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Stress distribution of different 
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At present, the pedicle screw is the most commonly used internal fixation device. However, there 
are many kinds of common posterior pedicle screw insertion techniques performed to reconstruct 
the lumbar stability. Therefore, spinal surgeons often face a difficult choice. The stress distribution 
of internal fixation system is an important index for evaluating safety. Unfortunately, little had been 
known about the difference of stress distribution of screw-rod systems that established by Roy-
Camille, Magerl and Krag insertion techniques. Here, combination of finite element analysis and 
model measurement research was adopted to evaluate the difference of stress. Following different 
pedicle screw insertion techniques, three lumbar posterior surgery models were established after 
modeling and validation of the L1–S1 vertebrae finite element model. By analyzing the data, we found 
that stress concentration phenomenon was in all the postoperative models. Roy-Camille and Magerl 
insertion techniques led to the great stress on screw-rod systems. Then, fresh frozen calf spines were 
selected as a model for subsequent measurements. Fitted with a specially designed test pedicle screw, 
L5–L6 vertebrae were selected to repeat and verify the results of the finite element analysis. With 
the aid of universal testing machine and digital torque wrench, models simulated flexion, extension, 
lateral bending and rotation. Finally, the strain value was captured by the strain gauge and was then 
calculated as the stress value. Krag and Magerl were found to be the safer choice for pedicle screw 
insertion. Overall, our combination method obtained the reliable result that Krag insertion technique 
was the safer approach for pedicle screw implantation due to its relatively dispersive stress. Therefore, 
without the consideration of screw size, pedicle fill, bone density, and bone structures, we recommend 
the Krag insertion technique as the first choice to reconstruction of lumbar stability. Additionally, the 
combination method of finite element analysis and strain gauge measurement can provide a feasible 
way to study the stress distribution of spinal internal fixation.

Lower back pain, the second common ailment, happens to almost 80% people all over the  world1. Trauma, 
Congenital disease, tumor, infections and other degenerative reason may cause lower back pain. Due to a frac-
ture, the lumbar spine may become unstable. And operations on most of the diseases often destroy the stability 
of lumbar spine. Therefore, reconstrucion of lumbar stability is the key to treatment. Due to the great loading 
conditions, lumbar region reconstruction is usually accomplished with the posterior pedicle screw-rod system.
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In 1959, Boucher first described the pedicle screw  instrumentations2. After a long period of development and 
improvement, they have been widely used for providing immediate stability, correcting deformity, enhancing 
bony fusion and maintaining normal spinal segments. Based on this, the pedicle fixation technique was able to 
treat deformations, tumors, unstable fractures, tuberculosis and degenerative disorders of the spine. With the 
increasement of clinical applications of pedicle screws, postoperative problems including breakage, loosening, 
improper placement, spinal cord injury, nerve root injury, dural tears, pseudarthrosis and instrumentation 
infection gradually  appear3–7. The most common postoperative problem is breakage, which resulted from screw 
fracture due to torsion or bending. The previous studies show that screw breakage often occurs around the thread-
shank region and has an incidence of 2.6% to 60%8–10. In recent years, the safety of pedicle screw and connecting 
rods have been improved by application of new shape, hard material and motorization, but case reports of break-
age are not  rare11,12. Protecting pedicle screws and connecting rod from breakage is still needed to be resolved.

