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Inferring long‑distance connectivity 
shaped by air‑mass movement 
for improved experimental design 
in aerobiology
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The collection and analysis of air samples for the study of microbial airborne communities or the 
detection of airborne pathogens is one of the few insights that we can grasp of a continuously 
moving flux of microorganisms from their sources to their sinks through the atmosphere. For large-
scale studies, a comprehensive sampling of the atmosphere is beyond the scopes of any reasonable 
experimental setting, making the choice of the sampling locations and dates a key factor for the 
representativeness of the collected data. In this work we present a new method for revealing the 
main patterns of air-mass connectivity over a large geographical area using the formalism of spatio-
temporal networks, that are particularly suitable for representing complex patterns of connection. 
We use the coastline of the Mediterranean basin as an example. We reveal a temporal pattern of 
connectivity over the study area with regions that act as strong sources or strong receptors according 
to the season of the year. The comparison of the two seasonal networks has also allowed us to propose 
a new methodology for comparing spatial weighted networks that is inspired from the small-world 
property of non-spatial networks.

Organic particles are ubiquitous in the air1–3 and may originate from very different sources4, such as plant 
canopies5, soils6, urban areas7, 8 or surface waters9. Despite their relative sparse density with respect to the volume 
of an air mass, their presence and transportation across the planet has proven to have strong effects on many 
phenomena such as colonization and invasions by plants and insects10–14, human, animal or plant epidemics15–23 
and atmospheric processes24–26. Some of these particles can be transported through the atmosphere over hun-
dreds or even thousands of kilometers1, 27, 28, depending on their shape and mass29. Furthermore, seasonal trends 
of microbial compositions in the air have been repeatedly observed in several studies, especially in temperate 
climates30–38. All these factors make it particularly difficult to disentangle the complexity of the biological com-
position of air samples, that may include hundreds of species from both local and distant sources, and that can 
vary drastically over the course of a year.

During the last decades, an increasing number of studies has addressed this problem by collecting and analyz-
ing air samples with a plethora of experimental settings that varied enormously from one study to the other in 
the number and choice of sampling locations, duration and frequency of sampling, type of air sampler, among 
others39. Regardless of these differences, most of these large-scale studies have in common a certain lack of fore-
thought in the choice of sampling locations and dates, that are often dictated by logistical convenience, instead 
of relying on previous knowledge of air-mass sources (whereas prevailing winds, for instance, are classical input 
for the design of sampling in small-scale dispersal surveys40, 41). Nonetheless, there are a few exceptions in which 
the authors reconstructed the geographical origins of the air mass by looking at backward trajectories associated 
with the air masses from which they have collected their samples30, 31, 35, 42.

Here we present a framework to identify stable and recurrent connections between distant portions of a ter-
ritory via air-mass movements on large spatiotemporal scales. A priori knowledge of the location and seasons of 
occurrence of such aerial connections would provide very useful rational for designing the layout of air sampling 
schemes for early detection of airborne propagules of invasive plant and insect species, microbial pathogens and 
their vectors. We considered the air-mass connectivity across the coast of the Mediterranean basin. The similar 
climates and vegetation along the northern and southern coasts of the Mediterranean basin would increase the 
likelihood of survival of propagules that successfully migrated across the sea. The rather large body of water 
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between the coasts will facilitate demonstrating events of long-distance aerial dispersal by limiting the number 
of potential intermediate sources. Importantly, the Mediterranean basin is also a hot spot for spread of human 
and plant diseases where efforts to survey for invasions and emergences are intensifying. For example, there is 
concerted effort to survey for insect vectors of zoonotic diseases43. This surveillance, which focuses mostly on 
traditional ground-based observations, can be strengthened in light of recent findings that some insects such as 
mosquitos are indeed transported hundreds of kilometers by air mass movements at tens to hundreds of meters 
above ground14. This raises the question of the most opportune sites and times for observing this long-distance 
dissemination.

