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Choice of 16S ribosomal RNA 
primers affects the microbiome 
analysis in chicken ceca
Nadia Darwish1,2, Jonathan Shao2, Lori L. Schreier1 & Monika Proszkowiec‑Weglarz1*

We evaluated the effect of applying different sets of 16S rRNA primers on bacterial composition, 
diversity, and predicted function in chicken ceca. Cecal contents from Ross 708 birds at 1, 3, and 
5 weeks of age were collected for DNA isolation. Eight different primer pairs targeting different 
variable regions of the 16S rRNA gene were employed. DNA sequences were analyzed using open‑
source platform QIIME2 and the Greengenes database. PICRUSt2 was used to determine the predicted 
function of bacterial communities. Changes in bacterial relative abundance due to 16S primers were 
determined by GLMs. The average PCR amplicon size ranged from 315 bp (V3) to 769 bp (V4–V6). 
Alpha‑ and beta‑diversity, taxonomic composition, and predicted functions were significantly affected 
by the primer choice. Beta diversity analysis based on Unweighted UniFrac distance matrix showed 
separation of microbiota with four different clusters of bacterial communities. Based on the alpha‑ 
and beta‑diversity and taxonomic composition, variable regions V1–V3(1) and (2), and V3–V4 and 
V3–V5 were in most consensus. Our data strongly suggest that selection of particular sets of the 16S 
rRNA primers can impact microbiota analysis and interpretation of results in chicken as was shown 
previously for humans and other animal species.

Bacteria are the major component of chicken gastrointestinal tract (GIT) microbiota that plays important role 
in health, nutrition, host physiology regulation, GIT development, and growth. Microbiota composition and 
function can be affected by age, host genotype and sex, diet composition and form, dietary ingredients such 
as probiotics, prebiotics, synbiotics, phytobiotics and bacteriophages, stress, antibiotics, and GIT  location1–3. 
Recently, the number of available data characterizing the avian microbiota has significantly  increased4. Pub-
lished papers mostly focused on the impact of  diet5,6,  disease7,8,  antibiotics5,  probiotics7,9,10,  prebiotics11,12 and 
environmental  exposures13 on the chicken microbiota. Analysis of the microbiota is believed to be important to 
improve animal nutrition strategies, animal health, and well-being. In chickens, a diverse microbiota is found 
throughout the GIT with the most diversity in the cecum which serves as a key organ for fermentation of various 
forms of polysaccharides to short-chain fatty  acids14,15.

Historically, microbiota in GIT was detected by biochemical, microbiological, immunological, and molecular 
biology  techniques16. Because most of the microbiota in GIT is strictly anaerobic, it was difficult to identify and 
characterize individual species using classic  methodology16. With time, more sophisticated molecular biology 
methods were developed to characterize microbiota, including PCR, denaturing gradient gel electrophoresis 
(DGGE), temperature gradient electrophoresis (TGGE), microarrays, and next-generation sequencing (NGS)17,18. 
Recently, the microbial community profiling method based on the 16S ribosomal RNA (rRNA) sequencing 
approach (NGS) has become the most popular to determine the taxonomic composition and diversity of chicken 
 microbiota19. Bacterial 16S rRNA  contains 9 hypervariable regions used to calculate evolutionary relation-
ships and similarities between species, that are flanked by highly conserved regions which are generally used 
to design polymerase chain reaction (PCR)  primers20. The 16S rRNA profiling consists of many steps such as: 
sample collections and storage, DNA isolation, 16S primer selections, 16S rRNA  PCRs, libraries preparations 
and indexing, sequencing, raw data analysis (pipeline or software selection), OTU/ASV (Operational Taxonomic 
Unit/Amplicon Sequence Variant) picking, database selection, diversity analysis, and statistical analysis. Several 
bioinformatics pipelines for raw sequences analysis has been developed and used to provide a taxonomic compo-
sition and population diversity including  Mothur21,22 and  QIIME23–25. In the case of taxonomic composition, most 
analyses are performed using databases such as  Greengenes26, the Ribosomal Database  Project27, and  SILVA28.
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Even though 16S profiling is the most popular approach to study microbial diversity, it is characterized by 
several limitations including amplicon size, primer sensitivity, amplification errors, and  contamination29. It 
has been already shown that primer  design30–32, library  preparation33, DNA isolation  methods34,35, and PCR 
amplification artifacts can introduce unique biases that can affect community structure, richness, and microbial 
population  analysis36 and lead to over- or under-representation of individual bacteria within  communities37. 
Moreover, different sequencing platforms and bioinformatics pipelines can affect the average relative abundance 
of microbiota and shape the taxonomic community  profiles31,38. Additionally, the Microbiome Quality Control 
project (MBQC) in human microbiome study reported that the DNA isolation method, as well as 16S rRNA 
primers used, are the major sources of variation, with sequencing depth and sample storage having a smaller 
but detectable influence on the  data39.