Researchers experimenting on biomechanical testing of lumbar spine notice that the breakage is relevant 
to the difference of various internal fixation  systems13. Furthermore, the retrospective study has achieved the 
same  result14. Although researchers have shown that screw size, pedicle fill, bone density, bone structures, and 
insertion technique are important factors for influencing internal fixation  stability15–17. Unfortunately, there is 
still no adequate evaluation on the biomechanical features of different pedicle screw insertion techniques. Under 
circumstance of using the same pedicle screw, the choice of the insertion technique varies with different surgeons. 
They prefer for paying more attention for intraoperative safety during selecting insertion technique. But the 
resulting breakage risk of internal fixation system will be unconsciously neglected. In fact, insertion technique 
has three key elements including position, orientation and depth. As mentioned in the previous literature, dif-
ferent techniques with different elements will have effect on the stress state of inserted screw  instrumentations18. 
Therefore, from the perspective of biomechanics, performing the low stress technique may reduce the breakage 
risk as well as ensure the success of the  operation19. With simulation, veracity and repeatability, the finite ele-
ment (FE) analysis has been viewed as a reliable approach for evaluating the biomechanical behavior of different 
internal fixation system. More intuitive data can be obtained from traditional cadaver research, which is also 
very important for biomechanical study. In the following research, three pedicle screw insertion techniques 
will selected as the research objects. Roy-Camille, Magerl, and Krag are three common and typical insertion 
techniques that are performed for stabilizing the lumbar  spine20–22 (Fig. 1). Each of these three techniques has 
respective characteristics of entry point and insertion orientations. Here, we carry out a FE analysis and a series 
of model measurement researches to unveil the biomechanical difference among different insertion techniques. 
The primary objectives of this study were to (1) establish a feasible FE model of the lumbar spine; (2) simulate 
three pedicle screw insertion techniques on the FE model; (3) compare the stress distribution of the posterior 
screw-rod system following different insertion techniques; (4) establish measured models with different posterior 
screw-rod system; (5) simulate six various working conditions and collect the maximum strain values on the 
internal fixations of each model; (6) comprehensively analyze the results of both FE analysis and biomechanical 
tests to identify the safe insertion technique.

Materials and methods
Intact finite element model. This study was assessed and approved by the Ethics Committee of the First 
Affiliated Hospital of Dalian Medical University (approval number: YJ-FB-2016-45). The study was carried out 
in accordance with the relevant guidelines and regulations, and an informed consent was obtained from the 
subject. Geometrical details were obtained from a thirty-year-old healthy male volunteer in an unloaded neutral 
position by high-resolution computed tomography. Including five lumbar vertebrae, parts of sacral vertebrae 
and five intervertebral disks, the Dicom data, was imported into the Mimics 10.01 software (Materialise Inc., 
Leuven, Belgium). A threshold was set to differentiate bone and soft tissue. Boolean calculation and interactive 
three-dimensional manual/automatic cutting operations were performed to establish a rough three-dimensional 

Figure 1.  The methods of three pedicle screw insertion techniques. From top to bottom, they are Roy-Camille, 
Magerl, and Krag, respectively.
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(3D) model of L1–S1 vertebrae (Fig. 2A). For both of smoothening uneven surfaces and forming entity, the 
model was polished, filled, denoised and solidified in Geomagic Studio 12.0 software (Raindrop Geomagic Inc., 
Morrisville, NC, USA). Then, the rational non-uniform geometry structure was achieved and assembled to the 
intact model in Solidworks 2012 software (SolidWorks Corp., Waltham, MA, USA) (Fig. 2B). It was imported 
into Hypermesh 13.0 software (Altair Engineering Inc., Troy, MI, USA) to generate FE meshes (Fig. 2C, D). 
Patran/Nastran 2012 software (MSC Software Corp., Newport Beach, CA, USA) was performed to define the 
material properties, set the boundary and loading conditions, calculate conditions and accomplish FE analysis.

Each lumbar vertebra consisted of posterior bone elements, cortical bone elements and cancellous elements. 
And each intervertebral disc was modeled as a central nucleus surrounded by the annulus fibrosus. The carti-
laginous endplate elements were also truly simulated the connection between vertebra and intervertebral disc. 
Six major lumbar spine ligaments were incorporated into the model: anterior longitudinal ligament, posterior 
longitudinal ligament, ligamentum flavum, interspinous ligament, capsular ligaments and intertransverse liga-
ment. The ligaments were modeled as nonlinear tension-only connectors via a hypoelastic material designation. 
The facet articulations of the ten pairs of zygapophyseal joints in L1–S1 vertebrae were modeled as frictionless 
contact elements, due to its infinitesimal friction.