To identify recurrent patterns that could optimize air sampling effort, we first partitioned the study area into 
uniform regions and estimated their pairwise degree of connectivity, regardless of their geographical distance, 
based on the presence of recurrent air-mass trajectories between them. We naturally resorted to network theory, 
since it allows to represent complex connectivity patterns with the formalism of nodes and links and can further 
be exploited to infer new and interesting properties of the graphs44. We identified two seasonal patterns, one in 
summer and the other in winter, with relatively distinct behaviours. To characterize the two seasonal networks, we 
also proposed a new method of comparing spatial weighted and directed networks that accounts simultaneously 
for the geographical distance and the edge weight between nodes. Finally, we used different indices to assess the 
relevance of nodes within the network and their likelihood of infecting and/or being infected during a simulated 
susceptible-infected (SI) epidemic on the network. This allowed us to identify sets of influential spreaders and 
strong receptors, which can be used for the design of efficient epidemic surveillance strategies.

Results
Description of the case study and data collection.  Daily 48-h backward air-mass trajectories from 
January 1, 2011 to December 31, 2017 were extracted using the HYSPLIT software45 from a set of 604 arrival 
points chosen across the study area. The arrival points of the air-mass trajectories, that represent the location 
of the nodes of the constructed spatial networks, correspond to the centroids of a grid with mesh size of 74 km 
covering the coastline of the Mediterranean Sea from 5 km up to 250 km inland from the coast and including 
the four largest islands (namely Sicily, Sardinia, Cyprus and Corsica) and the Balearic archipelago44. The total 
number of computed trajectories was 1,543,220.

Network construction and properties.  We constructed spatiotemporal networks with discrete (daily) 
timestamps whose nodes represent the cells of the mesh described earlier. An edge between two nodes i and j 
at timestamp t is equal to one if the air-mass trajectory arriving at cell j at day t has passed over the cell i during 
the previous 48 h. This simple method allowed us to construct 2555 ( 365× 7 ) spatial directed networks, but 
we needed a way to downscale this complex information to fewer, longer periods of time. The first approach 
was to concentrate the 2555 daily networks into a single projected static network by averaging the number of 
connections between each pair of nodes (referred hereafter as 2011–2017 network). Furthermore, we projected 
the 2555 daily networks at yearly and monthly cadence, i.e. averaging all the networks of the year 2011, then 
year 2012, etc. and averaging all the networks of the 7 months of January, then all the networks of the 7 months 
of February, etc. We then computed different network metrics (diameter, density, transitivity, average shortest 
path and degree correlation) as reported in Table 1 of the Appendix. The comparison of the metrics for the 7 
yearly networks showed no particular trend, meaning that the average yearly behaviour has not changed dur-
ing the 2011–2017 period. On the other hand, the comparison between the metrics of the 12 monthly-averaged 
networks highlighted a clear seasonal pattern. We hence used a hierarchical clustering method based on the Cut 
distance between the 12 monthly networks (see46 and “Methods” section for the details) in order to confirm the 
observed patterns. The clustering algorithm identified two main seasons: summer (from May to September) and 
winter (from October to April) that have hence been gathered into two projected static networks whose network 
metrics are shown in Table 1 (referred hereafter simply as summer and winter networks). We can observe that 
the summer network has a significantly larger diameter (intended as the length of the longest of all the calculated 
shortest path) than the winter network, while it has a lower density (ratio between the sum of all edge weights 
and the number of all possible edges). Also, the summer network has the longest average shortest path between 
any couple of nodes and lower transitivity (e.g. the average probability that the adjacent nodes of a node are also 
connected).

One drawback of the metrics used so far is that they only account for the topological properties of the 
weighted networks, while they overlook the spatial signature that is inherently associated to the graph. The 
most natural consequence of considering the spatial structure of the network is that we expect geographically 
close nodes to be more strongly connected than nodes that are farther apart, a phenomenon that is also known 
as the Tobler’s first law of geography47. Indeed, we found that for the three considered networks, the correlation 

Table 1.   Network metrics for the three networks representing the average connectivity during the entire 
period 2011–2017, and the summer and winter seasons.

Diameter Density Transitivity Degree correlation Average shortest path

2011–2017 37.5 0.28 0.74 0.306 2.06

Winter 45.4 0.24 0.73 0.171 2.32

Summer 58.4 0.19 0.68 0.281 2.57
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coefficients between edge weights and distances are always negative (0.38 for 2011–2017, 0.35 for winter and 0.31 
for summer), meaning that stronger weights are associated with shorter distances and, vice versa, weaker weights 
are associated to longer distances. Furthermore, consider the case of three nodes (i, j, k) such that the weight 
of the edge between i and the other two nodes is the same (E(i, j) = E(i, k)), while their geographical distance is 
significantly different, e.g. d

(

i, j
)

