in mAb A’ matrix, 500 µL of appropriate standard was added to 500 µL of mAb A’ trypsin digested sample and 
50 µL was injected on HPLC.

Internal standards spiking: 5000 ppb levels of EK and Native internal standards were spiked into each calibra-
tion standard and samples.

Non reduced peptide mapping using Lys C.  Disulphide mapping analysis was performed on Waters 
ACQUITY UPLC coupled to Waters Synapt HDMS system. 100  µg of intact antibody was denatured using 
6 M guanidine hydrochloride at 37 ºC for 30 min. 1 ml of the cooled Ethanol is added and stored in − 20 °C for 
1 h for precipitation of the protein. The sample is centrifuged at 8000 rpm for 15 min and collected precipitate 
was treated with 50 µl of 2 M Urea, 2 mM CaCl2, 0.2 M Tris HCl (pH 6.5) and 2.5 µg of Lys C enzyme (Roche 
sequencing grade modified; reconstituted with MilliQ water) in the ratio of 1: 20 (Lys C: antibody, w/w). The 
reaction mixture was incubated at 37 °C for 48 h. The digested sample was further analyzed LC MS. Standard 
operating conditions were used for LC MS as described below:

Mobile phase A: 100% acetonitrile.
Mobile phase B: 0.1% FA in water.
Column: C18, 2.1 × 100 mm, 1.7 µm, part no: 1860002352.
Flow rate: 0.3 ml/min.
Column temp: 40 °C.

LC Gradient program. 

Time (min) % B

0 99

75 70

83 15

86 15

87 99

90 99

Mass spectrometric parameters. 

Analyzer mode: sensitivity.Analyzer mode: sensitivity.
Cone voltage: 25 V.
Scan time: 1 s.
Mode: positive.
Mass range: 50–2500 m/z.
Trap collision: 4–30 V.

Size exclusion chromatography.  40 µg of antibody was separated on TSK gel G3000W XL 7.8 mm ID* 
300 mm, 5 µ column using mobile phase 20 mM sodium phosphate, 0.25 M NaCl, pH 7.4 at isocratic flow rate 
of 0.5 ml/min for 35 min at 25 °C.

Cation exchange chromatography.  80 µg of antibody was separated on Dionex ProPac WCX-10 4 mm 
ID* 250 mm, 5.0 µm using gradient described below at 1 ml/min at 25 °C.

Mobile phase A: 10 mM phosphate buffer pH 7.5
Mobile phase B: 10 mM phosphate buffer 100 mM NaCl pH 7.6
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Time (min) % A %B

0 100 0

6.5 100 0

54.5 32 68

54.6 0 100

60 0 100

60.1 100 0

70 100 0

Hydrophilic interaction chromatography.  5 µg of antibody (1 mg/ml) were separated on Tosoh TSK 
butyl NPR 4.6X10cm (2.5 µ) at 25 °C using below gradient scheme at 0.5 ml/min and 220 nm.

Mobile phase A: 100 mM Sodium phosphate (30 mM sodium dihydrogen phosphate, 70 mM disodium 
hydrogen phosphate), 1.3 M ammonium sulphate pH 6.5

Mobile phase B: 100 mM sodium phosphate (70 mM sodium dihydrogen phosphate, 30 mM disodium 
hydrogen phosphate) pH 6.4. 

Time (min) %B

0 0

6.0 00

50.0 54

50.1 100

58.0 100

58.1 0

75.0 0

Far UV and near UV CD.  The antibody samples were analyzed in CD spectrophotometer Jasco J- 815 in 
both Far UV (measure range 200–260 nm) and near UV (measure range 260–360 nm) region for secondary 
structure and tertiary structure analysis, respectively. 0.4  mg/ml sample was analyzed in 1  mm path length 
quartz cuvette with CD acquisition parameters of 0.1 nm data pitch, standard sensitivity, 1 nm bandwidth, 1 s 
DIT, 200 nm/min scanning speed and 6 accumulations. Same parameters were used for acquiring near UV CD 
with 4 mg/ml of sample in cuvette with 10 mm path length.

ATR FT‑IR.  The Attenuated Total Reflectance-Fourier Transform-Infrared spectrum of 25 mg/ml antibody 
samples was acquired in Jasco FT/IR 6300 type A in scan range of 7800–350 cm−1 with 8 cm−1 resolution and 256 
accumulations. Rest of the parameters were on auto mode.

Differential scanning calorimetry.  The intact antibody was diluted to 2 mg/ml using placebo and was 
loaded on to the sample holder whereas reference holder is loaded with the respective placebo. The spectrum 
was acquired for temperature scan range of 20–100° C at 30 °C per hour scan rate.