To improve the simulation quality, the tetrahedral mesh was generated for all the vertebrae and disc models. 
The material properties of the various tissues used in this FE model were derived from  literature23,24 and are 
listed as Table 1.

The boundary conditions applied were as followed: movements at the bottom of the sacrum were constraint, 
and a series of unified movements was considered. A compressive preload of 500.0 N combined with a pure 
moment of 10.0  Nm25 was applied at the central node on the top side of the first lumbar vertebra to simulate 
flexion, extension, left–right lateral bending and left–right axial rotation movements.

Model validation. For most FE analysis studies, simulation results of the intact FE model were compared 
with the data reported in the previous literatures. Here, simulation results in this study were compared with both 
existing well-validated FE models reported in the literature and the data of biomechanical test. Generally, it is 
accepted that greater number and diversity of comparisons between a model and experimental data increases 
the reliability of  validation26. For better simulation, this new FE model was tested in loading conditions consist-
ing of both moment and compression in all the six degrees of freedom (flexion, extension, left and right lateral 
bending, and left and right axial rotations). Range of motion (ROM) was the only parameter chosen for valida-
tion. Model validation was accomplished by comparing with in vitro biomechanical test  data27,28 and simulation 
results obtained from four well-validated FE models in the  literature25,29–31.

Three finite element models of posterior fixation of L4–L5 vertebrae. In Geomagic Studio 12.0 
software, simulation models including simplified pedicle screws (diameter = 6.5 mm, length = 45 mm) and con-
necting rods (diameter = 5.5 mm, length = 35 mm) were designed respectively. Because of the higher incidence 
of spine diseases, L3–S1 vertebrae of the intact FE model were adopted to simulate the posterior lumbar surgery. 
With the combination of bilateral connecting rods, four pedicle screws were inserted into the pedicle of vertebral 
arches according to different methods (Roy-Camille, Magerl, and Krag). Therefore, three different postoperative 
models of L4–L5 vertebrae could be achieved.

Figure 2.  The procedure to establish the intact FE model of L1–S1 vertebrae. (A) a rough 3D model of L1–S1 
vertebrae, (B) the rational non-uniform geometry structure of the model, (C and D) setting of the nonlinear 
simulation of ligaments and the meshing of the model.
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The same as the simulation method of intact FE model, postoperative models also underwent a series proce-
dure of remeshing, defining material properties, and setting boundary and loading conditions (Fig. 3). Consid-
ering the safety of postoperative functional exercise, 300 N was selected as the load. Finally, under the vertical 
compressive preload of 300.0 N on L3 vertebra and a pure moment of 10.0 Nm, six different working conditions 
(flexion, extension, left and right lateral bending, left and right axial rotations) of all the models were simulated 
to calculate the stress distribution and intervertebral ROM.

Biomechanical test model preparation. Nine calf spines (L4–S2) were purchased from the butcher. 
Radiological examination was performed to exclude spinal disease for these spines. Following muscle removal, 
soft tissue structures like ligament and joint capsule was retained. Then, the ends of the head and tail was 
smoothed. Four Kirschner wires were implanted along the longitudinal and transverse axes of L5 and L6 to 
assist to determine whether intervertebral activities occurred. Finally, the models were randomly grouped and 
stored at low temperature.

Special internal fixation and fixture design and strain value measurement. Stress measurement 
of internal fixation of spine in vitro was rarely studied. Based on common internal fixation, special screws and 
connecting rods were designed and manufactured. They had the advantage of having a smooth platform, which 
could fit with strain gauges. According to the FE analysis results, the design position of the platform was set to 
the stress concentration area included the screw tail and the middle part of the connecting rod. For biomechani-
cal experiments with high stress, fixture that could connect model and test instruments was also designed. The 
stable clamped model could also ensure the normal measurement of strain value.