≫ d(i, k) . The fact that the weight between i and j is the same as between i and 
k, even if i and j are much further apart in space than i and k may be of great relevance in certain applications. 
These two considerations imply that in a spatial weighted network, certain edges are more prominent than oth-
ers, in particular those that maximize, at the same time, weight and geographical distance. Here we introduce 
a new way of analysing networks that accounts for these aspects. It allows, first, to compare multiple spatial 
weighted networks, and second, to improve the visualization by pruning the number of edges hence avoiding 
the so-called ’hairball’ effect48 (overly dense representation of edges that makes the network undecipherable). 
In the left panel of Fig. 1 we depicted the weights and distances of all non-null edges of the 2011–2017, sum-
mer and winter networks, also highlighting the Pareto fronts that maximize both quantities. We can observe 
that summer network is capable of longer and stronger connections than the winter network (particularly for 
nodes that are more than 700 km apart), while the winter network has generally stronger connections in the 
range between 300 and 500 km. In Fig. 1b we mapped the directed edges that correspond to the 1% of points 
that lie closest to the Pareto front of Fig. 1a. We can observe that the edges of the winter network with higher 
weights and small to medium distances tend to align with the Italian peninsula from North to South plus some 
edges from France and Spain towards Algeria, while longer edges cross the Mediterranean from South-East to 
North. Interestingly, we notice that nodes in Southern Italy receive edges both from Northern Italy (medium 
distance) and from Northeastern Africa (very long distance). For the summer network we observe that most 
of the short and medium distance edges start from the Western European coast (France and Spain) and travel 

Figure 1.   (a) The distribution of weights and distances for all pair of non-null edges of the 2011–2017, summer 
and winter networks. The Pareto fronts and the 1% of the edges that lie closest to the Pareto fronts are depicted 
with a bigger dot. (b) The 1% of the edges that lie closest to the Pareto fronts, where the intensity of the color 
correspond the strength of the weight.
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eastward towards Northwestern Africa (short distance and strong weight) and Northern Italy, Corsica and Slo-
venia (medium distance and weight), while all long-distance edges connect Greece, Lybia and Egypt with Italy 
and Turkey. As expected, the 2011–2017 network integrates both summer and winter networks characteristics, 
with a seasonal stability that can be observed in the Eastern Mediterranean with recurrent connections from 
South-East to North, West and North-West.

Indices of the relevance of nodes on network structure.  We computed local node properties of the 
2011–2017, summer and winter networks. Local node properties measure the relevance of single nodes within 
a network with respect to certain dynamics, such as the flow of information or the spread of a disease and their 
centrality with respect to the topology of the rest of the network. We hence computed different node relevance 
indices in order to identify those nodes that play a prominent role in the network, namely betweenness central-
ity, closeness centrality, coreness centrality, eigenvector centrality, out-degree, in-degree, strength (see “Meth-
ods” section for the details). Furthermore, we simulated an SI epidemic spread starting from each node and 
recorded two more indices, namely SI persistence and SI frequency, that indicate, for every node i, the percent-
age of nodes that will be infected when an epidemic starts from i, and the percentage of times that node i has 
been infected across all simulated epidemics (see “Methods” for the details on the simulated SI epidemic model). 
Since the SI persistence index measures the likelihood of a node to spread the disease in case it is the outbreak 
node, it is expected to be related to other indices representing its outreach capacity and, indeed, we can observe 
in Fig. 2 that the SI persistence index is positively correlated with the out-degree (0.78, 0.76 and 0.78 for the 
2011–2017, winter and summer networks, respectively), the strength index (0.62, 0.54 and 0.57) and the core-
ness centrality index (0.10, 0.30 and 0.26), while the correlation with the other indices is less straightforward. On 
the other hand, the SI frequency index measures the likelihood of a node of been infected by an epidemic that 
started somewhere else in the network, hence we expect it to be correlated with centrality measures, as we can 
observe in Fig. 2, where we found that it is always positively correlated with the in-degree (0.59, 0.55 and 0.63 
for the 2011–2017, winter and summer networks, respectively), the strength index (0.17, 0.16 and 0.22) and the 
eigenvector centrality index (0.30, 0.56 and 0.69) and negatively correlated with the out-degree (− 0.15, − 0.17 
and − 0.17).

