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Interrelationship between daily 
COVID‑19 cases and average 
temperature as well as relative 
humidity in Germany
Naleen Chaminda Ganegoda1, Karunia Putra Wijaya2, Miracle Amadi3, 
K. K. W. Hasitha Erandi4 & Dipo Aldila5*

COVID-19 pandemic continues to obstruct social lives and the world economy other than questioning 
the healthcare capacity of many countries. Weather components recently came to notice as the 
northern hemisphere was hit by escalated incidence in winter. This study investigated the association 
between COVID-19 cases and two components, average temperature and relative humidity, in 
the 16 states of Germany. Three main approaches were carried out in this study, namely temporal 
correlation, spatial auto-correlation, and clustering-integrated panel regression. It is claimed that 
the daily COVID-19 cases correlate negatively with the average temperature and positively with the 
average relative humidity. To extract the spatial auto-correlation, both global Moran’s I and global 
Geary’s C were used whereby no significant difference in the results was observed. It is evident that 
randomness overwhelms the spatial pattern in all the states for most of the observations, except in 
recent observations where either local clusters or dispersion occurred. This is further supported by 
Moran’s scatter plot, where states’ dynamics to and fro cold and hot spots are identified, rendering 
a traveling-related early warning system. A random-effects model was used in the sense of case-
weather regression including incidence clustering. Our task is to perceive which ranges of the 
incidence that are well predicted by the existing weather components rather than seeing which ranges 
of the weather components predicting the incidence. The proposed clustering-integrated model 
associated with optimal barriers articulates the data well whereby weather components outperform 
lag incidence cases in the prediction. Practical implications based on marginal effects follow posterior 
to model diagnostics.

Viral diseases emerge with complex transmission dynamics, and they are hard to eradicate challenging capacity 
of testing, diagnosis, and cure1,2. Such complexity is generated by various factors such as genetic changes of the 
virus, environmental influences, and host behavior3,4. COVID-19 caused by the coronavirus SARS-CoV-2 has 
also shown its revolutionary dynamics via all those routes, leaving the world at a standstill in many aspects. The 
transmission of coronavirus occurs and escalates in diverse means. Most notable drivers include direct contact 
with infectious individuals5, fomite transmission via contaminated surfaces6,7, transmission via virus-carrying 
aerosols8,9, congested living and mobility leading to superspreading events10–13, and lack of compliance to health 
guidelines14–17. Though both direct and indirect transmission are recognized, the influence of outdoor aerosol 
transmission is not properly understood18,19. Meanwhile, within-household is much higher compared to cross-
household transmission leaving home quarantine also at risk20. Thus, planning healthcare and interventions has 
also become challenging. It is further problematic due to the presence of asymptomatic cases21.

Transmission and morbidity of COVID-19 can be worsened when co-infections with other respiratory viruses 
are present. Several clinical studies from different countries have observed the co-infection of COVID-19 with 
other viral infections22–24. The most common respiratory viruses are influenza virus, respiratory syncytial virus, 
parainfluenza viruses, metapneumovirus, rhinovirus, adenoviruses, bocaviruses, and coronaviruses25. These 
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viral infections share common symptoms such as sneezing, cough, sore throats, and fever while following simi-
lar ways of transmission26,27. Influenza viruses that cause seasonal flu would easily co-exist with COVID-19 in 
the winter season28. This is motivated by the fact that most respiratory pathogens are seasonal29,30. Thus, given 
that many COVID-19 infected cases are undetected31, sneezing and cough due to another infection may allow 
passing respiratory droplets carrying SARS-CoV-2 too. Although the information is still limited, one cannot set 
aside the possible risk of excessive COVID-19 spread due to co-infection32,33. In this regard, timely detection is 
important to curtail issues of missed diagnoses34.

The influence of weather components such as temperature and relative humidity on the transmission of SARS-
CoV-2 is investigated recently. Related studies have been motivated by the fact that temperature and relative 
humidity also regulated the survival of coronaviruses of SARS35–38 and MERS39,40. Respiratory droplets play a 
key role in transmission, subsequently more structured with aerosols and fomites41,42. Due to other confounding 
factors related to specific geographical areas, mixed findings can be expected with different levels of temperature 
and relative humidity43–46. Using panel regressions, a study of 20 countries having the most number of confirmed 
cases47 suggested that high temperature and relative humidity reduce transmission, while low temperatures are 
contributory for activation and infectivity of the virus. A low temperature range (− 6.28 ◦ C to + 14.51 ◦ C) has 
been identified as favorable to COVID-19 growth in48 via a statistical estimation. This study also found that a 1 
◦ C rise in temperature can reduce the number of cases by 13–17 per day. On the contrary, a study covering many 
cities in China49 using a generalized additive model found no evidence supporting the decrease in the number 
of cases in warmer weather. Moreover, an SEIR model calibrated for 202 locations in 8 countries50 showed no 
significant changes in the number of COVID-19 confirmed cases with a broad range of meteorological condi-
tions. Another study in New South Wales, Australia51, revealed a weak correlation between COVID-19 cases 
and temperature, but a negative correlation between cases and relative humidity. Studies using data for the 
earlier infections in Jakarta with average temperature (26.1–28.6 ◦C)52 and Bangladesh with average tempera-
ture (23.6–31.1 ◦ C) and minimum temperature (17.3–29.3 ◦C)45 indicated significantly positive correlation. In 
addition, COVID-19 cases in China showed negative correlations with both temperature and relative humidity 
as investigated in53 while those in 190 countries revealed non-linear correlations with both daily temperature 
and relative humidity as in54. In Iran, also according to55, there was no clear evidence to relate the number of 
confirmed cases with warm or cold weather in different provinces, leaving population size to be a determinant 
factor. A related study for India was carried out using minimum temperature, maximum temperature, average 
temperature, and specific humidity (ratio of the mass of water vapor to the total mass of the air parcel) as the 
weather components56. The results showed a high positive correlation between COVID-19 cases and tempera-
ture measures and a low positive correlation between COVID-19 cases and specific humidity. In Germany, the 
confirmed cases hit 17 million by the first week of January 2021. The second wave escalation began in autumn 
and continued in winter. Daily cases exceed 20,000 in many days at the latter stage, where it was over 15,000 
for other days in the last two months of 2020. The long-standing plateau of total deaths has also altered since 
November to a sharp increase and reached 35,000 at the beginning of 2021.