Meanwhile, the special fixture could cooperate with the testing machine and torque wrench to produce dif-
ferent working conditions. The parameter of compressive preload and pure moment was consistent with the 
computer simulation of FE analysis. When the working condition reached the maximum, the strain value on the 
internal fixation would be measured. Static strain test analysis system (DH3821, Donghua test, Jiangsu, China), 
universal testing machine (SANS CMT4204, MTS System (CHINA) Co., Ltd., Shenzhen, China) and torque 
wrench (WEC2-030BN, WIZTANK, Eclatorq Technology Co., Ltd., Taiwan, China) were selected and used.

Statistical analysis. SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA) was performed for statistical analy-
sis. Data were statistically analyzed based on the analysis of variance for repeated measures. Data were expressed 
as the mean ± standard deviation, and the normality of the data distribution was assessed using the Shapiro–
Wilk test.

Results
Intact finite element model. Concerning the results of the intact L1–S1 vertebrae FE model, we took full 
advantage of Mimics 10.01, Geomagic Studio 12.0, Solidworks 2012, HyperMesh 13.0, and Patran/Nastran 2012 
softwares. The high-quality FE model contained six vertebrae, five intervertebral discs and six ligaments; which 
also consisted of 368,233 tetrahedron elements and 79,722 nodes.

Model validation. Figure 4 indicated biomechanical test data in vitro and simulation results of four well-
validated FE models in the literature were used for the comparison. The comparison of ROM between this intact 
FE model and previously published data under the combined flexion, extension, left–right lateral bending and 
left–right axial rotation modes were summarized. There were no obvious differences in the ROM between the 
intact FE model and the data published by the literature. Because all the data were conformed through normal 
human body parameters, the intact FE model could simulate the physiological movement of L1–S1 vertebrae. 

Table 1.  Material properties of L1–S1 vertebrae FE model components.

Part Young’s modulus (MPa) Poisson’s ratio

Cortical bone 12,000.00 0.30

Cancellous bone 100.00 0.20

Posterior bone 3,500.00 0.25

Annulus 4.20 0.45

Nucleus pulposus 1.00 0.50

Anterior ligament 20.00 0.40

Posterior ligament 20.00 0.40

Interspinous ligament 10.00 0.30

Supraspinous ligament 10.00 0.30

Ligamentum flavum 10.00 0.30

Capsular ligament 10.00 0.30

Transverse ligament 10.00 0.30

Titanium screw and rod 113,000.00 0.30
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And its simulation performance was already to be used for further biomechanical studies by computer simula-
tion.

Three finite element models of posterior fixation of L4–L5 vertebrae. Based on the validated 
intact FE model, the L3–S1 model was selected to simulate posterior screw-rod system fixation surgery of L4–L5 
vertebrae. The simplified pedicle screws and connecting rods were designed in Geomagic Studio 12.0 software 
and were assembled into different internal fixation systems on three same FE models. Here, the contact surfaces 
between screws and trajectories were defined as an infinite friction coefficient. Additionally, all components 
of the internal fixation system were recognized as a whole. Then, re-meshed models were established by using 
Hypermesh 13.0 software. With different points and orientations of pedicle screws, the Roy-Camille, Magerl, 
and Krag surgery FE models were ready for biomechanical studies.

After the internal fixation of surgery, L4–L5 intervertebral ROMs of the different FE models were all reduced 
in comparison with the intact FE model (Fig. 5). It was worth noting that the changes of flexion and extension 
conditions were the most obvious. On the contrary, L3–L4 and L5–S1 intervertebral ROMs in different FE 
models slightly increased.