Finally, Fig. 3 depicts the spatial distribution of the SI persistence and the SI frequency indices for the three 
networks considered here. We can observe that, on average, both indices show higher values in the 2011–2017 
network than in the two seasonal networks, possibly due to the higher density of the 2011–2017 network (see 
Table 1). Nonetheless, the overall highest values for SI persistence and frequency are found in the summer season. 
In terms of SI persistence, the 2011–2017 network has higher values in the coast of France and Spain, Northern 
Italy and the Sinai peninsula in Egypt. In winter, the nodes with higher values are located in Northeastern Italy, 
while non-negligible values are also found in the Balkans, Eastern coast of Egypt and the coast of France and 
Spain. In summer, the highest values are found in the Eastern coast of Egypt, Southern Greece and Northern 
coast of Spain. In terms of SI frequency, the 2011–2017 network has relatively low values of the index that are 
mainly located around the Aegean and Adriatic Seas, plus Tunisia and Libya. In winter, moderate values of SI 
frequency are found in Greece, Libya and Southern Italy. In the summer season, we observe the overall highest 
values concentrated in Central and Northeastern Italy, Slovenia and Croatia, with moderate values in Libya.

Discussion
Understanding air-mass movements is a fundamental step for predicting how airborne microorganisms circu-
late across the planet, from their sources to their sinks via the atmosphere. Previous studies assessing microbial 
populations in air samples have focused on a reduced number of sampling sites and/or dates, while the choice 
of the sampling sites and dates is crucial in the experimental design. In this study we considered the air-mass 
movements over a vast geographical region (the coastline of the Mediterranean basin) for an extended period 
of time (7 years with a daily resolution) in order to assess spatio-temporal patterns of connectivity between 

Figure 2.   Correlation plots of node indices. All reported correlation coefficients are statistically significant at 
95% confidence level.
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different locations using the formalism of spatio-temporal networks. The proposed approach has been kept as 
general as possible by choosing a relatively limited set of assumptions about the parameters of the model, e.g. 
the duration of the backward trajectories, the hour and altitude of arrival, the spatial and temporal resolution or 
the yearly and monthly averaging schemes. The objective was to prove that actual air-mass connectivity patterns 
can be identified, and that they may be applied to the design of surveillance strategies. Nonetheless, most of 
these parameters can be tuned in order to fit to a particular microorganisms of interest by including knowledge 
on its life cycle, on which depends the emission periods, its aerodynamic diameter, on which depends the most 
probable airborne travelled distance or the distribution and availability of susceptible hosts, that can influence 
the efficacy of the disease spread. For the case study of the Mediterranean region, we identified two distinct 
seasonal patterns in terms of connectivity over the study period, one from May to September (here referred as 
summer) and the second from October to April (winter), while the yearly regime of connectivity seems to be 
rather constant across the years. This observation resonates with analogous conclusions drawn from studies of 
microbial composition in air samples, both in the Mediterranean basin30–33 and elsewhere34–38. Whether this pat-
tern is due to a seasonal variation in the microbial sources, to the seasonal patterns of air-mass connectivity, or 
to a combination of both, is by itself an interesting research question. Identifying strong spreaders and receptors 
is a key step for designing sampling campaigns. For example, in the context of epidemic surveillance of airborne 
diseases, it is important to optimize the allocation of sampling sites and dates in order to increase the detection 

Figure 3.   SI persistence and SI frequency.
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rate and to reduce the delay between arrival and first detection. In this study we identified a high-risk zone in 
Northeastern Italy, Croatia and Slovenia that is particularly receptive during the summer months (i.e. high SI 
frequency index), that correspond, at these latitudes, to the growing season of most crops. On the other hand, 
epidemic outbreaks starting in the coast of France and Spain, Northern Italy and the Sinai peninsula are the ones 
showing the highest risk of rapid diffusion across the Mediterranean basin, based on the SI persistence maps.