In chicken microbiota studies, even though the experiments are commonly standardized and based on identi-
cal breeds, the results are often contradictory and the results depend on used animal (breed, age, gender, etc.), 
the experimental design (feeding and sampling), and DNA extraction and sequencing methods. Therefore, it is 
hard to compare those data and correlate them with each  other19,40. The development of a standardized protocol 
for microbiota profiling in chickens, similar to the one used in human microbiota research, has been proposed 
by Borda-Molina and  colleagues40 to obtain comparable data sets for poultry microbiota.

Following the above recommendation and taking into account the fact that microbial studies in poultry, 
covered, so far, the V1–V3, V3–V4, V4–V5, V4–V6, V1, V3 or V4 region of the 16S rRNA  gene3,41–45, the present 
study aimed to explore the influence of applying the different sets of 16S rRNA primers on chicken microbiota 
diversity, taxonomic composition and predicted function.

Results
Sequencing. A total of 12 samples obtained from chicken cecal content at three different ages (n = 4 for age) 
were used in 16S rRNA high-throughput sequencing using eight different 16S rRNA primer sets. Chicken DNA 
amplification with these primer sets resulted in averaged indexed PCR product size ranging from 315 bp (V3) to 
769 bp (V4–V6) (data not shown). In all cases, a single PCR band was visible on the electropherogram, but the 
intensity of the PCR band was different among primers sets, with the lowest one for V3 and the highest one for 
V1–V3(1), V3–V4 and V4–V5, and V3–V5 (data not shown). Sequencing of 12 samples generated 16,050,150 
sequences with 15,776 to 939,976 sequences per sample. After removing chimeric sequences, the total pool of 
sequences was reduced to 11,113,440 reads with 13,524 to 634,783 sequences per sample.

Microbiota diversity analysis. Significant (P < 0.05) differences in alpha diversity indices in chicken cecal 
microbiota were observed when different 16S rRNA primers were used (Fig. 1). In the case of Evenness, the V3 
set was characterized by the lowest one in comparison to other primer sets while V3–V4 showed the highest 
Evenness in comparison to V4–V5 and V4–V6 (Fig. 1a). In contrast, V3 was characterized by the highest Rich-
ness while V4–V5 by the lowest Richness (Fig. 1b). The number of ASVs was significantly (P < 0.05) lower in 
V4 in comparison to V1–V3, V3, and V4–V6 sets (Fig. 1c). Finally, the Shannon index, which represents com-
munity Richness and Evenness, was the least affected by primer set showing only significant differences between 
V1-V3 and V4 primer sets (Fig. 1d). Beta diversity analysis (Principal Coordinate Analysis, PCoA) based on 
Unweighted UniFrac distances as well as PERMANOVA analysis revealed clear clustering of microbial commu-
nities due to primer choice (Fig. 1e). Five different clusters were formed, with V1–V3(1), V1–V3(2), V3–V5 and 
V3–V4, V4–V5, and V3, V4, and V4–V6 separated from each other.

