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Accurate long‑range forecasting 
of COVID‑19 mortality in the USA
Pouria Ramazi1*, Arezoo Haratian2, Maryam Meghdadi2, Arash Mari Oriyad2, 
Mark A. Lewis3,4, Zeinab Maleki2, Roberto Vega5,6, Hao Wang3, David S. Wishart4,5 & 
Russell Greiner5,6

The need for improved models that can accurately predict COVID-19 dynamics is vital to managing the 
pandemic and its consequences. We use machine learning techniques to design an adaptive learner 
that, based on epidemiological data available at any given time, produces a model that accurately 
forecasts the number of reported COVID-19 deaths and cases in the United States, up to 10 weeks 
into the future with a mean absolute percentage error of 9%. In addition to being the most accurate 
long-range COVID predictor so far developed, it captures the observed periodicity in daily reported 
numbers. Its effectiveness is based on three design features: (1) producing different model parameters 
to predict the number of COVID deaths (and cases) from each time and for a given number of weeks 
into the future, (2) systematically searching over the available covariates and their historical values 
to find an effective combination, and (3) training the model using “last-fold partitioning”, where each 
proposed model is validated on only the last instance of the training dataset, rather than being cross-
validated. Assessments against many other published COVID predictors show that this predictor is 
19–48% more accurate.

Coronavirus disease (COVID-19) was declared a public health emergency of international concern in January 
2020 by the World Health Organization1. Since then, more than 76 million confirmed cases and almost 1.7 mil-
lion deaths due to COVID-19 have been reported worldwide2. Some of these cases and deaths might have been 
prevented if more aggressive public policies, such as travel restrictions and lockdowns, had been implemented 
sooner. However, lockdowns have the downside of causing severe economic disruptions. For example, the num-
ber of global job losses has been ten times greater than those arising during the first months of the 2008 global 
financial crisis. It is unlikely that employment in many developed countries will return to pre-pandemic levels 
before 20223. Throughout the pandemic, governments have been forced to find a balance between public safety 
and public good, constantly adjusting preventive policies to mitigate the disease spread, while trying to preserve 
the economy. Robust policy development and planning requires pandemic models that can accurately predict 
the number of COVID-19 cases and deaths far into the future, as such models would allow governmental policy 
makers to examine the effect of different preventive policies4.

While many epidemic models have successfully explained the dynamics of disease outbreaks after the fact, 
their success in forecasting has, at best, been mixed4,5. Indeed, there have been many failures in forecasting for 
COVID-19. Early mis-predictions of 100,000,000 USA COVID cases within 4 weeks of the beginning of the 
pandemic, suggesting sizable impacts on hospital and ICU requirements, greatly misinformed policy makers1. 
The Center for Disease Control (CDC) now maintains a national forecasting site, where 60 modeling groups 
continually update their forecasts for new COVID-19 cases, hospitalization, and deaths in the USA6,7. While 
these forecasts are better than earlier attempts8,9, there is still much room for further improvement, especially 
for the long-range (5+ weeks) forecasts. These longer range forecasts are important, as they provide guidance 
and reasonable preparation time for preventive policy makers and health managers.

This paper describes a novel approach that improves long-range forecasting substantially over existing 
COVID-19 prediction models—predicting new COVID-19 cases and deaths in the US over different time peri-
ods, more accurately than existing models from the CDC site10. Our forecaster also predicts the weekly perio-
dicity reported in the daily reported number of deaths, and it predicts COVID-19 surges up to 2 months ahead. 
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We believe that similarly accurate COVID-19 prediction models could be developed for other countries if the 
appropriate input data is available.