Methods
Case study region and data collection.  The study region corresponds to the coast of the Mediterranean 
Sea, ranging approximately 1600 km from North to South and 3860 km from East to West. The temperate cli-
mate of the chosen region is strongly influenced by the presence of the Mediterranean Sea, with mild winters, hot 
summers and relatively scarce and seasonal precipitations. The landscape is characterized by coastal vegetation, 
typically shrubs and pines, and densely populated areas with intensive crop production of wheat, barley, veg-
etables and fruits, especially olive, grapes and citrus. In this paper, we characterize recurrent movements of air 
masses through the Mediterranean region by defining a grid with mesh size 74 km covering the coastline from 
5 km up to 250 km inland from the coast, including the four largest islands (namely Sicily, Sardinia, Cyprus and 
Corsica) and the Balearic archipelago. Thus, we divided the region into N = 604 cells, where the centroids of the 
cells will be used as arrival locations of air-mass trajectories and will correspond to the nodes of the constructed 
network. The air-mass trajectories arriving at the prescribed locations in the period 2011–2017 with daily bases 
(hence T = 365× 7 = 2555 ) have been computed using the Hybrid Single-Particle Lagrangian Integrated Tra-
jectory model (HYSPLIT45). The HYSPLIT model has been fed with meteorological data from the Global Data 
Assimilation System files with a 0.5-degree spatial resolution (GDAS: https://​www.​ncdc.​noaa.​gov/​data-​access/​
model-​data/​model-​datas​ets/​global-​data-​assim​ilati​on-​system-​gdas) and was parametrized to return 48-h back-
ward air-mass trajectories arriving at the prescribed locations at 12:00 GMT at an altitude of 500 m above mean 
sea level. A single trajectory consists of a vector containing the hourly positions (longitude, latitude and altitude) 
visited by the air mass before arriving at the specified location and time.

From air mass trajectories to daily contact networks.  To infer spatio-temporal networks according 
to air-mass trajectories, we used the formalism of graph theory, where nodes are defined as spatial points and 
edges are estimated using the following rule: a node i is connected to node j at time step t (i.e. the element Et(j, i) 
of the adjacency matrix Et is equal to 1) if the trajectory arriving at i at time t has crossed the polygon whose 
centroids is j over the interval [t − 48h, t] . Since the trajectories have been computed for every i and every t, we 
have T adjacency matrices Et , t ∈ [0,T] of size N × N , each representing a directed spatial network. (See44 for 
alternative connectivity measures).

From daily contact networks to aggregated spatio‑temporal networks.  The information con-
tained in the T spatial networks has been summarized by averaging all daily networks within a certain subset S 
⊆ {0, T } as follows49:

where |S| denotes the cardinality of S. The chosen subsets are the entire discrete-time interval [0, T], the 7 years 
from 2011 to 2017 and the subsets of all days of the month of January, all the days of the month of February, etc.

General network metrics.  The constructed networks are inherently complex by the sheer amount of spa-
tial and temporal information that they encompass. Hence, there is no easy way of representing the results 
either graphically or numerically, without compromising the original complexity of the networks. In this aim, 
we explore the topology of the networks by looking at some generic properties through the following metrics50, 
reported in Table 2:

•	 Density: the ratio between the sum of all edge weights and the number of all possible edges51,
•	 Transitivity (also known as clustering): the equivalent definition of density, but applied to triplets of nodes 

instead of pairs of nodes52,
•	 Strength correlation: in directed weighted networks, it measures the correlation between incoming and outgo-

ing strengths, computed as the sum of the weights of the edges pointing to or from a given node. Networks 
with positive (resp. negative) degree correlation foster (resp. hamper) epidemic spread53.

Under the current framework, the weight computed between two nodes is proportional to the number of 
air-mass trajectories that connect them, hence higher values of the edge weight are associated to a higher con-
nectivity between nodes. This is nonetheless incompatible with existing algorithms used to identify the shortest 
path between nodes since they usually consider the weight of an edge as a kind of distance or cost, hence the 
higher the weight, the less likely the connection between the nodes (e.g., the Dijkstra’s algorithm for weighted 
directed networks). Nonetheless, it suffices to transform the weights into effective distances ED(i, j) = 1 − log(ES(i, 
j)) in order to obtain a representation of edge weights that is coherent with the distance or cost interpretation of 
the search algorithms54, 55, after having row standardized the adjacency matrices in order to ensure that ES(i, j) 
∈ [0, 1], ∀i, j. After this transformation, we then compute two more indices:

ES(i, j) =
∑

Et(i, j)/|S|,

t ∈ S

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas


7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11093  | https://doi.org/10.1038/s41598-021-90733-2

www.nature.com/scientificreports/

•	 Diameter: the longest of all possible shortest paths between any two pair of nodes computed using Dijkstra 
algorithm56 (this metric does not account for the geographical distance between nodes, but only the effective 
distance between them),

•	 Shortest path length: the average of the shortest paths between any possible pair of different nodes, computed 
using Dijkstra algorithm56.