The Maximal von Mises stress of lumbosacral vertebrae, L3–L4 intervertebral disc, L4–L5 intervertebral disc 
and L5–S1 intervertebral disc in different postoperative models were different (Figs. 6 and 7). Greater stress 
concentrated areas were all observed on L3–L4 and L5–S1 intervertebral discs in these three postoperative FE 
models. Greater stress concentrated areas were observed on lumbosacral vertebrae in Krag FE model. For the 
internal fixation, the stress distribution of screw-rod system in three FE models was shown in Fig. 8. The Maxi-
mal von Mises stress areas concentrated on both the centre of connecting rods and roots of pedicle screws for 
all the models, especially during flexing, extension, left axial rotating and right axial rotating (Fig. 9). Interest-
ingly, we noted that the stress distribution in Krag screw-rod system was more dispersive than others. The mean 
stress values of the three groups (Roy-Camille, Magerl, and Krag) were 80.12 MPa, 92.77 MPa and 66.80 MPa, 
respectively. Moreover, the maximum stress level for Roy-Camille and Magerl screw-rod systems were as much 
as 126.82 MPa and 101.01 MPa, respectively.   

Biomechanical test model preparation. Following radiological examination, nine calf spines (L4–S2) 
were serially processed to removal muscle as well as keep soft tissue structures. Finally, intact vertebral bone, 
intervertebral discs, anterior longitudinal ligament, post longitudinal ligament, ligamentum flavum, inters-
pinous ligament, supraspinous ligament, and articular capsule were retained. For the convenience of assembly, 
the ends of the head and tail was ground down by an angle grinder. Then, the models were grouped by the sor-
tition randomization method. Low temperature storage of the models were reserved for further experiments. 
Then models would be assembly internal fixation following three different insertion techniques (Fig. 10).

Special internal fixation and fixture design and strain value measurement. According to the 
results of the FE analysis, the stress concentration area was found. This provided a possibility for carrying out 
the measured test. Here, the special internal fixation were produced. Different from the previous internal fixa-
tion, special screws and connecting rods had a platform structure in the rear of screw and central region of rod 
(Fig. 11). These structures could be connected with strain gauges, which were used to capture the strain signal 
and transmit it to the static strain test analysis system.

On the other hand, the previous experiments were analyzed and evaluated comprehensively to assist to 
complete the design of special fixture. This study also brought a whole new tool (Fig. 12). Stable bottom compo-
nents could provide different test angles of the model. The header component guaranteed the connection to the 
universal testing machine and drove models produce different working conditions.

After internal fixation implantation and fixture assembly on the prepared calf spine, twelve strain gauges were 
attached to unilateral two screws and a connecting rod. Under the joint drive of fixture and testing machine, the 
model simulated different working conditions of normal physiological activities (Fig. 13). Intervertebral activi-
ties between L5 and L6 were found indirectly by judgement of the angle between kirschner wires. Static strain 

Figure 3.  The procedure of lumbar posterior surgery simulation and establishment of the postoperative FE 
model of L3–S1 vertebrae.
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test analysis system captured the strain data at each point. Then, the stress value would be calculated by formula. 
Finally, stress extremes at each point were selected. From the results, under the same load conditions, flexion, 
extension and bilateral lateral bending were the working conditions in which the internal fixation stress was more 
concentrated. The mean stress values of Roy-Camille, Magerl, and Krag group were 57.30 MPa, 32.92 MPa and 
32.58 MPa, respectively. Compared among three postoperative models, Roy-Camille insertion technique had 
the greatest impact on internal fixation and significantly more dangerous than the other two technologies with 
maximum value 156.35 MPa (Fig. 14). 

The formulas for calculating stress is below.

(σ: stress, E: modulus elasticity , ε: strain).

Discussion
With the increasing and aging trends of the population, low back pain has been the leading cause to  disability32. 
The diagnosis and treatment of lower back pain have been the hot research fields that draw more and more atten-
tion. With the rapid development of radiological technology, the diagnosis of lower back pain becomes easy to 
be determined. Meanwhile, internal fixation techniques including implants and operation methods are being 
constantly improved. However, for those cases that undergo the spinal surgery, postoperative complications of 
fixation devices usually cause surgeons to worry.