Motivated by the increase of morbidity during autumn and winter, this study employed panel COVID-19 
incidence data from Germany and scrutinized their relationship with weather data. In some studies, weather 
components like temperature were collected in categories such as average, maximum, and minimum level52,56–58, 
while others used daily average extracted on a defined regular interval50,59. Furthermore, in some other studies, 
either absolute humidity59,60 or specific humidity56 was employed instead of relative humidity. Ours utilized the 
average of daily average temperature and relative humidity from January 31, 2020 to December 15, 2020, from 
three representative weather stations in Germany. Besides data availability and similarity with other studies61,62, 
the rationale behind the choice of the weather components lies in their readability throughout academia and the 
fact that no prior and posterior transformation are needed to obtain marginal effects. Extensive investigation 
on Moran’s I and Geary’s C statistics then followed so as to cover spatial auto-correlation and related practical 
implications. The difference with previous studies is that the temporal progression of the statistics is presented. 
Subsequently, this study brought forward a random-effects model with a clustering strategy. Our holistic idea 
lies in which ranges of the incidence are well predicted by the weather components. This is somewhat contrast-
ing to determining the ranges of the weather components that can predict the incidence. Our clustering is based 
on the method of stratifying incidence data into an arbitrary number of clusters, separated by barriers. The 
temperature and relative humidity data were also grouped corresponding to the clustered incidence data. This 
not only improves fitting by providing more explanatory variables but also screens incidence clusters where the 
weather components fail to predict. Relevant implications using marginal effects for sample cases then followed 
posterior to model diagnostics.

Data and methods
COVID‑19 and weather situation in Germany.  According to the official 2018 census, the German states 
considerably vary in population, with North Rhine-Westphalia and Bremen having the highest and lowest popu-
lation size of about 17,932,651 and 682,986, respectively, out of the total population size of 83,019,213. The states 
also have varied economic capacities in business, industries, tourism, and education, which affect their popula-
tion size. For instance, the largely populated states like Bavaria and Baden-Württemberg have booming economy 
and offer plenty of employment opportunities due to the situation of renowned business centers and industries, 
whereas low-populated states e.g. Bremen are laid behind (see64,65). Apparently, the number of cases and fatalities 
relatively depends on the population size. For instance, based on the report from Robert Koch Institute (RKI) on 
December 16, 2020, the largest populated state shared the highest 7-day incidence cases, and the smallest popu-
lated state shared the lowest. Given that the cases are population-driven, the dataset used for this study includes 
the daily confirmed COVID-19 cases for all the states from the official website of RKI66, which was later normal-
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ized per 100,000 inhabitants using the 2018 population census, see Fig. 1. This dataset spans the time window 
from March 01, 2020 to December 15, 2020. The normalization was intentional toward making the number of 
cases comparable across the states so as to allow for appropriate comparison with weather components that do 
not depend on the population (see similar treatments in59,67,68). Here, the daily cases were defined as the differ-
ence of the confirmed cases since the earliest time of the report. As for the accompanying weather components, 
temperature and relative humidity data were retrieved from climate environment open data69. Time series of 
average temperature and relative humidity were obtained using the records of three weather stations Berlin-
Marzahn (Berlin), München-Stadt (Bavaria) and Stuttgart-Schnarrenberg (Baden-Württemberg). This choice 
was motivated by data availability and the fact that the weather pattern throughout Germany is more or less the 
same, except in the alps where a negligible percentage of humans live. Average temperature ranges from − 0.766 
to 27.13, and average relative humidity ranges from 39.38 to 93.53%. It seems the two weather components have 
a negative correlation showing equivalence between low temperature and high relative humidity or vice versa. 
Moreover, looking at the plot of cases by month in Fig. 1 in comparison with the weather components in Fig. 2, 
it can be seen that cases are generally higher in colder season and considerably reduce during the hot season.

In addition to the reported incidence, the spatial movement of the largest outbreak over the 16 states is also 
worth investigating. As depicted in Fig. 3, several stages in the timeline can be identified according to the domi-
nance shown by different states. In the first three weeks in March, the largest incidence mainly altered between 
Hamburg and Baden-Württemberg. Bavaria and Saarland replaced them in the next three weeks. Bavaria hold 
a local election on March 15, and in the next day, a state of emergency was declared for 14 days with mobility 
restrictions70. Moreover, it is the first state to declare curfew that was imposed on March 2071. Saarland neigh-
boring with badly affected French region Grand Est also incurred the same situation at midnight on the same 
day72. Lack of protective clothing and closure of medical practices were also reported from Bavaria73. Thus, 
Bavaria owed the largest incidence from time to time, even after the first few weeks. Outbreaks in initial reception 
facilities also contributed to the increase of cases in Bavaria. The largest incidence in May and in the first two 
weeks of June was dominated by Bremen. It was followed by Berlin and North Rhine-Westphalia until the end 
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Mean 3.73 6.19 4.85 5.67 7.34 2.97 2.19 94.34
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Population 7,982,448 17,932,651 4,084,844 990,509 4,077,937 2,208,321 2,896,712 2,143,145

Figure 1.   Daily COVID-19 cases per 100,000 inhabitants from all 16 states in Germany from March 01 until 
December 15, 2020: B-W (Baden-Württemberg), Bav (Bavaria), Ber (Berlin), Bra (Brandenburg), Bre (Bremen), 
Ham (Hamburg), Hes (Hesse), M-V (Mecklenburg-Vorpommern), LS (Lower Saxony), NRW (North Rhine-
Westphalia), RLP (Rhineland-Palatinate), Saa (Saarland), Sax (Saxony), S-A (Saxony-Anhalt), S-H (Schleswig-
Holstein), Thu (Thuringia). Population data come from the 2018 census by the Federal Statistical Office of 
Germany63.
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of August. A sudden increase of cases was reported in North Rhine-Westphalia due to proactive case tracing, 
in particular at a meat factory in Coesfeld74. Later another cluster occurred on June 17 in a slaughterhouse in 
Gütersloh, North Rhine-Westphalia, leaving superspreading the main cause of spread75. Hamburg and Bremen 
also came to notice in September and October. The latter stage of October was dominated by Saarland and Berlin. 
In November, the largest incidence altered between Saxony and Berlin, while Saxony kept the dominance for the 
first two weeks of December. Saxony had shown early signs of vulnerability, prohibiting residents from leaving 
their dwellings similar to Bavaria and Saarland. Berlin prevailed as the most responsible state in the latter two-
third of the timeline. A large-scale protest was held on August 1 in Berlin against preventive measures. This hints 
lack of compliance to wearing face masks and keeping physical distance that supports increasing incidence76.