Taxonomic composition. Figure 2 depicts the number and the percentage of detected features for phylum 
(Fig. 2a), families (Fig. 2b), and species (Fig. 2c) that were significantly different in relative abundance between 
primer pairs. On the phylum level, no differences were observed between V1–V3(1) and V1–V3(2) primer pairs 
while V3 primers were characterized by the greatest number of different taxa in comparison to the V1–V3(1) 
primer pair (Fig. 2a). At the family level, the lowest differences in sets were observed for V1–V3(1) vs. V1–V3(2) 
and V4–V5 vs. V3–V5 primer pairs, while the biggest differences in relative abundance were observed for V1–
V3(2) vs. V3, V3 vs. V3–V4, and V3 vs. V3–V5 primer pair comparison (Fig. 2b). Finally, at the species level, no 
significant differences in relative abundance were observed for V3–V4 and V3–V5 primer pair comparison. The 
biggest differences in the relative abundance of species were observed between V1–V3(1) and V4, and V1–V3(2) 
and V3–V4 primer sets (Fig. 2c). Changes in taxonomic composition on phylum, family, and species level due 
to primer set are presented in Figs. 3, 4 and 5. At the phylum level, chicken cecal microbiota was composed pre-
dominantly (except for the V3 primer set) of Firmicutes, Proteobacteria, and Bacteroidetes with a lower relative 
abundance of Actinobacteria, TM7, Tenericutes, and Verrucomicrobia (Fig. 3a). Besides changes in microbial 
composition due to the age of birds, the selection of 16S primers has a significant effect on microbiota compo-
sition in chicken ceca. The first six phyla with the highest relative abundance that were significantly (P < 0.05) 
affected by the primer set are presented in Figs. 3b–g. Primer set V3 was characterized by the highest abundance 
of unclassified bacteria and the lowest abundance of other phyla. The highest relative abundance of Actinobac-
teria was obtained with V4 primers (Fig. 3c) while Bacteroidetes relative abundance was the lowest in the case 
of V3, V3–V4, and V3–V5 primer sets (Fig. 3d). The Firmicutes relative abundance ranged from 60% (V1–V3) 
to 75% (V3–V4, V4–V5, and V3–V5) (Fig. 3e). The highest Proteobacteria level was detected with V1–V3(2) 
primer set (Fig. 3f) while the highest Tenericutes level was detected with V4 and V4–V5 primer sets (Fig. 3g). A 
similar pattern was observed at the family level (Fig. 4). V3 primer set was characterized by the highest (P < 0.05) 
abundance of Unclassified bacteria (UNCL) and the lowest relative abundance of other bacterial families in 
chicken ceca (Fig. 4b). The highest abundance families that show significant differences due to primer set selec-
tion are presented in Fig. 4c–g. The selection of V3, V3–V4, and V3–V5 led to the lowest abundance level of the 
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Rickenellaceae family in chicken ceca (Fig. 4c). The highest Clostridiaceae level was presented with V1–V3(1) 
primers (Fig. 4d) while a relatively stable level of Lachnospiraceae family was observed regardless of primers 
except for V3 and V4 primer set (Fig. 4e). The highest relative abundance of the Ruminococcaceae family was 