Cut distance.  The Cut distance46 is a particularly suitable and elegant way for comparing weighted and 
directed networks having the same number of nodes57 and it is based on the mathematical formalism of the 
cut distance or rectangle distance presented in58. We do not present here the mathematical formulation of the 
distance and we invite the interested reader to refer to46 for the details. Since the algorithm for computing the 
Cut distance between two networks is based on the maximisation of a certain function over all possible pairs 
of disjoint and complementary subsets of nodes of a network, the problem becomes quickly unfeasible as the 
number of nodes increases (NP-hard problem46). In order to solve this problem, we used a genetic algorithm 
from the R library GA59.

Indices of network nodes relevance.  Single node relevance can be computed in a multitude of ways and 
many indices have been proposed in the literature60. Here we consider seven among the most widely used indices 
for weighted and directed networks:

•	 betweenness centrality, which quantifies the number of times a node acts as a bridge along the shortest path 
between two other nodes61.

•	 closeness centrality, which measure the average distance of a node to all other nodes of the network61,
•	 coreness, which measures the ranking of a node after a k-shell decomposition of the network62,
•	 eigenvector centrality, which measure the tendency of highly-connected nodes to be connected to nodes with 

also are highly connected63,
•	 in-strength and out-strength, i.e. the sum of the weights of the edges incoming (resp. outgoing) from a node,
•	 strength, the sum of in-strength and out-strength.

Susceptible–infected epidemic model.  In order to model the spread of an epidemic over the con-
structed spatiotemporal networks, we simulated a classical SI (susceptible–infected) compartmental model64–67. 
In this model, each individual can be assigned to two distinct states: susceptible or infected. Simulations start 
with all nodes being susceptible, except for a single inoculated initial node. At each time step, susceptible 
nodes become infected if the maximum weight of their infected contacts is over a certain threshold (here arbi-
trary set to 0.1). All simulations run for 6 time steps. We simulated N = 604 SI epidemics for each of the three 
considered periods (2011–2017, summer and winter) by changing the initial infected node across all possi-

Table 2.   Network indices (Diameter, density, transitivity, degree correlation, average shortest path) calculated 
from the networks covering the Mediterranean region and estimated in three temporal contexts: the entire 
period 2011–2017, yearly time periods from 2011 to 2017 and monthly time periods.

Time period Diameter Density Transitivity degree correlation Average shortest path

2011–2017 37.5 0.28 0.74 0.306 2.06

2011 58.5 0.17 0.68 0.132 2.63

2012 40.0 0.18 0.67 0.086 2.47

2013 40.8 0.18 0.67 0.233 2.45

2014 89.7 0.15 0.66 0.239 3.12

2015 65.4 0.16 0.66 0.236 2.75

2016 45.1 0.16 0.66 0.242 2.58

2017 44.7 0.17 0.66 0.175 2.48

January 52.5 0.13 0.64 0.168 2.69

February 114.2 0.14 0.63 0.274 4.12

March 63.4 0.13 0.63 0.265 3.10

April 64.4 0.13 0.64 0.220 3.11

May 52.1 0.12 0.64 0.180 3.08

June 72.9 0.12 0.62 0.175 3.61

July 80.3 0.10 0.60 0.061 3.47

August 61.7 0.10 0.60 0.124 3.43

September 57.7 0.10 0.61 0.167 3.45

October 102.6 0.10 0.62 0.204 4.08

November 99.3 0.11 0.63 0.378 3.93

December 59.0 0.13 0.62 0.369 2.57
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ble nodes of the networks, the rest of the parameters being constant. For every node i ∈ {1, . . . ,N} and every 
period G ∈ {2011− 2017,winter, summer} , we recorded two values: (1) the SI persistence PG(i) that represents 
the maximum percentage of infected nodes at the end of the simulated epidemic that started from node i and 
spanned the period G and (2) the SI frequency FG(i) that represents the percentage of times that node i has been 
infected across all the epidemics ran in the G period.

Software.  Air-mass trajectories have been computed using the HYSPLIT45 software installed on local clus-
ter https://​infor​matiq​ue-​mia.​inrae.​fr/​biosp-​clust​er/​clust​er. All the rest of computations and graphics have been 
performed using the statistical software R, in particular using the packages sf68, ggplot269, igraph50, GA59 
and corrplot70.
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