Correlation studies.  Referred studies in “Introduction” illustrate how meteorological factors correlated 
with the transmission of COVID-19. Highly transmissible disease like COVID-19 requires pathogens to 
remain active outside of the host body and relative humidity and temperature affect the virus’s survival in the 
environment44,77. Another study engineering a SARS-CoV-2 isolate came across the fact that the virus can sur-
vive at least 28 days at ambient temperature 20 ◦ C and 50% relative humidity on non-porous surfaces and 
is sensible to the variation of the weather components78. Therefore, it is considered noteworthy to examine 
the interrelationship between COVID-19 cases and meteorological factors. Many statistical methods have been 
used in earlier studies. According to the recent review in61, applicable methods other than descriptive analysis 
are Pearson correlation coefficient, linear, and non-linear regression, LOESS, two-way ANOVA, etc. Wavelet 
coherency analysis was used in50. This study used the Spearman-rank correlation so as to evaluate both the lin-
ear and monotonic relationship between two tested covariates. Additionally, auto-correlation between reported 
COVID-19 cases was also done by piling the spatiotemporal data into one time series, considering that nor-
malized data vary in relatively small numbers. Lags up to 7 days from presently were selected. Therefore, every 
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Figure 2.   Average from the daily average temperature and relative humidity from the three weather stations in 
Germany: Berlin-Marzahn (Berlin), München-Stadt (Bavaria), Stuttgart-Schnarrenberg (Baden-Württemberg). 
Time window spans from January 31 until December 15, 2020. The tuples (Min, Max, StDev) are given by 
(− 0.766 ◦ C, 27.13 ◦ C, 6.45 ◦ C) for the temperature and (39.38%, 93.53%, 12.71%) for the relative humidity, 
respectively.
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covariate augments 16 times 283 observations where the lag-0 time series consists of time window from March 
8, 2020 to December 15, 2020. Both the Pearson and Spearman-rank correlation coefficients were computed.

Spatial pattern.  Of special interest in this study is the degree of interconnection between all states in raising 
or decreasing the number of cases. The global Moran’s I79 in comparison with the global Geary’s C80,81 and its 
local decomposition known as Moran’s scatter plot were used. The global measures serve to indicate the overall 
correlation between daily COVID-19 cases per 100,000 inhabitants in every state with the weighted average of 
the cases in neighboring states, which refers to the spatial lag of the state82. The spatial pattern is commonly seen 
to lie between three extreme cases: locally clustered, random, and locally dispersed. Locally clustered refers to the 
situation where neighboring states are similar in the level of daily new cases, under which spatial dependency 
rules out the spatial pattern. Locally dispersed refers to the inverse spatial dependency where neighboring states 
are dissimilar. Something in between is then referred to as random. Representation of these spatial patterns can 
be understood with the aid of a chessboard. If the spatial profile of daily cases in all states resembles the chess-
board, then the spatial pattern is completely locally dispersed. If all the black cells would have gathered in one 
spot, then the spatial pattern is completely locally clustered. The random spatial pattern is then recognized from 
the way the black and white cells locate randomly on the board. This is extreme binary stratification that could 
never occur in the realism of epidemics, from which the corresponding global measure rarely reaches its bounds.

Let us suppose that time is fixed and the daily cases from all states are reported as C = (c1, . . . , cS)
⊤ with 

mean c̄ . The other main ingredient in spatial auto-correlation is the spatial weight matrix W = (wij) , which 
measures the degree of contiguity among all the states. This study used the binary adjacency matrix, where wij 
is 1 in case i and j share a common border or 0 in case otherwise (including diagonal entries). This definition is 
commonly used in the literature (referred to as “queen case”) in contrast to distance-based proximity measure 
where central locations play a significant role as well as a definition of being a “center” is required to define the 
distances. Let us write Z = (z1, . . . , zS)

⊤ := C − c̄ and define |W | :=
∑

i,j wij . The global Moran’s I and Geary’s 
C statistic are given by

respectively. According to the formulas, the global Moran’s I represents the standardized spatial autocovariance 
by the variance of the data, while the global Geary’s C replaces the autocovariance by the sum of the squared dif-
ferences in all data values. Both formulas then differ in sensitivity controlled by the autocovariance. In terms of 
stability against uncertainty in the data, Wijaya et al. in68 describe how Geary’s C tends to vary less significantly 
than Moran’s I when data are perturbed using noise of any kind. The current study presented Geary’s C only 
for the sake of comparison. A measurement 0 < I → 1 (similarly 1 > C → 0 ) indicates the direction toward 
locally structured spatial pattern; I = 0 (or C = 1 ) random spatial pattern; and 0 > I → −1 (or 1 < C → 2 ) 
locally dispersed spatial pattern. Statistical inference is usually done under a total randomization assumption 
to have a decision outcome based on the values of the statistics83. The p-value is generated after normalization 
using the expected values E(I ) = −1/(S − 1) , E(C ) = 1 and variances V(I ) , V(C ) reported in the original 
studies79,80. The null hypothesis is that there is no spatial auto-correlation of the daily cases on the observed S 
states, meaning that I ≃ E(I ) and C ≃ E(C ) . Therefore, a p-value smaller than a predefined significance 
level α rejects the null hypothesis whereby either a locally structured or a locally dispersed spatial pattern occurs.