Figure 1.  Effect of primer set on alpha (a–d) and beta (e) diversities in cecal microbiota. Alpha diversities 
indices: (a) Evenness, (b) Richness, (c) ASV number, and (d) Shannon index. (e) Principal coordinate analysis 
(PCoA) based on unweighted pairwise UniFrac distances between primer sets in cecal microbiota. a,b,c,d,e,fq < 0.05 
(q represents p value corrected for false discovery rate).
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detected with V3–V4, V4–V5, and V3–V5 primer sets (Fig. 4f). No changes in abundance of Enterobacteriaceae 
were detected among 16S primers except for V3 primers (Fig. 4g). Regardless of the primer set, the taxonomic 
composition at the species level was characterized by a high abundance level of UNCL (Fig. 5a) ranging from 
60% to almost 90% (Fig. 5b). Changes in the abundance level of bacterial species in chicken ceca are presented 
in Fig. 5c–g. Similarly to the phylum and family level, taxonomic composition on species level was affected by 
primer sets. The highest abundance level of Bacteroides fragillis was only detected with a V1–V3(1) primer set 
(Fig. 5c) while the high abundance level of Blautia producta was detected only with V3–V4 (Fig. 5d). In the 
case of Butyricocccus pullicaecorum, the highest abundance level was observed for V3–V4 and V3–V5 primer 
sets followed by V1–V3 sets (Fig. 5e). Primer sets of V4, V3–V4, V4–V5, and V3–V5 led to the detection of the 
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Figure 2.  Number and percentage of taxa significantly different in relative abundance level between primer 
pairs. (a) phylum level, (b) family level and (c) species level. Number of taxa that were characterized by 
significant differences in relative abundance were counted between primer pairs. The percentage of the taxa 
were calculated for each primer pair comparison: (number of taxa that were significantly (P < 0.05) different in 
relative abundance level/total number of taxa for each taxonomical level) × 100.
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Figure 3.  Changes in relative bacterial abundance (%) in chicken cecal content at phylum level. (a) Taxonomic 
profile of chicken cecal microbiota. Effect of primer sets on the relative abundance of (b) unclassified bacteria 
(UNCL), (c) Actinobacteria, (d) Bacteroidetes, (e) Firmicutes, (f) Proteobacteria, and (g) Tenericutes. Only 
significant (P < 0.05) data are shown and only first 6 phyla with the highest abundance are shown.  Different 
letters denote statistically significant (P < 0.05) differences between primer sets.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11848  | https://doi.org/10.1038/s41598-021-91387-w

www.nature.com/scientificreports/

Figure 4.  Changes in relative bacterial abundance (%) in chicken cecal content at family level. (a) Taxonomic 
profile of chicken cecal microbiota. Effect of primer sets on the relative abundance of (b) unclassified 
bacteria (UNCL), (c) Rikenellaceae, (d) Clostridiaceae, (e) Lachnospiraceae, (f) Ruminococcaceae, and (g) 
Enterobacteriaceae. Only significant (P < 0.05) data are shown and only first 6 families with the highest 
abundance are shown.  Different letters denote statistically significant (P < 0.05) differences between primer sets.
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Figure 5.  Changes in relative bacterial abundance (%) in chicken cecal content at species level. (a) Taxonomic 
profile of chicken cecal microbiota. Effect of primer sets on the relative abundance of (b) unclassified bacteria 
(UNCL), (c) Bacteroides fragilis, (d) Blautia producta, (e) Butyricicoccus pulicaecorum, (f) Faecallibacterium 
prausnitzii, and (g) low abundance reads (LAR). Only significant (P < 0.05) data are shown and only first 
6 species with the highest abundance are shown.  Different letters denote statistically significant (P < 0.05) 
differences between primer sets.
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highest abundance of Faecallibacterium prausnitzii (Fig. 5g). Also, the level of low abundance reads (LAR) was 
significantly affected by primer set choice (Fig. 5g).

Microbiota predicted function. Alterations in the presumptive function of the cecal microbiota in broiler 
chicken due to different 16S primers were evaluated using PICRUSt2 analysis and visualized using Calypso and 
STAMP. Evenness and Shannon index of predicted function (Fig. 6a–c) was significantly (P < 0.001) affected 
by the primer set while Richness was not affected (P = 0.33). Similarly, Principal Component Analysis (PCA) 
showed separation between bacterial function due to the primer set (Fig. 6d). Figure 7 shows PCA analysis and 
the changes in the top predicted microbial genes between V3-V4 and other primer sets. We choose to compare 
all other sets to the V3–V4 primer set because it is the most widely used primer set and almost exclusively used 
by our laboratory to determine the taxonomic composition of chicken microbiota. Comparison of V3–V4 with 
V1–V3(1) primer sets, revealed clear function separation (PCA) with most of the top function upregulated 
with V1–V3(1) primer set (Fig. 7a). In contrast, no separation of predicted function was detected for V3–V4 
and V1–V3(2) sets, but most of the top function were upregulated with V1–V3(2) primer set (Fig. 7b). Both 
comparisons, V3–V4 vs. V3 and vs. V4 showed a similar pattern of changes with clear separations between 
these two populations as shown by PCA and upregulations of 2/3 of top KEGG function in V3 and V4 primer 
sets (Fig. 7c,d). V3–V4 and V3–V5 function comparison revealed no clustering (PCA) with all the top func-
tion being upregulated in the V3–V4 primer set (Fig. 7e). Similarly, V3–V4 and V4–V5 samples were clustered 