Instead of designing a single model with fixed parameters to forecast cases and deaths for the whole pandemic 
duration, we instead created a general learner, called LaFoPaFo (short for LAst FOld PArtitioning FOrecaster), 
that uses “last-fold partitioning” to find the best model parameters, the best combination of these features, and 
the best history-length to produce the forecasting model. Given the target cases or deaths, and forecast hori-
zon ranging from 5 to 10 weeks, LaFoPaFo produces a model (involving a learned subset of existing available 
epidemiological data) that is designed to forecast this target, at this forecast interval in the future. LaFoPaFo 
considers 11 different features, including the current number of COVID-19 tests, cases, and deaths, social activity 
measures, and weather-related covariates specific to the USA. It also includes their historical values at the earlier 
weeks, back to the start of the pandemic in the US. Here, we compare the forecasting results of our LaFoPaFo 
with those available at CDC10 during the 7 weeks starting from September 27 to November 14, 2020. We also 
assess the design features of our learning approach. The SI provides the performance data of our model for an 
extended range (Supplementary Figures 1–6).

Results
We first consider forecasting the weekly, averaged number of COVID-19 deaths. Figure 1 shows that our 
LaFoPaFo outperforms all CDC models for essentially every forecast horizon from five to 10 weeks. The only 
exception is the USACE-ERDC_SEIR model11, which outperforms LaFoPaFo for future 7 and 8 weeks. In particu-
lar, for predictions extending to 10 weeks, LaFoPaFo’s mean absolute percentage error (MAPE) is 9%, while the 
best second model has an error of 28%. Very few research groups provided their forecasting results for more than 
8 weeks ahead; those that did, report an accuracy that decreased dramatically as the forecasting length increased.

Figure 2 shows a similar trend for predicting the number of reported cases, where LaFoPaFo is in the top 
three at all times, and the best, often by a large margin, starting with a 7-week forecast. The CDC models that 
were best at forecasting the number of deaths were often less accurate at forecasting the number of confirmed 
cases. This was also true for LaFoPaFo, but not as significantly. The MAPE of the USC-SI_kJalpha, which was the 

Figure 1.   Forecast accuracy of the projected weekly number of reported COVID-19 deaths in the US. The 
accuracies of the 17 predictive models submitted to the CDC, as well as LaFoPaFo, on forecasting the weekly 
average (non-cumulative) number of deaths in the US for each of the 7 weeks starting from September 27 to 
November 14, 2020. We could only consider six test weeks for the future 10-weeks predictions as insufficient 
training instances were available before the week September 21–27. For each of these 7 weeks, we recorded the 
forecasts made by each model, for 5 to 10 weeks ahead, and compared each forecast to the true value. We then 
computed the MAPE for each model and time-horizon as the average over the 7 weeks, depicted with a single 
point in the graph. The vertical purple lines are the error bars of LaFoPaFo and are computed as the standard 
deviation over the seven MAPEs. Note the forecasting results for the CDC models were taken from the tables at 
the forecast hub website. Most CDC models did not submit forecasts for long-range horizons; only five models 
submitted the forecast results for the future 10 weeks. We see that LaFoPaFo is the most accurate forecaster over 
the 5, 6, 9 and 10 week forecast horizons, with a significant difference for 9 and 10 weeks.
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second-best predictor for 5-week reported cases, increased from 17% (deaths) to 63% (cases); LaFoPaFo, on the 
other hand, increased from 14% to just 27%. Although seemingly large, the error bars are based on only seven 
values. Moreover, the error bars of LaFoPaFo are in the same range of values as most other CDC forecasters.

As a more in-depth comparison, Table 1 presents the “p < 0.05 2-sided t-test” results with the null hypothesis 
that the MAPEs of LaFoPaFo and each CDC model were drawn from the same distribution. For predicting the 
number of deaths, LaFoPaFo won 22 times (rejected the null hypothesis), lost 0 times, and was tied with the 
CDC models 26 times (i.e., failed to reject the null hypothesis). For predicting the number of cases, LaFoPaFo 
won 30 times, lost 0 times, and was tied with the CDC models 25 times.