In contrast to the global measures, Moran’s scatter plot measures the extent to which a state is considered 
a “hot spot” or “cold spot” or something in between83. It reports the coordinates (Z/σC ,WZ/σC) for all states, 
with σC =

√

Z⊤Z/S denoting the standard deviation of C. As a row-standardized weight matrix is utilized, i.e., 
|W | = S , the pooled estimator of the regressing linear line for these coordinates passing through the origin is 
given by (0,I ) . In the present context, a hot spot is defined as a state with a large number of daily cases sur-
rounded by those with large numbers of cases (high-high). In the 2-dimensional Euclidean space, the coordinates 
of hot spots locate in the upper-right quadrant Q1. A cold spot, on the contrary, defines a state with a small 
number of cases surrounded by those with small numbers of cases (low-low). The coordinates of cold spots gather 
in the lower-left quadrant Q3. Other than these, local dispersion may occur falling into the following catego-
ries: a state with a small number of cases surrounded by those with large numbers (low-high) in the upper-left 
quadrant Q2, and a state with a large number of cases surrounded by those with small numbers (high-low) in 
the lower-right quadrant Q4. From the practical point of view, being a hot spot or cold spot may only rely on the 
health care capacity to ameliorate the disease burdens without imposing further restrictions to travel around 
neighboring states, except for those who travel across the border between scattered hot spots and cold spots. A 
state in a high-low or low-high spatial pattern, however, requires more restriction in traveling to neighboring 
states as the disease may diffuse (in case of high-low) or be absorbed (in case of low-high).

Simple case–weather relation.  Let i and j denote the state and time index where i ∈ {1, . . . , S = 16} 
and j ∈ {1, . . . ,N} . Our approach to modeling daily COVID-19 cases in all states in Germany was based on 
directly relating collected entities. These include presently (lag-0) reported cases C := (cij) , cases reported on 
the past seven days (lag-1, . . . , lag-7) from presently C−1 := (ci,j−1), . . . ,C−7 := (ci,j−7) , average air tempera-
ture T := 1S ⊗ (tj) , and lag average relative humidity H := 1S ⊗ (hj−25) corresponding to the cross-correlation 
result in Fig. 4. The notations 1S and ⊗ denote the column vector of size S whose entries are 1 and the Kronecker 
product between two matrices, respectively. The final size of our observations is the entire time window length 
minus the maximal autoregressive lag, which is N := 290− 7 = 283 (i.e. from March 8 until December 15, 
2020). Let us denote β0 as the intercept, βind := (β1, . . . ,βS−1) as the individual-specific effects (cut down by 

I :=
S

|W |
·
Z⊤WZ

Z⊤Z
and C :=

S − 1

2|W |
·

∑

i,j wij(ci − cj)
2

Z⊤Z
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one term to avoid linear dependence with the intercept), β−i (for i = 1, . . . , 7 ) as the marginal effects of the lag 
incidence cases, βT as the marginal effect of the temperature, βH as the marginal effect of the relative humidity, 
and ε = (εij) as the idiosyncratic error. The direct relationship among these covariates intends to not only skip 
additional transformations but also return direct marginal effects represented by the coefficients of the corre-
sponding explanatory variables. This reads as

which folds

The indicator parameters σ (i) take binary values and will serve to drop certain variables in the model speci-
fication (by value 0), whenever necessary. This model represents, perhaps, the simplest panel regression model 
in the following sense. The marginal effects of the lag incidence cases and those of the weather components 
could have been raised to matrices like in vector autoregression with exogenous variables (VAR-X) models84. 
Besides appending too many parameters (entries of the endogeneous matrices), which may lead to overfitting, 
VAR-X models also require all the explanatory variables to be covariance stationary (see85 for details), which is 
rarely the case for disease and weather data in the subtropics. As the only random spatial pattern was observed 
from the incidence data for almost all observations, no essential state-crossing marginal effects were expected. 
State-dependent marginal effects for the weather components were also not considered due to data aggregation 
and limitation, also to the intention to have unified marginal effects that work on the national level. Moreover, 
all lags smaller than the optimal values for the weather components were not considered for complexity reduc-
tion. For the reason of having straight-forward marginal effects, prior transformations were not applied to any 
of the variables. Despite its simplicity, the model (1) treats omitted variable bias by including individual-specific 
effects. These are the simplest terms assuming that the omitted variables only have constant effects on the daily 
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Figure 4.   Spearman-rank correlation coefficients between daily cases from all states in Germany with the 
average temperature (above) and average humidity (below) on a moving window of 290 observations. Averaging 
throughout the states obtains the minimum of − 0.5223 (temperature) and maximum of 0.4194 (humidity) 
corresponding to the lags 0 and 25, respectively.
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COVID-19 cases in all the states. After all, the present study draws forth an outlook for compiling temperature 
and relative humidity data from all eligible stations as well as data of other confounding factors (e.g. other weather 
components, human mobility, employment opportunities, mapping of manufactures or public gatherings, etc) 
that not only add more explanatory variables but also clear up the heteroscedasticity issue.

Model including incidence clustering.  Previous studies based their investigation on asking which 
ranges of weather components correctly predict incidence cases. This study asks a slightly different question: 
which ranges of incidence cases are correctly predicted by the existing values of the weather components. The 
values that fail to predict certain incidence cases due to insignificance would deem dropping. In68, this clus-
tering strategy was designed to eliminate the weather dependency on the zero incidence cases, handling the 
zero-inflation problem appropriately. In the context of COVID-19, some extreme cases might have never been 
related to weather, for example superspreading events10–13 and indoor aerosol transmission8,9. The basic aim of 
the clustering is then to correctly place the role of weather where it should have never predicted such events. The 
use of a transient function to replace this functionality was inapplicable to us, for which bias may arise from the 
functional choice and its related extension strategy for prediction.

The clustering idea departs from stratifying the incidence data into M clusters (�k)
M
k=1 separated by barriers 

θ := (θk)
M−1
k=1  . In the closed forms, the clusters are given by �k = {c : max{0, θk−1} ≤ c < min{θk , maxi,j cij}} . 