The use of the pedicle screw has been more than half a  century2. As the main force for multi-plane stabil-
ity reconstruction of lumbar vertebra, pedicle screws are used in most of posterior lumbar surgery. There’s no 
avoiding the fact that postoperative problems mainly including loosening and breakage become frequent and 
tricky. With more in-depth studies, pedicle screw loosening has been proved to closely related to the decrease of 
pullout strength and the change of insertion torque. The main influencing factors of pullout strength are density, 
insertion angle, insertion depth and  reinsertion33. And bone density of vertebra is an important factor in pedicle 
screw instrumentation and contributes highest toward insertion torque (82%) and pull out strength (76%)34. 
Pull out strength increases with an increase in density and insertion depth. Whereas, insertion angle has no 
significant effect on both pull out strength and insertion torque. In the bilateral screw-rod system, reinsertion 
also has no significant effect on pullout  strength35. A new research suggested that the roughness of surface is 

σ = E× ε

Figure 4.  Comparison of ROM, between this study and the results reported by the previous literature.
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another important factor for insertion  torque36. Incidence of screw breakage ranges between 2.6 and 60%8–10 and 
its occurrence represents a serious problem. A few of methods like the modified screw and dynamic stabilization 
system are created to cope with it. However, these attempts still are not able to completely remove the risk of 
 breakage12,37. Meanwhile, cadaveric research and clinical retrospective study predict the uncertain results because 
of obvious limitations mainly including nonrepeatability, proof heterogenicity and large consumption. Therefore, 
there has been limited progress in biomechanical research. There are many frequently-used kinds of pedicle screw 
insertion techniques. The answer about relativity between insertion techniques and risk of breakage is not given 
throughout. Based on this, FE analysis combined with model measurement research can be regarded as a reli-
able approach for evaluating the biomechanical characteristics of different pedicle screw insertion techniques.

We drawn insights of FE analysis from previous literature and selected a healthy young volunteer to complete 
collection of imaging database. Mimics 10.01, Geomagic Studio 12.0, Solidworks 2012, Hypermesh 13.0, and 
Patran/Nastran 2012 softwares were performed to establish this intact FE model. To eliminate the difference of 
actual measurements and FE studies, five typical biomechanics data including in-vitro and FE studies were used 
for model  validation25,27–31. ROM, commonly used in the step of comparison, was adopted by us. The values of 
flexion, extension, left–right lateral bending and left–right axial rotation movements of this intact FE model were 
in accordance with the numerical range of the included studies. Additionally, the mesh quantity with 368,233 
tetrahedron elements and 79,722 nodes was moderate and acceptable. Therefore, our validated FE model could 
be used for further biomechanical researches and was different from previous reports. The reconstructed model 
was based on data from one healthy adult volunteer. This ensured the authenticity of the model. Combined with 
the processing advantages of different engineering software, the process of model establishment was optimized. 
This FE model had appropriate quantity of elements and nodes that reducing the computing burden will be 
beneficial to the study of stress distribution of the internal fixation system. Therefore, in this study, the accuracy 
of FE analysis results was guaranteed while the efficiency of model processing was improved.

Because of L4, L5 and S1 vertebra enduring the largest gravity in the lumbosacral vertebrae, L4–L5 interver-
tebral disc is often troubled by illness. Moreover, posterior lumbar surgery that mainly applied pedicle screws is 
widely used, now. Therefore, bilateral posterior pedicle screw-rod system fixation on L4 and L5 vertebra is the 
ideal surgery model for comparing different pedicle screw insertion techniques. Then, we extracted L3–S1 lum-
bosacral vertebrae from the intact FE model to perform this biomechanics study. By surgery simulation, mesh 
generation, materials properties definition, load applying and condition setting, three different models about 
pedicle screw insertion techniques following single-segment internal fixation were ready. The biomechanical 
characteristics of different models were compared. Previous studies have shown that lumbar interbody fixation 

Figure 5.  Comparison of ROM, between postoperative FE models and the intact FE model.
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Figure 6.  The von Mises stress of the adjacent-segment intervertebral discs in different FE models.