Figure 3 presents the future 5- to 10-week forecasted number of COVID-19 deaths, when LaFoPaFo uses data 
up to the week of July 26–August 1, 2020. As seen here, LaFoPaFo was able to forecast the almost-exact values of 
the number of COVID weekly deaths, over the next 6, 9 and 10 weeks. Also, as seen in Supplementary Figure 1, 
on June 21–27, when the first COVID death wave was damping, LaFoPaFo almost exactly forecasted the peak 

Figure 2.   Forecast accuracy of the projected weekly number of reported COVID-19 cases in the US. The 
settings are the same as Fig. 1, but here the models are evaluated on forecasting the future number of reported 
COVID-19 cases. LaFoPaFo outperforms other models over almost every forecasting horizon. None of the CDC 
models provided forecasting results for future 9 and 10 week horizons.

Table 1.   T-test results. The null hypothesis was that the MAPEs of LaFoPaFo and the CDC models follow the 
same distribution. The test was performed for each of the future 5, 6, …, 10 future weeks forecasts, comparing 
LaFoPaFo to each of the CDC models. “Win” means that the average MAPE of LaFoPaFo is lower than the 
CDC model and that the difference is statistically significant. “Tie” means that the difference in MAPE is not 
statistically significant. “Lose” means that the MAPE of the CDC model is lower and that the difference is 
statistically significant. LaFoPaFo never lost against any of the CDC models.

#deaths #cases

Win Tie Lose Win Tie Lose

5 weeks 8 9 0 10 8 0

6 weeks 8 5 0 4 10 0

7 weeks 6 4 0 5 4 0

8 weeks 3 4 0 3 4 0

9 weeks 2 2 0 – – –

10 weeks 3 1 0 – – –

Total 30 25 0 22 26 0
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of the second COVID wave that happened 5 weeks later on July 26–August 1. Moreover, on July 26–August 1, it 
forecasted that the total number of deaths will decrease by 3000 individuals 10 weeks later (Fig. 4).

Figure 5 presents the future 14-day forecasting results for the daily number of deaths over the 21 days of 
October 23 to November 14, 2020. This illustrates how LaFoPaFo correctly forecasts the periodicity in the daily 
data, 2 weeks ahead.

To better understand why LaFoPaFo worked so well, we performed a simple ablation study, where we modi-
fied each of its design features, one-by-one (Fig. 6). We found that LaFoPaFo’s performance decreased at almost 
every forecast horizon if any of its design features were altered. Among the alternate models we studied, (1) 
LaFoPaFo-SingleModel that had to produce a single nearest neighbor to forecast all seven test weeks; this version 
had 23% MAPE for future 5-week forecast rather than the original 15% MAPE. (2) LaFoPaFo-Cover that only 
used the previous number of deaths but no other covariates; its performance would degrade from 17 to 21% 
MAPE for future 9-week predictions. (3) LaFoPaFo-30 that used a single 30% validation fold, rather than the 
one point; this version had 23% MAPE rather than 15% for the future 5-week predictions. (4) LaFoPaFo-Indirect 
that forecasted week one, based on which it forecasts week two, and so on until it forecasts the week of interest 
based on its own forecast of the previous week; its performance was worse than LaFoPaFo’s by at least 10.5% 
MAPE over the 6 multi-week predictions.

Figure 3.   LaFoPaFo’s projected number of deaths from 5 to 10 weeks in the future. The forecasts are made 
based on data accumulated to the week of August 1, 2020.

Figure 4.   LaFoPaFo’s weekly forecasting results for the number of deaths, ten weeks later, in the US. Note the 
figure shows only two of the six “10 weeks” lines.
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Discussion
The COVID-19 pandemic has caused dramatic increases in deaths, dire economic fallout and enormous social 
problems. Many of these consequences were not predicted, but many could have been mitigated if the number 
of future COVID-19 cases and deaths could have been forecasted accurately. Long-term (2–3 months) pandemic 
and epidemic forecasts are more challenging than short-term (1–2 weeks) ones, but they are also more essential, 
as such long-term forecasts are key to effectively planning, developing, implementing and assessing pandemic 

Figure 5.   LaFoPaFo’s daily forecasting results for the future 14-day number of deaths in the USA. LaFoPaFo 
forecasted each day from September 20 to October 10, 2020, 2 weeks ahead. LaFoPaFo forecasts the periodicity 
in the daily data as well as the peak values with at most one day delay.