Let us define the function δk(C; θ) := (1�k
cij) , where 1�k

 denotes the characteristic function, taking value 1 in 
case cij belongs to �k or 0 in case otherwise. Let us denote P ◦ Q = (pijqij) as the Hadamard product between two 
matrices and define Tk = Tk(θ) := δk(C; θ) ◦ T , Hk = Hk(θ) := δk(C; θ) ◦ H . The latter return the original 
entries of the matrices T, H in case their pairing incidence cases belong to the corresponding cluster or 0 in case 
otherwise. Under this decomposition it always holds 

∑

k T
k = T and 

∑

k H
k = H . Including clustering, a new 

model revises model (1) in the following fashion

Here, the incidence data were classified into three clusters ( M = 3 ) on the basis of practicality to call for 
lower, middle, and upper cluster. In principle, the specification is not bound to such a small number as fitting 
would be better with more explanatory variables. However, questions regarding complexity and practical inter-
pretations might arise when using a large number of clusters. On the present choice, when for instance T(2) has 
to be dropped due to insignificance, this simply means that the average temperature fails to predict incidence 
cases in the range defined by the middle cluster �2 . This model then allows the lone cases to be “unexplained 
by temperature”.

The fact that Tk and Hk change with the lower and upper barrier θ = (θl, θu) , so does the pooled estimator 
β̂ = β̂(θ) where β = (β0,βind,β−1, . . . ,β−7,β

1
T , . . . ,β

3
H ) . Our aim is to find the optimal barriers such that the 

squared error between data C = (cij) and the model approximate C[β̂](θ) achieves its minimum. Mathematically, 
the preceding statement translates to the following problem 

 The pooled estimator β̂ follows from the straightforward formula in terms of matrix inverse and multiplica-
tion involving explanatory and response variable.

Results
Case–weather cross‑correlation and case‑specific auto‑correlation.  Figure 4 represents the cor-
relation coefficients on a moving window of 290 observations with time lags from 0 to 30 days for each state. 
Notice that the reported daily COVID-19 cases correlated negatively with the average temperature and positively 
with the average relative humidity. The magnitude of the correlation coefficient with average temperature shows 
decreasing trends with lag for all the states. With no lag introduced, the correlations are negative and significant 
for all the states (p-values from 6.27× 10−34 to 1.17× 10−15 ). Averaging the correlation coefficients throughout 
the states, the minimum of − 0.5223 was obtained. This negative correlation is comparable up to certain ranges 
of minimum, maximum and average temperature to the studies in Brazil (with both average ranging from 20.9 to 
27 ◦ C and maximum temperature from 23.1 to 34.2 ◦ C in57 and with average temperature ranging from 16.8 to 
27.4 ◦ C in86) as well as the data in 127 countries (with average temperature from − 17.8 to 42.9 ◦ C in87). In New 
York88, the correlation was positive and insignificant for average and minimum temperature but positive and 
insignificant for the maximum temperature. In Oslo, Norway89, the correlation was negative and insignificant 
for all maximum, minimum, and average temperature with 14 days time lag, but positive and significant cor-
relation was obtained for normal temperature with 0, 5, 6, and 14 days lag. The temperature in Oslo ranged from 
− 7.5 to 21.9 ◦ C during the study period. COVID-19 cases in Russian Federation exhibited positive significant 
correlation with minimum (− 17.78 ◦ C to 8.89 ◦C), maximum (0.56 ◦ C to 27.2 ◦ C) and average temperature 
(− 2.78 ◦ C to 16.1 ◦C)46.

As far as relative humidity is concerned, it can be observed from Fig. 2 that its average varies from 39.38 to 
93.53%. The best lag was found 25 days with the correlation coefficient value of 0.4194 from averaging throughout 

(2)C = β01S×N + σ (0)
1
⊤
N ⊗ β⊤

ind +

7
∑

i=1

σ (i)β−iC−i +

3
∑

i=1

σ (7+i)β i
TT

(i) +

3
∑

i=1

σ (10+i)β i
HH

(i) + ε.

(3a)min
θ

∑

i,j

(cij[β̂](θ)− cij)
2

(3b)subject to min
i,j

cij ≤ θl ≤ θu ≤ max
i,j

cij .
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the states. With this lag, the correlations are positive and significant for all states (p-values from 2.98× 10−18 
to 1.92× 10−8 ). For the relative humidity, different results preceded ours. A previous study in New York88 con-
cluded that average relative humidity was insignificantly negatively correlated with the daily new cases. It was 
found that average humidity was significantly negatively correlated and relative humidity was insignificantly 
negatively correlated with the number of the ICU daily patients, according to data from Milan (14–100% for 
relative humidity, 1–23 g m−3 for average humidity), Florence (10% to 100% for relative humidity, 1 to 23 g m−3 
for average humidity) and Trento (16–100% for relative humidity, 1 to 25 g m−3 for average humidity) in Italy90. 
Data from Brazil ranging from 69.5 to 90.8% with no lag50,57 showed that the correlation was positive but not 
significant with minimum and maximum average humidity. Data from 127 countries87 led to the conclusion that 
the relative humidity was correlated negatively and insignificantly with daily new cases.

Table 1 shows the case-specific auto-correlations. Generally, Pearson is higher than Spearman-rank correlation 
coefficient. In addition, both Pearson and Spearman-rank correlation coefficient are significant with minimum 
0.78 (p-values ≃ 0 ). From the column of lag-0, the auto-correlation generally swings from a large value at lag-1, 
then minima at either lag-3 or lag-4, to another large value at lag-7. The same behavior can be observed from 
the columns lag-1 until lag-3 where decrement rules out the first 4 lags and minima were found at either lag 3 or 
4 days from the time series. This finding will set a basis for those in the panel regression models, as seen shortly.