Figure 6.  Effect of the primer set on alpha and beta diversities of predicted function of the cecal microbiota 
in chickens. Function of the microbiota was determined using PICRUST and visualized using Calypso (a–c) 
and STAMP (d). Alpha diversities: (a) evenness (P < 0.001), (b) richness (P = 0.33) and (c) Shannon index 
(P < 0.0001) (d) beta diversity between primer set bacterial populations was determined using principal 
component analysis (PCA).
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together but all top of KEGG function were upregulated in the V4–V5 primer set (Fig. 7f). Definite clustering of 
function between V3–V4 and V4–V6 primers were detected and the top of KEGG functions were upregulated 
in V4–V6 primers in comparison to V3–V4 primers (Fig. 7g).

Discussion
Over the last decade, several regions of the 16S gene were used to characterize the chicken microbial popula-
tion, including V1–V246,47, V1–V3*3,48,  V33,49,  V43,7,50, V3–V551,52, V4–V63, V4–V553, V3–V45,54, and V1–V955. 
At the same time, many studies on mammalian, human, or environmental samples raised the issues of data bias 

Figure 7.  Effect of the primer set on predicted function of the cecal microbiota in chickens. Function of the 
microbiota was determined using PICRUST with KEGG database and visualized using STAMP. Principal 
component analysis (PCA) and extended error bar plots for comparison of predicted function of microbiota 
between (a) V3–V4 and V1–V3(1) (b) V3–V4 and V1–V3(2), (c) V3–V4 and V3, (d) V3–V4 and V4, (e) V3–
V4 and V4–V5, (f) V3–V4 and V3–V5, and (g) V3–V4 and V4–V6 primer sets.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11848  | https://doi.org/10.1038/s41598-021-91387-w

www.nature.com/scientificreports/

introduced by methodology, including primer choices for  16S30–32. Moreover, the call for standardization of 
microbiota profiling protocol has been issued in the human microbiome  community39, but recently also among 
poultry microbiome  researchers40,56. The MBQC project that analyzed the effects of experimental sample collec-
tion, nucleic acid extraction, sequencing protocol, and bioinformatic approaches on 16S profiling of the human 
fecal microbiota, determined that the extraction method, as well as 16S rRNA primers selection,  are the main 
sources of data  fluctuation39. There is an evident need for a similar project in the poultry microbiome community 
since every step in the microbiome sequencing protocol such as sample collection, DNA isolation, and library 
preparation, can introduce bias to the data. Little attention so far has been drawn on the possible data bias due 
to methodology issues or bioinformatic analysis for poultry microbiome analysis.

To gain a deeper understanding of how the 16S primer choice can influence the final results for microbiota 
diversity and composition, we tested 8 different 16S primer pairs located in 7 different regions of the 16S rRNA  
in broiler chicken cecal content. Two primer sets were located in the V1–V3 region and they differed only by few 
base pairs, and one pair was located within V3 and V4 region. The remaining 4 pairs span the V3–V4, V4–V5, 
V3–V5, and V4–V6 regions of the 16S rRNA. Alpha and beta diversities analysis clearly showed huge differences 
between these primer sets. It is interesting, that only a few base pair differences in a primer set designed for the 
same 16S region (V1–V3(1) vs. V1–V3(2)) resulted also in a significant difference for Richness index and they 
clustered separately when PCoA was employed. Our data are in agreement with previously published studies. 
Zhao et al.3, using microbiome differences between high and low body weight chickens, described the differ-
ence in the number of species detected among V3, V4, V1–V3, and V4–V6 primer pairs. Moreover, V3 has been 
shown to underestimated species  Richness3, while the V4 primer provides estimates similar to these obtained 
by the full length of  16S20 and V4 primers showed the greatest similarity to community profiling determined 