Figure 6.   Ablation system, showing the LaFoPaFo’s Forecast Accuracy without various design factors. 
Evaluating the performance on forecasting the future number of COVID-19 deaths from 5 to 10 weeks in the 
future for LaFoPaFo and its modified versions (that each modify one of its design features), using the same 
setup as in Fig. 1. The red graph (LaPoFaPo-SingleModel) corresponds to the case where, instead of producing 
seven forecasting models for the seven test weeks, a single model was produced to forecast all of the 7 weeks. A 
validation dataset of seven instances (weeks) was used, which limited the forecast horizon to 6 weeks due to the 
limited training data. The cyan graph (LaPoFaPo-Cover) corresponds to the model where instead of using 11 
features, only the previous number of deaths is used. The orange graph (LaPoFaPo-30) corresponds to the model 
where rather than the last instance, 30% of the training dataset was used as the validation set to choose the final 
model. The black graph (LaPoFaPo-Indirect) corresponds to the system that forecasts each week in the future 
based on the intermediate week forecasts, rather than being directly forecasted.
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response policies by governments and public health agencies. However, while many existing COVID-19 predic-
tion models can make 1- or 2-week forecasts reasonably well, most fail at longer forecast horizons. Our machine 
learning approach can provide long-range forecasts of COVID-19 cases and deaths, up to 10 weeks in the future.

Most mechanistic models, such as the SEIR (susceptible, exposed, infectious, removed) model, use fixed 
parameters to implicitly model the effect of stochastic, yet influential variables. For example, few models include 
weather or average number of encounters as stand-alone variables, but many can incorporate them into the infec-
tion ratio parameter. Under the assumption that those variables remain constant over time, modelers can project 
the future number of COVID deaths and cases. This assumption appears approximately valid for the near future, 
say 1 week, but not for 4 weeks or more. This may explain why some of the submitted CDC models that accu-
rately forecast short-range mortalities, did not submit forecast results for 5-week and longer forecast horizons.

LaFoPaFo’s strong forecasting power allows it to effectively predict future COVID-19 surges many weeks 
ahead. For example, on the week June 21–27, when the first US COVID surge was damping and still had one 
more week to reach its minimum, LaFoPaFo still predicted that 5 weeks into the future, there would be a second 
wave. Our model could also forecasted from August 1, when the number of COVID deaths in the US had peaked, 
that 10 weeks later the number of deaths will decrease by about 3000 individuals over the week. Such long-range 
predictions can greatly inform public health management.

The fact that LaFoPaFo’s base learner uses one of the simplest possible models, namely “k nearest neighbor”, 
emphasizes the strengths of its design features. To forecast the number of cases in the future, a k nearest neighbor 
simply finds the k instances in the training dataset that have the most similar covariates, and then returns, as its 
forecast, the average of their number of cases. This k nearest neighbor model is clearly much simpler than those 
SEIR models with their complicated coupled differential equations that attempt to capture the spread dynamics 
in the near future, However, LaFoPaFo’s approach still enables it to outperform SEIR models in the long-range 
predictions.

The key to LaFoPaFo’s success is its internal training process, which makes critical decisions about the model 
based on the situation to which that model will be applied, when it is making its forecasts. Here we summarize 
the five most novel and important aspects of LaFoPaFo.

First, unlike the common approach of producing a single model with fixed parameters to forecast the entire 
pandemic, the LaFoPaFo has the option of producing different models for forecasting each time interval during 
the pandemic—that is, “5-week case forecaster” for May 1 may be different from the “5-week case forecaster” for 
September 20. This makes particular sense for machine-learning approaches where the pandemic dynamics can 
vary significantly over time—which is true for this COVID-19 pandemic. Our empirical study confirmed that 
the accuracy of our COVID-19 predictions drops considerably if we require that LaFoPaFo uses only a single 
model over all times.