Spatial auto‑correlation.  Meanwhile previous studies much focused on aggregated data and variation 
of distances in the spatial weight matrix, this study computed the global Moran’s I and Geary’s C for all time 
to see how the spatial pattern changes seasonally since the earliest infection. The corresponding computation 
results together with the 95% confidence interval [I − 1.93

√

V(I ), I + 1.93
√

V(I )] (respectively for C ) are 
presented in Fig. 5. Although the spatial pattern of the daily cases in all the states changes around with time, it 
is evident that randomness overwhelms the pattern for most of the time. The progression of p-values (especially 
below α ) indicates that, generally, no significant difference between Moran’s I and Geary’s C was observed 
except on the duration from November until mid of December where Geary’s C shows more locally clustered 
spatial pattern.

The Moran’s scatter plot for all the states in Germany was determined for all observations, see Fig. 6. For 
the sake of serial presentation, indexing the coordinates based on the quadrants is more favorable than plotting 
them. Overall, the results suggest that all the states show randomness with time in to which spatial pattern they 
belong. If one solely focuses on the recent observations (November 1 to December 15, 2020), then the following 
states have the tendency to occupy the following quadrants: Baden-Württemberg, Bavaria, Hesse, Thuringia 
(Q1); Brandenburg, Rhineland-Palatinate, Saxony-Anhalt (Q2); Hamburg, Mecklenburg-Vorpommern, Lower 
Saxony, Schleswig-Holstein (Q3); Berlin, Bremen, North Rhine-Westphalia, Saxony (Q4).

Panel regression models.  Variable choices for model specification were investigated. The criteria are 
based on not only fit and complexity (information-type criterion) but also insignificance, negative marginal 
effects, and multicollinearity driven by certain variables. For the fit and complexity, a minimal value of Bayes-
ian Information Criterion BIC = −2 log(L)+ log(N) · k91 was sought. The first term of this criterion expresses 
maximization over the likelihood function L generated from our model and the second term includes the obser-
vation size N as well as the number of parameters k. Unlike Akaike Information Criterion (AIC)92 that would 
have replaced log(N) by 2, BIC penalizes the number of parameters much more, especially for large observation 
sizes. Our study aims to drop certain variables toward cutting down BIC and amending insignificance as well as 
multicollinearity. The standard t-test was used for the significance test. Checking for multicollinearity follows 
from computing the Inverse Variance Inflation Factor (1/VIF) values for all explanatory variables except the con-
stant. A 1/VIF measures one minus the coefficient of determination derived from an OLS-regression whereby 
the variable under test serves as the response while the others as the explanatory variables. In this sense, 1/VIF of 
a value smaller than the rule of thumb 0.1 shows multicollinearity driven by the tested variable93. In addition, the 
p-value of the F-statistic is monitored, which measures if the overall variables are simultaneously significant; of 
which smaller than α = 0.05 indicates that they are. Not only can the model be designated to be better than just 
a constant, but multicollinearity can also be diagnosed. Johnston in94 hinted the existence of multicollinearity as 
some p-values from t-tests are large while that from F-test is radically small, which agrees to the analytical inves-

Table 1.   Pearson and Spearman-rank correlation coefficients from the incidence data, rounded to two digits 
after comma.

ρ lag-0 lag-1 lag-2 lag-3 lag-4 lag-5 lag-6 lag-7

lag-0 1

lag-1 0.87, 0.83 1

lag-2 0.83, 0.81 0.87, 0.83 1

lag-3 0.80, 0.79 0.83, 0.81 0.87, 0.83 1

lag-4 0.79, 0.79 0.81, 0.79 0.83, 0.79 0.87, 0.83 1

lag-5 0.82, 0.80 0.80, 0.79 0.81, 0.79 0.83, 0.80 0.87, 0.83 1

lag-6 0.87, 0.82 0.83, 0.80 0.80, 0.79 0.80, 0.79 0.83, 0.80 0.87, 0.83 1

lag-7 0.89, 0.83 0.87, 0.82 0.83, 0.79 0.79, 0.78 0.80, 0.79 0.83, 0.80 0.87, 0.83 1
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Figure 5.   Global Moran’s I and Geary’s C computed on a daily basis together with the corresponding 95% 
confidence interval and p-Value (right) for significance. The blue dashed line represents the significance level 
α = 0.05.
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Figure 6.   Classification into four quadrants (Q1, Q2, Q3, Q4) equivalent to Moran’s scatter plot and the 
concurrence percentages from November 1 to December 15, 2020.
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tigation in95,96. Besides these aspects, if certain marginal effects would be consistent with our auto-correlation 
study were also checked. From Table 1, it is seen how cases in the past 7 days positively predict present cases with 
the least auto-correlations found from cases from the past 3 and 4 days. This led to dropping negative marginal 
effects corresponding to lag incidence cases that may occur due to a certain model specification.

To deal with the model including incidence clustering (2), the computation of optimal lower and upper 
barrier (θl, θu) as in (3) is necessary. The characteristic functions embedded in the objective function make the 
optimization problem non-smooth. The brute-force computations of the objective function in the upper-left 
triangle of the 50× 50 grid in the domain [mini,j cij , maxi,j cij]

2 and a PSO algorithm68 were put in comparison. 
From Fig. 7, PSO outperforms the brute-force computations in locating the optimal barriers that minimize the 
objective function, also in terms of computation time.

According to Table 2, the BIC value for the simple model (1) is relatively large, exacerbated by large degrees 
of freedom. The model including incidence clustering (2) gives the least BIC value due to a minimal likelihood 
function. Additionally, the insignificance of the entire individual-specific effects for both models was spotted. 
The rationale behind this can be connected to the fact that the entire profile of global and local spatial auto-
correlation as well as the largest outbreak (“COVID-19 and weather situation in Germany” and “Spatial pattern”) 
show randomness for almost all observations. Therefore, no state was worth constant recruitment (weighting) 
for its neighborhood to show a consistent spatial pattern throughout the observations.