Figure 7.  The von Mises stress of the lumbosacral vertebrae in different FE models.
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Figure 8.  The stress distribution of screw-rod systems in three postoperative FE models under different 
conditions. According to the indicator diagram, red indicates the stress concentration area, while blue shows the 
stress dispersion area.

Figure 9.  The von Mises stress of the internal fixation in three postoperative FE models under different 
conditions.
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are able to increase in ROM of adjacent segments of both  sides38. Here, ROMs of L3–L4 and L5–S1 in three dif-
ferent postoperative models increased, compared to the intact model. The stiffness-increasing mechanism as the 
potential reason for the fixation-induced compensation is widely accepted. The stiffness-increasing effect protects 
the bridged segment from deformation, and transfers the load to the adjacent segments. This phenomenon can 
account for the higher kinematic and kinetic demand at the adjacent segments after implantation of internal fixa-
tion. Hsieh indicated that adjacent discs were subjected to the transferred loads from the instrumented  segment38.

For the stress of internal fixation system, flexing, extension, left axial rotating and right axial rotating were 
the noteworthy working conditions that caused stress concentration. The difference of the pedicle screws’ points 
and orientations contributed mostly to the difference in stress  distribution39,40. When the different points and 
orientations were selected, stress distribution of pedicle screws and rods would be changed consequently. After 
lumbar posterior surgery, screw-rod system became the center of stress. As we know, stress concentration might 

Figure 10.  The processing of the models.
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directly lead to breakage of the fixation  system19. Because the pedicle screw belongs to the posterior internal 
fixation instrument, it is like the "crane" force structure that determines the stress concentration on the junction 
of thread and smooth. Screw breakage described by previous literatures often happen in this  area41. This study 
result tied well with previous studies wherein the same was observed from all the three different postoperative 
models. Similarly, the rods connecting two pairs of pedicle screws up and down were under the major  stress39. In 
the FE study section, the mean stress values of the three groups (Roy-Camille, Magerl, and Krag) were 80.12 MPa, 
92.77 MPa and 66.80 MPa, respectively. Krag with the minimum mean stress value seemed better than the other 
two insertion methods. To verify the results of FE analysis, biomechanical test with nine calf spines were per-
formed. According to the characteristics of concentrated stress areas, special internal fixation and fixture were 
designed to well simulate six working conditions. Choosing the same load conditions as the FE study, the strain 
value was obtained and calculated into stress value. Finally, results of biomechanical test showed that the mean 
stress values of Roy-Camille, Magerl, and Krag group were 57.30 MPa, 32.92 MPa and 32.58 MPa, respectively. 
It was not difficult to see that Krag and Magerl were two more secure insertion method for protecting the pos-
terior pedicle screw-rod system. Additionally, flexing, extension, left lateral bending and right lateral bending 
easily caused stress concentration. Taken together FE analysis and biomechanical test results, Krag insertion 
method was better than the other two with a lower risk of breakage. Krag insertion technique emphasizes on the 
trajectory that stands in sharp contrast to other insertion techniques. Screw-rod system based on Krag insertion 
technique transfers the stress to the lower part. This allows stress to be dispersed in the lumbar spine with internal 
fixation. In contrast, screws implanted by Roy-Camille and Magerl insertion technique parallel to the upper and 
lower endplates in the sagittal position. At that time, the tail of the screw is at right angles to the connecting rod. 
This may be the cause of relatively high stress of screw-rod system. Flexion and extension were still the most 

Figure 11.  The special designed screws (diameter = 6.5 mm) and connecting rods (side length = 5.5 mm) for 
attaching strain gauges.