Second, like most machine learning tools, LaFoPaFo produces a model that can use many covariates to pro-
duce its forecast. LaFoPaFo actually considers eleven different covariates, at multiple time points. If the historical 
data has five time points, there are fifty-five variables to consider. Then, a feature selection algorithm would have 
to implicitly consider all 255 combinations. To reduce the chance of overfitting and to save computational time, 
LaFoPaFo instead considers a systematically-constructed fixed subset of covariates, where all of the historical 
values of the selected covariates are included, counting from the current times12.

Third, to decide on the appropriate hyper-parameters, such as the ‘k’ for k-nearest-neighbors and the set 
of features to include, machine learning algorithms often partition the training dataset into sub-training and 
validation subsets. They then train various models (each with some setting of those hyperparameters) on the 
sub-training subset, and evaluate the quality of this setting on the validation subsets13. This partitioning is typi-
cally done randomly, which here means the validation subset will be randomly selected from the weeks within 
the training subset. The validation subset might, hence, include data that occurs before some data in the sub-
training set. This approach is implicitly based on the assumption that the data is iid (independent and identically 
distributed), implying the distribution of features and outcomes is the same for June 10 as it is for September 30. 
However, we know that this is not the case, due to differences in policies, “Covid fatigue” and other time-varying 
unknown influential factors. This is why LaPoFaPo instead uses “last-fold partitioning”, where only the last week 
of the dataset is taken as the validation and the rest serves as the training dataset. This is also why LaFoPaFo does 
not use internal cross validation. The idea behind this is to mimic the situation that the learned forecasting model 
will face in making real predictions, as that model needs to make its predictions based only on data available at 
that time, and cannot base its model on future data, which is unavailable.

Fourth, for the same reason as described above, we set the size of the validation dataset to be a single week, as 
the learned system will be asked to focus only on a single value. Increasing the size of the validation means the 
learned model will prefer hyper-parameters that fit some of the former weeks as well as the “final” week. Given 
how quickly this pandemic changes, as we only care about the latest date, the validation subset should only be 
the single “closest” date.

Fifth, we did not follow the common approach of predicting a point in the future by first predicting the inter-
mediate points one by one and using the prediction results of the previous point in predicting the next point. For 
example, in order to forecast week t + 10, that approach would first use previous data (pre-week t) to forecast week 
t + 1, then use that prediction result at week t + 1 (as well as pre-week t) to predict week t + 2, and so on. Given 
that our prediction for week t + 1 is just our prediction (and not true information), this can easily accumulate the 
error. Instead, we trained the “r-week horizon” LaFoPaFo with the dataset consisting of the covariates at time t 
but set the target variable to be the quantity at time t + r. The better performance of this direct approach is partly 
explained by comparing the joint probability distribution of the mortality count at two consecutive weeks and 
the probability distributions of each of the 2 weeks. The maximum of the joint probability does not necessarily 
equal the joint maximums of each of the probability distributions. Therefore, if the goal is the maximum of the 
probability distribution of the second week (r = 2), that of the first week (r = 1) should not be considered.
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We close this section with three comments. First, there is no “leakage” from test data to training data. That is, 
even though LaFoPaFo (for each of the cases, and deaths) is learning a different model for each time and for each 
forecast time horizon, the learning process uses ONLY the data available at the forecasting start date. Although 
seemingly trivial, a huge body of literature ignores this when presenting or assessing their results.

Second, while this paper discusses only the task of forecasting weekly COVID-19 cases and deaths for the 
USA, LaFoPaFo should be applicable to making daily COVID-19 forecasts for other countries, as well as for 
smaller sub-regions such as counties and states. To facilitate this, we have made the code for the LaFoPaFo 
approach publicly available.

Third, in addition to allowing health managers and policy makers to plan COVID-19 mitigation, the approach 
used in this paper opens the door to future research on examining the long-range effects of different preventive 
policies, allowing policy makers to experiment and plan COVID-19 mitigation decisions.