Post-estimation diagnostics for all the models including those investigated during model specification were 
performed. Additional to the models including lag incidence cases and weather components, this study consid-
ered the models where either of these entities is present. The fitting results are presented in Table 3. For straight-
forward marginal effects and computation of optimal barries, the pooled estimator was considered subject to 
its inefficiency. The test was conducted via the comparison between fixed-effects and random-effects estimator 
and that between random-effects and pooled estimator. To the former, the two estimators were compared using 
Durbin–Wu–Hausman test97,98, where the fixed-effects estimator is assumed to be consistent, and the random-
effects estimator is efficient and assumed to follow a normal distribution. The null hypothesis suggests that the 
random-effects estimator is a consistent estimator regardless of the size of the data. According to Table 3, the 
p-value corresponding to the statistic greater than α = 0.05 indicates that the random-effects estimator is equally 
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Figure 7.   Computation of optimal barriers (θl, θu) ≈ (13.3645, 36.0597) for the clustering. Blue circle encodes 
the optimal barriers found by the brute-force computations on the 50× 50 grid. The figures show the evolution 
of the locations of 100 players (black × ) converging to an optimal solution that does not overlap with the grid: 
(a) 5th iteration, (b) 10th iteration, (c) 20th iteration.

Table 2.   Model specification under variable dropping. BIC values as well as corresponding issues leading to 
model exclusion are reported: Si, Ni, Mi stand for insignificance, negative marginal effect, and multicollinearity 
driven by the corresponding variable ordered by σ (i) , respectively.

Model (1)

  σ (i) = 0 for i 0 0, 3 0, 4 0, 3, 4

  BIC 24,049.74 23,933.03 23,924.93 23,953.11 23,946.74

  Issue S0, S3 S3, N4 N4 S3, N3

Model (2)

  σ (i) = 0 for i 0, 12 0, 12, 10 0, 12, 3 0, 12, 10, 3 0, 12, 10, 4 0, 12, 10, 3, 4

  BIC 21,006.56 21,578 21,569.72 21,570.42 21,562.14 21,587.59 21,580.1

  Issue S0, S3, S10, M12 S3, S10 S3 S10 N4 N3, S3
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consistent as the fixed-effects estimator. The two estimators for all presented models confirm equivalence except 
for model (2) where only weather components are present. For this case, the fixed-effects estimator was kept to 
handle consistency and panel effect. To the latter, Breusch–Pagan Lagrange Multiplier test was done under no 
panel effect as the null hypothesis99, i.e., the model under the random-effects estimator returns zero variance in 
the state-dependent errors. Apparently, no panel effect was observed for all models except for those that include 
only weather components, in which case either random-effects or fixed-effects estimator is preferable. The inef-
ficiency of the presented pooled, random-effects, and fixed-effects estimator is confirmed as serial correlation 
in all the state-dependent errors occurred. Wooldridge test100 showed this. Therefore, a caveat remains for all 
models that their standard deviations of the coefficients are smaller and R2 ’s are larger than they should be. After 
all, the pooled estimator is always consistent, even for a relatively small data size. As final practical remarks 
from the models, all the lag incidence cases give the waving effects in terms of lag where the cases 5 days and 

Table 3.   Fitting results and diagnostics for the models (1) and (2). The abbreviations stand for the following: 
Val (value), StDev (standard deviation), t p-Val (p-value of the t-test for the variable significance), 1/VIF 
(Inverse Variance Inflation Factor for multicollinearity), F p-Val (p-value of the F-test for the overall variable 
significance), R2 (coefficient of determination), Adj R2 (adjusted coefficient of determination), D–W–H 
(p-value of Durbin–Wu–Hausman test for random-effects vs. fixed-effects estimator), Wo (p-value of 
Wooldridge test for the serial correlation), B–P LM (p-value of Breusch–Pagan test for random effect vs pooled 
estimator).

Val StDev t p-Val 1/VIF F p-Val R
2 Adj R2 D-W-H Wo B-P LM

Model (1)

β0 −.8742 .3787 .021 0 .8558 .8556 .5355 0 1

β−1 0.1827 0.0142 0 0.1603

β−2 0.0984 0.0128 0 0.2011

β−5 0.0514 0.0135 0 0.2033

β−6 0.2736 0.0149 0 0.1716

β−7 0.4145 0.0155 0 0.1645

βT − 0.0295 0.0099 0.003 0.6390

βH 0.0246 0.0049 0 0.7054

β0 0.1949 0.0593 0.001 0 0.8544 0.8543 0.5556 0 1

β−1 0.1918 0.0142 0 0.1619

β−2 0.1054 0.0128 0 0.2026

β−5 0.0604 0.0135 0 0.2056

β−6 0.2791 0.0150 0 0.1723

β−7 0.4166 0.0155 0 0.1646

β0 − 2.0767 0.7908 0.009 0 0.3694 0.3691 1 0.0094 0

βT − 0.5681 0.0185 0 0.7997

βH 0.2256 0.0097 0 0.7997

 Model (2)

β0 5.9089 0.2162 0 0 0.9148 0.9146 0.7646 0 1

β−1 0.1378 0.0109 0 0.1590

β−2 0.0716 0.0098 0 0.1998

β−5 0.0337 0.0104 0 0.2031

β−6 0.1636 0.0117 0 0.1667

β−7 0.2866 0.0123 0 0.1543

β l
T

− 0.1261 0.0076 0 0.4755

βm
T

0.3158 0.0224 0 0.4380

β l
H

− 0.0528 0.0026 0 0.3687

βu
H

0.2033 0.0047 0 0.6981

β0 1.8381 0.3594 0 0
0.8682 (within)
0.9558 (between)
0.8692 (overall)

0 0.0097 0

β l
T

− 0.2088 0.0092 0 0.4927

β2
T

− 0.1010 0.0292 0.001 0.3878

β3
T

− 0.6897 0.1037 0 0.4472

β l
H

0.0524 0.0046 0 0.1785

β2
H

0.2627 0.0051 0 0.1243

β3
H

0.5608 0.0085 0 0.3258
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7 days from presently predict the present cases the least and the most, respectively. Keeping the lag incidence 
cases, the weather components from model (1) give a consistent prediction with that from the cross-correlation 
study. Together with clustering, the marginal effects of weather were corrected for model (2). It was observed 
that temperature fails to predict cases in the upper cluster while relative humidity fails to cases in the middle 
cluster. Temperature seems to give a larger positive marginal effect for the middle cluster while relative humidity 
a negative smaller marginal effect for the lower cluster.