Figure 12.  The special designed fixture for both fixing calf spine model and connecting with the testing 
machine.
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dangerous conditions after lumbar posterior surgery. Although the data was not sufficient, lateral bending and 
rotation could not be underestimated, too. Processed by software, FE model was made as idealized as possible, 
but biological simulations of tiny structures were difficult to complete, such as the motion of the joint capsule. 
The inconsistencies in the two experiments were related to the nuances of different models.

It should be noted that the comprehensive analysis method adopted in this study was an innovation. As we 
known, FE analysis is widely used to complete mechanical analysis of internal fixation and bone. High emulation, 
low cost and time saving are its great advantages. However, biomechanical test is in stark contrast to the former. 
Its advantage is that repeated tests can be carried out with multiple specimens. Strain gauge is a common method 
of stress measurement and often used for mechanical and material testing. But, in the previous researches, com-
bination with FE analysis and strain gauge measurement is rare. Oral biomechanics was the first to adopt this 
approach. Palamara et al. investigated the variations in strains in enamel under different patterns of occlusal 
loading. Strains predicted from the FE model were in excellent agreement with the strain gauge  measurements42. 
A few of studies were performed by the similar method and continuously improved its  reliability43–45. In recent 
years, this method began to be transplanted into orthopedic stress research. Bone surface strains of the radius 
and ulna in mouse has been studied by Begonia et al. via using the similar  method46. Then, Gao et al. believed 
this combination method was a feasible way and showed the strain distribution of axial compressive load of rat 
 tibia47. These satisfactory results proved the validity again. In this study, we adopted this research method, but 
the object of study was no longer human tissues, but internal fixations with metallic material properties. Strain 
gauge placement is a difficult point in this kind of measurement. Therefore, special screws and connecting rods 
with smooth platform was designed. Then, it is possible to measure the strain of internal fixations. In this study, 
the results of FE analysis were mostly in agreement with the measured results of strain gauge.

Figure 13.  Simulation of six different working conditions on the test machine.
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The final results of this combination test will make some difference in the clinical choice of pedicle screw 
insertion technique. Based on the Krag technique, the much safer insertion techniques will be designed and 
promoted. Additionally, developing decision support system based on this study for pedicle screw fixation can 
supply the personalized therapy and precision medicine for patients suffering from lumbar disease.

There were still some limitations in the present studies. Limited to the tremendous computing workload, 
elements and nodes of the intact model were moderate rather than elaborate. Based on data from different 
individuals, multiple FE model of lumbar spine would help to verify the results of FE studies. This might be a 
better representation compared to the combination of FE analysis and biomechanical test. Current pedicle screw 
insertion techniques are diverse. The differences are mainly in entry point and insertion orientations. Only three 
common and typical pedicle screw insertion techniques were selected for the comparison. This limitation of 
selection had impact on the research comprehensiveness. Thus, the results of other techniques were unknown 
and needed further studies. In the biomechanical test section, the sample size was still insufficient. There were 
differences from selected calf vertebra and human vertebra in the number, shape and size. The simulation of 
the working condition should be more ideal, more close to the FE study, more in line with the physiological 
state. There were some differences in the stress values measured from the FE analysis and the biomechanical 
test, which was related to the experimental environment, the model difference, experimental measurement and 
calculation method. The most authentic and reliable results could be attained by combining with large sample 
clinical data. Additionally, more efforts should be done to explore the influences caused by screw size, pedicle 
fill, bone density, and bone structures.

In summary, compared with others, Krag insertion technique could reduce the stress concentration of screw-
rod system. Without the consideration of other factors, Krag insertion technique was safer for reconstructing the 
stability of lumbar vertebra, due to its potentially low risk of fixation breakage. Additonally, combination of FE 
analysis and strain gauge test was a good selection for biomechanical study of spinal internal fixation.
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