Methods
Our goal is to accurately forecast the weekly number of reported COVID-19 cases and deaths over a range of 
time horizons, varying from 5 to 10 weeks. Our focus is on the United States. Given each specific forecast time 
interval, we want a model that can use the existing covariates, measured up to the “current” time, to forecast the 
weekly number of reported COVID-19 deaths or cases at a specific number of weeks in the future. Rather than 
producing a single predictive model for the entire pandemic duration, we have designed a learner, LaFoPaFo, that 
learns from data and produces a nearest neighbor model suited to the time period of interest; it then uses that 
time-duration-target model for this single prediction. For example, the model for “forecasting COVID-19 cases 
6-weeks out, from Apr. 1” is different from the model for “forecasting COVID-19 cases 6-weeks out, from Sept. 1”.

Data.  We use a dataset containing 11 features: (1) the number of reported COVID-19 cases and (2) deaths 
in the US for each day, from the beginning of the disease outbreak in the US (January 22, 2020) until November 
14, 2020. This dataset also includes the following covariates: (3) country average number of daily COVID-19 
tests, calculated as the number of daily performed tests, averaged over all US states, (4) country average daily 
temperature and (5) daily precipitation, calculated by averaging daily temperature and daily precipitation over 
all US counties, as well as several social distancing related covariates. To estimate the relevant social distancing 
covariates, we used Google mobility data, which contains cell-phone-derived information on the mobility trends 
of individuals visiting different places including (6) parks, (7) transit stations, (8) residences, (9) workplaces, (10) 
grocery stores and pharmacies, (11) retail shops and recreation centers. This data is provided from March 1 to 
November 17. Each of these features shows a change in the number of daily visitors to these places compared to 
the baseline, where the baseline value for each date was determined based on the day of the week and is equal 
to the median number of visitors on that day of the week in the 5-week period from January 3 to February 6, 
2020. Since the start date of Google Mobility data is from March 1, we only include the dates from March 1 to 
November 17.

The learner.  In order to forecast the number of reported COVID-19 deaths and cases, LaFoPaFo uses the 
eleven available covariates in the above dataset and explores their historical values to produce a predictive model. 
In particular, we focus on forecasting the 7 weeks starting from the week September 27–October 3 to the week 
November 8–14, which we call our testing dataset. Note this contains seven points. For each of these target times, 
for each forecast horizon (of r weeks, for r ∈ {5,6,7,8,9,10}), and each target variable (case or deaths), LaFoPaFo 
learns a k-nearest neighbor (KNN) model that is trained on the data corresponding to the previous weeks up 
until r weeks earlier, and sets its last week as the validation dataset and the remaining former weeks as the train-
ing dataset. For example, to produce the 6-week COVID-19 death forecaster for October 18–24, LaPoFaPo 
would have access to the data before September 12. Specifically it would use September 6–12 as the validation 
set, and train on data before September 5.

LaFoPaFo trains the KNN on the “sub-training data”, with a subset of the covariates, and their historical val-
ues, as well as different “k” (number of neighbors), resulting in a number of different models. The performance 
of the models are then evaluated on the single validation point, and LaPoFaPo selects the model that has the 
best MAPE here. Then that single winning model with the selected parameters is trained on the whole training 
set (both the sub-training and validation datasets) to produce a final model, which is then used to forecast the 
single point in the testing dataset.

More specifically, for week t, let Y(t) be the target variable, which is either the number of reported COVID-19 
deaths or cases and X(t) = {x1(t), …, xC(t)} be the set of available covariates for time t (here C = 11; see the Data 
section above). Each forecast instance involves forecasting, from time t, the target variable at a time r weeks in 
the future Y(t + r), where r ∈ {5,6,…,10}, from the dataset containing the target variable and available covariates 
from the beginning week in our dataset to week t, D(t) = {Y(tʹ + r), X(tʹ)}t-r

tʹ=1. We refer to each historical value 
of a covariate as a feature. So a covariate is some xi(t) but a feature can be xi(t-h + 1) for any history h = 1,2,…. 
The learner executes the following steps for each week T of the testing dataset, to be forecasted r weeks ahead.