Figure 7.  (continued)
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by shotgun  sequencing30. In contrast to our studies, Bhogoyu and  colleagues55 have examined different regions 
(V1–V9) in chickens and determined that most of the reads (60%) were located in very conserved V3 region fol-
lowed by V7–V8, V7, V8 (~ 14%), V4 (8.7%) and V9 and V2 region (from 1.2 to 2.2%). Other studies have shown 
that primers can target certain strains allowing for non-proportional amplification of specific  populations57,58. 
Targeting V3–V4 regions favor enteric pathogens and gut  microorganisms56. Moreover, in silico study by Kim 
et al.59 identified V1–V3 and V1–V4 regions to be targeted for analysis of bacteria.

Hugerth and  Andersson58 have shown that the choice of primers is very sensitive since the same bacterial 
community amplified with different high-quality primer pairs can give a different microbiological profile. Indeed 
in our studies, we have shown that primer choice had a significant effect on taxonomic composition in chicken 
ceca. On the phylum level, Actinobacteria were favored by the V4 primer set while Bacteroidetes were detected 
at a very low level with V3, V3–V4 and V3–V5 primer pairs. Similar significant changes were detected at the 
family and species level. On the species level, Butyricicoccus pulliceacorum was detected at a high abundance level 
only by V3–V4 and V3–V5 primer pairs while Blautia producta was favored by V3–V4 primers. It has been also 
shown that taxonomic composition (classification) relies more on primer choice than the sequencing  platform30. 
Additionally, we have shown that the predicted function of the microbiota differs among 16S primer sets. These 
data clearly indicate that the primer set has a significant role in the determination of taxonomic composition and 
that the employment of different primers may lead to a different interpretation of results. The same conclusion 
was stated by others suggesting that the selection of specific hypervariable regions for 16S primers will influence 
microbiome data and subsequent  interpretation60,61. Moreover, studies of others showed that data generated 
by different 16S primers are not directly  comparable62–64. There are no universal primers, so always bias will 
be introduced by selecting primer  pairs30, therefore it would be perfect if we had a standardized protocol for 
microbiome studies in poultry and could apply the same primer set across all studies to be able to compare data 
sets between studies and discuss the data with published literature. Moreover, Trembley and  colleagues30 suggest 
that protocol consistency, particularly the primer choice, is more important in comparative 16S studies than 
the specific primers. On the other hand, Allali et al.38 confirmed differences between sequencing platforms and 
libraries preparation protocols in the determination of microbial diversity and species richness in their studies 
but they also suggested that the same biological conclusions could be drawn from data as long as the data are 
collected and analyzed consistently throughout the course of the experiment.

In conclusion, similarly to previous reports of primer bias in human and other animal datasets, we have clearly 
shown similar data bias due to the 16S primer choice in chicken samples. Moreover, be believe, that our results 
might help researchers make an informed decision about which variable region should be selected for analysis 
of chicken microbiota samples. This is only one factor that can affect the data generation and interpretation. Our 
data also showed a need for a standardized protocol for 16S studies in poultry. If the protocol is not developed, 
one of the possible solutions for this problem would be to study parallel regions of 16S  rRNA65, but this may not 
be the most cost-effective solution in poultry research.

Methods
Animals, experimental protocols, and tissue sampling. All animal care procedures were approved 
by the USDA-ARS Institutional Animal Care and Use Committee. The study was carried out in compliance with 
ARRIVE guidelines (https:// arriv eguid lines. org/ arrive- guide lines). All methods were carried out in accordance 
with relevant guidelines and regulations. Ross 708 broiler chicken (Longenecker’s Hatchery, Elizabethtown, PA) 
were raised from hatch to day 35 in-floor pen settings. One hundred and fifty-two hatchlings were equally dis-
tributed between 4-floor pens, covered with wood shavings, and equipped with heat lamps, nipple drinkers, and 
feeders. All birds had full access to a commercial type corn-soybean meal-based diet (starter from day 1 to day 
21 or grower (day 21 to day 35) that met or exceeded all  NRC66 recommendations as well as average nutrient 
usage concentrations in the US for  201267. Cecal content samples were collected from birds (one per pen) 7, 21, 
and 35 days post-hatch to determine the luminal bacterial population. Isolated specimens were snap-frozen in 
liquid nitrogen and stored at − 80℃ until bacterial DNA isolation.