As far as predictive performance is concerned, several findings can be highlighted. As the larger models 
exhibit no more issues with insignificance and multicollinearity, neither do the smaller models. For the model 
variant (1), the smaller models gain R2 ≈ 0.8544 , BIC ≈ 23,972.15 (only lag incidence cases) and R2 ≈ 0.3694 , 
BIC ≈ 30585.35 (only weather components), respectively. Meanwhile the model including only weather compo-
nents shows the poorest performance; its BIC value is also radically larger than that of the model including only 
lag incidence cases. For the model (1), the impact of weather is rather small, as the decrease of temperature from 
a reference value e.g. T ≈ 20 ◦C to T ≈ 10 ◦C (i.e. by 50% ) is associated to the increase of COVID-19 cases for all 
states from e.g. C ≈ 20 by (|βT |10/20) · 100% ≈ 1.475% . When the lag incidence cases were dropped, the increase 
changes to (0.5681 · 10/20) · 100% ≈ 28% . Moreover, the increase of relative humidity from 60 to 80% (by 33%) 
is associated to the increase of the cases from C ≈ 20 by 2.46% (with lag incidence cases) and 22.56% (without 
lag incidence cases). The overall impression indicates the superiority of the model with only lag incidence cases 
when one designates fit to significantly matter than the number of parameters. For the model including incidence 
clustering (2), a different profile was obtained when only using non-dropped weather components: R2 ≈ 0.7948 , 
BIC ≈ 25517.61 . Here, a significant improvement under incidence clustering becomes evident. Surprisingly, the 
model including the entire weather components even outperforms that including only lag incidence cases by fit 
and complexity: R2 ≈ 0.8692 , BIC ≈ 23494.94 . All marginal effects corresponding to the temperature matrices 
are negative, and those corresponding to the relative humidity matrices are positive. It was observed that the 
temperature returns the smallest marginal effect on the COVID-19 cases in the middle cluster and relative 
humidity in the lower cluster. Besides the significance of the marginal effects, even no multicollinearity was 
observed. Apart from this, when the predictive ability is evaluated by R2 and BIC amending multicollinearity 
and inconsistent predictors, it is still argued that combining lag incidence cases and weather components serve 
as the best models as presented in Table 3. The corresponding graphical fitting can be seen in Fig. 8.

Discussion
In this study, lags from the cross-correlation between average temperature and relative humidity were extracted 
to synthesize suitable variables in the regression models. Additionally, case-specific auto-correlation supports 
the model specification where lag-3 and lag-4 incidence would rather be insignificant predictors for the present 
incidence. Spatial auto-correlation using global Moran’s I and global Geary’s C was investigated in the framework 
of analyzing the spatial effect in COVID-19 transmission. The global measures indicate random spatial patterns 
most of the time, except there were either local clusters or dispersion in recent observations from November 1 
to December 15, 2020. Moran’s scatter plot was then used to disclose the local behavior of the spatial pattern. 
The result shows that the distribution of the hot spots and cold spots generally changed with time. The random 
spatial pattern justifies the model specification where the individual- or state-specific effects that would have 
served to endow specific states with constant weighting factors, were dropped.

In the simple random-effects model, the average temperature and lag relative humidity were shown to affect 
the incidence significantly, however, the resulting coefficient of determination is comparably much smaller than 
whenever only lag incidence cases were used; panel effect also raises in the former case. For the reason of placing 
the correct role of weather in predicting certain ranges of incidence, the weather components were grouped with 
the aid of a clustering strategy. The new clustering-integrated model accompanied by optimal barriers shows 
good agreement with the data whereby weather components outperform lag incidence cases in the prediction. 
On this matter, the fixed-effects estimator was the only presumably consistent estimator that also tackles the 
panel effect. For all models, it was observed that every explanatory variable competes against the others to be a 
significant predictor. Therefore, model choice together with its consequences (marginal effects), depend entirely 
on the decision-maker. Marginal effects can be guidance when a model is chosen a priori. When R2 and BIC 
matter a lot, our recommendation is to opt for the clustering-integrated model with lag incidence cases and lag 
weather components. There it was found that temperature and relative humidity have negative, relatively small 
marginal effects on the cases in the lower cluster (below 13 cases per 100,000 inhabitants); the temperature has 
a large positive marginal effect on the cases in the middle cluster (between 13 and 36 cases per 100,000 inhabit-
ants) and no marginal effect on the upper cluster (above 36 cases per 100,000 inhabitants); relative humidity has 
a large positive marginal effect on the upper cluster but none on the middle cluster. The clustering-integrated 
model with only weather components is recommended when weather receives more privilege than lag incidence 
cases. Our result is consistent with the cross-correlation study that temperature has negative marginal effects 
while relative humidity has positive marginal effects on the incidence in all clusters. The middle cluster receives 
the smallest marginal effect from temperature and the lower cluster from relative humidity. This hints physical 
consequences that temperature can only predict incidence cases during hot (summer) and cold season (winter), 
where cases clearly distinguish against each other from the data, not during transitional seasons (spring and fall). 
Relative humidity, on the other hand, is less likely to predict sinking cases during the hot season.

Conclusion
This study focused on the interrelationship between two weather components overlapping in many previous 
studies (average temperature and relative humidity) and COVID-19 incidence in Germany. Cross-correlation, 
case-specific auto-correlation, and spatial auto-correlation analysis were done to determine suitable variables 
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and to explain the negligible panel effect in the panel random-effects models. In addition, the findings from 
the spatial auto-correlation provide the placement of the 16 states in the four quadrants from Moran’s scatter 
plot and appropriate policy regarding traveling restrictions. The increasing demand for confounding factors to 
explain various incidence levels has been neutralized by the aid of incidence clustering. This strategy supports 
the idea of considering only certain hypothetical factors predicting COVID-19 incidence and general regression 
modeling wherein explanatory variables are limited. This localization of incidence that is correctly predicted by 
the two weather components has profound implications for public health authorities. The modeling does not 
only determine the extent of the prediction via marginal effects but also paves the way for precautionary actions 
amidst upcoming weather.

Data availability
All the data sources have been included in “COVID-19 and weather situation in Germany”.
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