Step 1:	� Construct the “raw” test instance, consisting of the target variable at the test week T and the covariates 
r weeks earlier; that is {Y(T), X(T-r)}. We call this instance “raw” as it does not include historical values 
of the covariates. Out of the remaining earlier instances, eliminate the most recent r-1 to obtain the 
raw training dataset; that is D(T-r). Take the last instance of the training dataset, i.e., last-fold partition, 
as the raw validation set, and the remaining as the raw sub-training. So the raw validation will be the 
instance {Y(T-r), X(T-2r)} and the raw subtraining will be D(T-r-1). Namely, the data at week T-r will 
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be the raw validation and the data at weeks 1, …, T-r-2, T-r-1will be the raw training dataset. See Fig. 7 
for an example.

Step 2:	� Rank the covariates according to the minimum redundancy maximum relevance (mRMR) method, based 
on the value of the target variable and over the whole training plus validation data on the covariates. 
This results in some ordering x1(t) >  x2(t) > … > xC(t) of the covariates with respect to Y(t + r), renum-
bering as necessary, for t from 1 to T-r.

Step 3:	� Constructs the following covariate sets: Set#1 containing only the top ranked covariate; Set#2 contain-
ing both the first and second top ranked covariates, and so on until the last set containing all of the 
covariates. This results in the covariate sets

	� LaFoPaFo considers just these C different possible covariate sets. Note, for example, the combination 
of the first and third covariates {x 1(t), x 3(t)} is not allowed (Supplementary Table 1).

{x1(t)}, {x1(t), x2(t)}, . . . , {x1(t), x2(t), . . . , xC(t)}.
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Figure 7.   Partitioning the dataset into train, validation and test sets. The forecasting task is to use the covariates 
at weeks t, t-1, t-2 to forecast the target variable at week t + 9. So the forecast horizon is nine (r = 9) and the 
history length is three (h = 3). Each row in the graph corresponds to an instance. The length of the dashed arrows 
are the forecast horizon and the length of the rectangles are the history length. The last instance is taken as the 
test dataset; that is, to forecast week October 3–10 using the covariates on weeks July 25 to August 8. The earlier 
eight red instances are not used and the yellow one before is used as the validation data instance. The green 
instances form the training dataset.
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Step 4:	� Extend each of the above covariate sets by including their values at one, two, … up to five, former weeks. 
We call each of the resulting sets, a feature set. That is, LaFoPaFo considers the following 5×C feature 
sets:

	� The input of the final learned model will be the variables of one of these feature sets. Hence, LaFoPaFo 
is seeking the optimal number of covariates and history-length. (Supplementary Table 1 shows 
LaFoPaFo used h* = 3 and c* = 7).

Step 5:	� Construct the sub-training, validation, and test datasets corresponding to each feature set. Each of these 
datasets consist of one column for the target variable and ch other columns for the features, where c is 
the number of covariates selected, and h is the history-length used in that feature set. The rows of each 
of these datasets correspond to the same rows as in the raw datasets.

Step 6:	� For each number of covariates c and history-length h, train a k nearest neighbor on the sub-training 
dataset. Using the scikit-learn package, the value of k is chosen from the range of 10 to 200 by applying 
a five-fold cross-validation on the sub-training dataset. Note that the cross-validation is only on the 
sub-training, not the validation, nor the testing datasets.

Step 7:	� Evaluate each of the trained models on the validation dataset to find the best-at-validation model—ie, 
the parameters k, c, h that had the lowest absolute error.

Step 8:	� Re-train the best-at-validation model on the whole sub-training and validation dataset with the same 
optimal, k-value, number of covariates and history length that were chosen in Step 7. This is the final 
model that the learner produces to forecast the target variable Y(T + r) at the single instance of the 
testing dataset, with the given forecast interval r.