DNA isolation and library preparation. DNA was extracted from cecal contents and evaluated as 
described  previously68. The 16S rRNA  amplicon libraries were generated according to Illumina’s workflow 
and chemistry (Illumina, Inc., San Diego, CA). Eight PCR primer sets targeting different regions of the vari-
able region of the 16S rRNA (Table 1) were used. All selected primer sets were previously published and used 
in poultry research. Amplicon PCR followed by index PCR, and PCR amplicon cleaning were performed as 
described  previously68. Concentration and quality of the amplicons were determined using QIAxcel DNA Hi-
Resolution cartridge, proprietary QIAxcel ScreenGel software (version 1.6.0, https:// www. qiagen. com), and 
QIAxcel Advanced System (Qiagen) per manufacturing instructions. Library pooling, dilution, denaturation, 
and sequencing were performed as described in Proszkowiec-Weglarz et al.68. The 16S rRNA gene sequences 
determined in this study were deposited in the NCBI Sequence Read Archive (SRA) database (SRA accession # 
PRJNA680391).

16S rRNA data processing and analysis. The quality of the raw reads was determined using the 
FASTQC software (https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). Raw sequences were trimmed 
of adapters and low-quality reads and cleaned using the BBDuk program as part of the BBTools software suite 
(BBMap—Bushnell B.—sourceforge.net/projects/bbmap/), using the following parameters: with parameters 
ktrim=r k=23 mink=11 hdist=1 tpe tbo qtrim=rl trimq=10. BBMerge (part of the BBTools suite) was used to 
determine if sequences in the pair-end library merged using the default settings. An optimization table was cre-
ated for paired-end and single-end reads for each primer set to determine the best parameters of non-chimeric 
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data. Based on the optimization table, only single-end (forward) sequences were imported into Quantitative 
Insight Into Microbial Ecology (QIIME) software package 2 (version 2018.12.0, http:// qiime2. org)24 to perform 
quality control and analysis of the sequence reads. Demultiplexed, single-end sequence data were denoised with 
DADA2. Naïve Bayesian classifier was used for taxonomic classification against the Greengenes database v13_8 
(http:// green genes. secon genome. com). A sampling depth of 12,480 was used for alpha and beta diversity analy-
sis. QIIME data were transformed using R package  Compositions72 followed by Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States (PICRUSt)273 was used to predict metagenome path-
ways for each primer set using the Kyoto Encyclopedia of Genes and Genomes (KEGG)74. Statistical Analysis 
of Metagenomic Profiles (STAMP)75 and Calypso  software76 (cgenome.net, version 8.84) was used to create a 
visualization of metabolic pathway comparison.

Statistical analyses. Microbiome composition data were obtained by normalization to the total number 
of reads in each sample (relative abundance) and were analyzed using two-way (time and primer set) ANOVA 
using GLM (SAS, ver. 9.4). Significance was set at P < 0.05. Differences between alpha diversity indices were 
tested using the Kruskal–Wallis test (QIIME2). The difference in community structure due to main effects (time 
and primer set) and their interaction were statistically tested by non-parametric multivariate ANOVA (PER-
MANOVA) with 999 permutations using QIIME 2 software package. Within STAMP analysis, ANOVA followed 
by post-hoc Turkey-Kramer  test77, corrected for False Discovery Rate (FDR, Benjamini–Hochberg  analysis78) 
was used for multiple group comparison while two group comparison was performed using Welsh t-test77 with 
Benjamini-Hochber FDR  analysis78.

Data availability
The 16S rRNA gene sequences determined in this study were deposited in the NCBI Sequence Read Archive 
(SRA) database (SRA accession #PRJNA680391).
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