Intrinsic fluorescence spectroscopy.  0.2 mg/ml of antibody for intrinsic fluorescence with excitation at 
278 nm and emission spectrum recorded from 300 to 400 nm at scan rate of 600 nm/min. Average of 10 scans 
was stored as final spectrum. Both excitation and emission slit width was kept at 5 mm.

Non reduced capillary electrophoresis using sodium dodecyl sulphate (NR CESDS).  CE analy-
sis was performed on Sciex PA 800 Plus instrument using 30 cm capillary with separation voltage of 18 kV 
applied for 30 min. The antibody was desalted using 10 kDa MCWO nanosep at 8000 rpm and diluted to 1 mg/
ml using SDS sample buffer. 2 µl of 10 kDa internal standard, 5 µl of 250 mM iodoacetamide was added to the 
reaction volume of 100 µl. and incubated at 70 °C for 3 min. The reaction mixture was spun at 8000 rpm for 
8 min to remove air bubbles and transferred to CE universal vials. The samples were electrokinetically injected 
at 10 kV for 25 secs. 32 karat software was used for processing electropherogram.

Imaged capillary iso‑electric focusing.  iCE analysis was performed on ProteinSimple iCE 280 using 
focusing period of 2 min at 1500 V followed by 5 min at 3000 V. The 10 mg/ml of antibody was desalted using 
10 kDa MCWO nanosep using MilliQ at 13,000 rpm. To 5 µl of desalted antibody 185 µl of 0.35% methyl cellu-
lose gel (Protein Simple) containing 8 M urea, 7 µl of pharmalyte 3–10, 3 µl of pharmalyte 8–10.5 (GE heathcare), 
0.2 µl of pI marker 9.77 and 7.40 (Protein Simple) was added. The mixture was vortexed and spun at 8000 rpm 
for 8 min to remove air bubbles and transferred to CE universal vials.

Fc binding using SPR based capture format.  Affinity to recombinant human FcγRIIa, FcγRIIb and 
FcγRIIIa were determined using surface plasmon resonance (SPR) with a Biacore T200/T100 (GE Healthcare). 
A penta- His antibody (Qaigen) was covalently immobilized on a CM5 chip using standard amine coupling 
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chemistry for a specified contact time. A constant concentration of recombinant FcγRs (FcγRIIa, FcγRIIb or 
FcγRIIIa) was captured on the anti-His surface as the ligand and different concentrations of analyte mAb X or 
mAb X’ were passed at a constant flow rate for set association and dissociation times. As the analyte binds to the 
ligand, Fc receptor immobilized on the surface, accumulation of protein on the surface results in an increase in 
refractive index. This change in refractive index is measured in real time, and the result plotted as response or 
resonance units (RUs) versus log concentration of mAb X or mAb X’. Relative Binding was determined using 
parallel line analysis in Stegmann Systems software.

Fc binding using SPR based direct format.  Affinity to recombinant human FcγRIIIb and neonatal Fc 
receptor (FcRn) were also determined using surface plasmon resonance (SPR) with a Biacore T200/T100. The 
Fc receptor was covalently immobilized on a CM5 chip using standard amine coupling chemistry for a specified 
contact time. The analyte mAb X or mAb X’ was injected in aqueous solution through the active and reference 
flow cells, under continuous flow. As the analyte binds to the ligand, Fc receptor immobilized on the surface, 
accumulation of protein on the surface results in an increase in refractive index. This change in refractive index 
is measured in real time, and the result plotted as response or resonance units (RUs) versus log concentration of 
mAb X or mAb X’. Relative Binding was determined using parallel line analysis in Stegmann Systems software.

ELISA based FcγRIa binding.  Affinity to recombinant human FcγRIa was determined using an ELISA 
based format where FcγRIa was coated on the ELISA plate followed by serially diluted mAb X or mAb X’. This 
binding was detected using a HRP tagged goat anti-human F(ab′)2 specific antibody which converts the chro-
mogenic substrate, 3,3′,5,5′-tetramethylbenzidine (TMB) to form a blue colored product. The reaction was 
stopped by addition of dilute sulphuric acid (1 N). The final colored product was read at 450 nm/ 630 nm and 
the corrected absorbance (A450–A630 nm) value was plotted versus log concentration of mAb X or mAb X’. 
Relative Binding was determined using parallel line analysis in Stegmann Systems software.

ELISA based C1q binding.  An ELISA format was utilized for determining C1q binding. 96 well plates 
were first coated with serially diluted mAb X or mAb X’, followed by a defined constant amount of C1q pro-
tein and biotinylated anti-C1q antibody was added. The presence of captured biotinylated anti-C1q antibody 
was detected using horse-radish-peroxidase (HRP) conjugated streptavidin which converted the chromogenic 
substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), forming a blue colored product. The reaction was stopped and 
Relative Binding calculated as described in FcγRIa binding.
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