We repeat this procedure on each of the seven points in the testing dataset and take the mean to obtain the 
mean absolute percentage error (MAPE) on the testing dataset. In line with other performance measures14, for 
each forecast horizon, we calculated the standard deviation of the MAPE of the 7 predictions. This resulted in 
the error bars in Figs. 1 and 2.

Comparison to existing models.  The Center for Disease Control and Prevention (CDC) has provided 
a platform that allows various research teams to submit their forecasts of the weekly number of COVID-19 
deaths and confirmed COVID-19 cases in the US. We compared our final model with those COVID-19 predic-
tion models provided at the CDC website, for each target (cases or deaths), and for each forecast horizon (5 to 
10 weeks). For each range r and target, we included only those CDC models that have provided forecasts at least 
six out of the seven testing instances. Note that some models only predicted for a subset of the r values. For those 
with forecasts for just 6 weeks, we calculated the MAPE over the provided 6 weeks. The forecasting performance 
statistics, including the start and end dates, and definition of the epidemiological week, was consistent with our 
setup for LaFoPaFo.

To make a more in-depth comparison, we conducted the following set of 2-sided t-tests. For each outcome 
(cases, and deaths), each CDC model, and each forecast horizon r, we took two samples: (1) a vector of size 
seven, consisting of the MAPE values of LaFoPaFo over each of the seven test weeks, and (2) a vector of size 
seven, consisting of the MAPE values of that specific CDC model over each of the seven test weeks. We then ran 
the t-test with the null hypothesis that both samples arise from the same distribution.

Assessing the design of the learner.  To assess the different design features of LaFoPaFo, we conducted 
a simple ablation test, where we modified each design feature at a time. To assess whether a feature produces 
a possibly different model for each of the seven test points, we compared the performance to when the learner 
produced only a single model, that it applied to all seven test points. To follow the last-fold partitioning, we 
increased the “validation fold” to 7 weeks so that it equals the size of the “testing fold”. To assess the effect of 
having a single fold as the validation, we re-ran LaFoPaFo when the validation size was increased to 30% of the 
dataset after removing the 7 weeks corresponding to the held-out test set. To assess the effect of forecasting the 
week of interest directly, we compared the results to when it predicted step by step, where it first predicts week 
one, and then uses the resulting prediction to predict week 2, and so on. Finally, to assess the contribution of the 
covariates to the prediction of our final model, we applied our learner to the reduced dataset consisting of only 
the death covariates and called the resulting model, the one-feature model.

Daily forecasting.  Above, we asked LaFoPaFo to forecast the weekly average number of cases. We also 
assessed the performance of LaFoPaFo at making daily COVID-19 case and death predictions. We followed the 
same setup used for the weekly predictions, but instead used daily data. We used the 21 days from September 
20 to October 10, 2020 as the test points, with a maximum history length of 10 days and a forecast horizon of 
14 days.

history-length = 1 : {x1(t)}, {x1(t), x2(t)}, . . . , {x1(t), x2(t) . . . , xC(t)},

history-length = 2 : {x1(t), x1(t − 1)}, {x1(t), x1(t − 1), x2(t), x2(t − 1)}, . . . , {x1(t), x1(t − 1), . . . , xC(t), xC(t − 1)}, . . .

history-length = 5 : {x1(t), . . . , x1(t − 4)}, {x1(t), . . . , x1(t − 4), x2(t), . . . , x2(t − 4)}, . . . , {x1(t), . . . , x1(t − 4), . . . , xC (t), . . . , xC (t − 4)}
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Use of experimental animals, and human participants.  The data used in this study is collected from 
publicly available resources, and the authors did not perform any human or animal experiments.

Data availability
The number of deaths and confirmed cases are taken from Johns Hopkins University COVID-19 data repository15. 
The google mobility data is taken from google reports of community mobility16. The temperature and precipita-
tion is taken from Daily Summaries dataset17. A more detailed version of the dataset is under review18 and is 
available online19.

Code availability
The codes are available at our Git repository https://​github.​com/​netwo​rk-​and-​Data-​Scien​ce-​IUT/​covid-​1920.
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